
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java

Lecture #19: TreesLecture #19: Trees
11/16/0411/16/04

Janak J ParekhJanak J Parekh

AdministriviaAdministrivia
HW#3 returned todayHW#3 returned today
HW#5 outHW#5 out

Due two weeks from Due two weeks from todaytoday, because of Thanksgiving, because of Thanksgiving
““Looks forwardLooks forward”” a little; most (all?) will be covered a little; most (all?) will be covered
todaytoday

AgendaAgenda

Huffman treesHuffman trees
HashingHashing

2

Huffman treesHuffman trees

Goal: form trees that let us figure out short Goal: form trees that let us figure out short
binary string prefixes for each letterbinary string prefixes for each letter

We can then represent each letter with fewer # of We can then represent each letter with fewer # of
bitsbits
Ordinarily, each letter eats 8 or 16 bits (whatOrdinarily, each letter eats 8 or 16 bits (what’’s a bit?)s a bit?)

ProcedureProcedure
Create unit trees with each character and its Create unit trees with each character and its
frequencyfrequency
Put all of these in a priority queue sorted by Put all of these in a priority queue sorted by
frequencyfrequency

Huffman trees (II)Huffman trees (II)

Procedure (contProcedure (cont’’d)d)
While thereWhile there’’s more than one element in the priority s more than one element in the priority
queuequeue……

Pull off two elementsPull off two elements
Combine them with a Combine them with a ““blankblank”” parent node, whose parent node, whose
frequency is the sum of the two childrenfrequency is the sum of the two children
Push back onto priority queuePush back onto priority queue

When priority queue has one element, pop it; thatWhen priority queue has one element, pop it; that’’s s
the Huffman treethe Huffman tree

Navigating the treeNavigating the tree
Left == 0, Right == 1Left == 0, Right == 1

Quick reviewQuick review

WeWe’’ve learnedve learned……
Array ListsArray Lists
Linked ListsLinked Lists
StacksStacks
QueuesQueues
TreesTrees

Various performance metrics?Various performance metrics?
We can do better on a number of them!We can do better on a number of them!

3

Hash TableHash Table

Believe it or not, we can build a data structure Believe it or not, we can build a data structure
that has O(1) performance for insert, search, that has O(1) performance for insert, search,
removeremove
Several disadvantagesSeveral disadvantages

ArrayArray--based, so sometimes difficult to expandbased, so sometimes difficult to expand
Performance can suffer based on various parametersPerformance can suffer based on various parameters
CanCan’’t visit items in ordert visit items in order

Keys?Keys?

In general, we want to make lookup by keys very In general, we want to make lookup by keys very
fastfast
In an array, the In an array, the index numberindex number is the keyis the key

Not useful as a Not useful as a ““realreal”” key, as this number may key, as this number may
changechange
But numbers are very fast.But numbers are very fast.

OK, so how do we use a OK, so how do we use a ““wordword”” as a key?as a key?
We convert it to a number somehowWe convert it to a number somehow

HereHere’’s a simple ones a simple one……

Take the numeric value of all the lettersTake the numeric value of all the letters
a = 1, b = 2, a = 1, b = 2, …… , z = 26, z = 26
Add them togetherAdd them together
Put the word in that cellPut the word in that cell

cats == 43cats == 43

How well would this work?How well would this work?
WhatWhat’’s the minimum value?s the minimum value?
WhatWhat’’s the maximum value for a 10s the maximum value for a 10--letter word?letter word?
How many words could be in between?How many words could be in between?

4

A bit more sophisticatedA bit more sophisticated

For each character, multiply it by 26 to the positionFor each character, multiply it by 26 to the position
Always produces unique number for each wordAlways produces unique number for each word

cats == 3 * 26cats == 3 * 2633 + 1 * 26+ 1 * 2622 + 20 * 26+ 20 * 2611 + 19 * 26+ 19 * 2600

WhatWhat’’s the minimum value?s the minimum value?
WhatWhat’’s the maximum value for a 10s the maximum value for a 10--letter word?letter word?
Why is this so inefficient?Why is this so inefficient?
Need to Need to hashhash this large value into a smaller onethis large value into a smaller one

How about % How about % arraySizearraySize??
This is one of the simplest hash functionsThis is one of the simplest hash functions

CollisionsCollisions

All of this would be good if we could come up All of this would be good if we could come up
with a with a perfect hashperfect hash function: one that maps every function: one that maps every
possible entry into a different cellpossible entry into a different cell
Guess what? We usually canGuess what? We usually can’’t, unless we know t, unless we know
precisely what data weprecisely what data we’’ll be inputtingll be inputting
Several different methodologies to deal with thisSeveral different methodologies to deal with this

Separate chainingSeparate chaining

Make each hash cell a Make each hash cell a ““bucketbucket”” for multiple for multiple
entriesentries
Use a linked list or array or similar construct to Use a linked list or array or similar construct to
store the entriesstore the entries
Must make sure lists donMust make sure lists don’’t get too long: good t get too long: good
hash functionhash function

But much less sensitive to load factors than open But much less sensitive to load factors than open
addressingaddressing

5

Linear probingLinear probing

““Open addressingOpen addressing””: Just put the result in : Just put the result in
another cellanother cell
Linear probingLinear probing: put it in the very next cell: put it in the very next cell

Leads to Leads to ““clustersclusters”” making the hash table very making the hash table very
inefficientinefficient

Quadratic probingQuadratic probing: space : space ’’emem outout
x+1, x+4, x+9, x+16, x+25x+1, x+4, x+9, x+16, x+25
Wraparound if necessaryWraparound if necessary
Has other clustering propertiesHas other clustering properties

Double hashingDouble hashing

AnotherAnother form of open addressingform of open addressing
Hash the key using a different function, and use Hash the key using a different function, and use
that result as a step size (that result as a step size (x+yx+y))

Hash function must Hash function must nevernever return a zero, and should return a zero, and should
not be the same as the first hash functionnot be the same as the first hash function
stepSizestepSize = constant = constant –– (key % constant)(key % constant)
(constant is a prime less than table size)(constant is a prime less than table size)

Table size must be primeTable size must be prime

Double hashing, contDouble hashing, cont’’dd

Other considerationsOther considerations
Duplicates are a problem with this methodDuplicates are a problem with this method
Deletes?Deletes?
Consider expanding the array: rehashing requiredConsider expanding the array: rehashing required

Load factor of the hash table very importantLoad factor of the hash table very important

6

Hash functionsHash functions

What makes a good hash function?What makes a good hash function?
Fast to computeFast to compute

Random keys?Random keys?
If already random distribution, just mod itIf already random distribution, just mod it

NonNon--random keysrandom keys
Need to Need to ““compresscompress”” informationinformation
Use as much data as possibleUse as much data as possible
Table size should be primeTable size should be prime
BookBook’’s String example on page 565s String example on page 565

Hash functions and efficiencyHash functions and efficiency

Folding: Break into groups and add together Folding: Break into groups and add together ––
for example, SSNfor example, SSN

1000 cells => 31000 cells => 3--digit numbersdigit numbers

Efficiency?Efficiency?
All O(1) in theory, butAll O(1) in theory, but……
Load factor: % of table actually used Load factor: % of table actually used –– directly directly
affects performanceaffects performance

Hashing efficiency, contHashing efficiency, cont’’d.d.

In general, quadratic probing and double In general, quadratic probing and double
hashing fare better than linear probing as the hashing fare better than linear probing as the
load factor goes upload factor goes up
Separate chaining: linear function of load factor Separate chaining: linear function of load factor
(can be > 1, since multiple entries per cell)(can be > 1, since multiple entries per cell)

Generally want to avoid high loadsGenerally want to avoid high loads……

7

What canWhat can’’t you do?t you do?

Specific ordering Specific ordering –– itit’’s essentially randoms essentially random
GrowableGrowable –– cancan’’t use a linked list and maintain t use a linked list and maintain
performance metricsperformance metrics
Expect it to be Expect it to be automagicallyautomagically fast fast –– need good need good
hash functionshash functions

Although Java does have a number of hash Although Java does have a number of hash
functions built infunctions built in……

Next timeNext time

HeapsHeaps

