CS W3134: Data
Structures in Java

Lecture #19: Trees
11/16/04
Janak ] Parekh

Administrivia
m HW#3 returned today
m HW#5 out

m Due two weeks from foday, because of Thanksgiving

m “Looks forward” a little; most (all?) will be covered
today

Agenda

m Huffman trees

m Hashing




Huffman trees

m Goal: form trees that let us figure out short
binary string prefixes for each letter
m We can then represent each letter with fewer # of
bits
m Ordinarily, each letter eats 8 or 16 bits (what’s a bit?)
m Procedure

m Create unit trees with each character and its
frequency

m Put all of these in a priority queue sorted by
frequency

Huffman trees (II)

m Procedure (cont’d)
m While there’s more than one element in the priority
queue...
m Pull off two elements

= Combine them with a “blank” parent node, whose
frequency is the sum of the two children

m Push back onto priority queue
m When priority queue has one element, pop it; that’s
the Huffman tree
m Navigating the tree
m Left == 0, Right ==

Quick review

m We've learned. ..
m Array Lists
m Linked Lists
m Stacks
m Queues
m Trees

m Various performance metrics?

m We can do better on a number of them!




Hash Table

m Believe it or not, we can build a data structure
that has O(1) performance for insert, search,
remove

m Several disadvantages

m Array-based, so sometimes difficult to expand
m Performance can suffer based on various parameters

m Can’t visit items in order

Keys?

m In general, we want to make lookup by keys very
fast
m In an array, the index number is the key

m Not useful as a “real” key, as this number may
change

m But numbers are very fast.
m OK, so how do we use a “word” as a key?

m We convert it to a number somehow

Here’s a simple one...

m Take the numeric value of all the letters
ma=1b=2..,2=26
m Add them together
m Put the word in that cell
m cats == 43
m How well would this work?
m What’s the minimum value?
® What’s the maximum value for a 10-letter word?

m How many words could be in between?




A bit more sophisticated

For each character, multiply it by 26 to the position
m Always produces unique number for each word

cats == 3% 263 + 1 %262 + 20 * 26! + 19 * 26"

What’s the minimum value?

What’s the maximum value for a 10-letter word?

Why is this so inefficient?

Need to hash this large value into a smaller one
m How about % arraySize?

m This is one of the simplest hash functions

Collisions

m All of this would be good if we could come up
with a perfect hash function: one that maps every
possible entry into a different cell

m Guess what? We usually can’t, unless we know
precisely what data we’ll be inputting

m Several different methodologies to deal with this

Separate chaining

m Make each hash cell a “bucket” for multiple
entries

m Use a linked list or array or similar construct to
store the entries

m Must make sure lists don’t get too long: good
hash function

m But much less sensitive to load factors than open
addressing




Linear probing

m “Open addressing”: Just put the result in
another cell
w [inear probing: put it in the very next cell
m Leads to “clusters” making the hash table very
inefficient
® Quadratic probing: space ’em out
m x+1, x+4, x+9, x+16, x+25
m Wraparound if necessary

m Has other clustering properties

Double hashing

m Another form of open addressing
m Hash the key using a different function, and use
that result as a step size (x+y)

m Hash function must zever return a zero, and should
not be the same as the first hash function

m stepSize = constant — (key % constant)
m (constant is a prime less than table size)

m Table size must be prime

Double hashing, cont’d

m Other considerations
m Duplicates are a problem with this method
m Deletes?
m Consider expanding the array: rehashing required

m Load factor of the hash table very important




Hash functions

m What makes a good hash function?

m Fast to compute
m Random keys?

m If already random distribution, just mod it
m Non-random keys

m Need to “compress” information

m Use as much data as possible

m Table size should be prime

m Book’s String example on page 565

Hash functions and efficiency

m Folding: Break into groups and add together —
for example, SSN
m 1000 cells => 3-digit numbers

m Efficiency?
m All O(1) in theoty, but...

m Load factor: % of table actually used — directly
affects performance

Hashing efficiency, cont’d.

m In general, quadratic probing and double
hashing fare better than linear probing as the
load factor goes up

m Separate chaining: linear function of load factor
(can be > 1, since multiple entries per cell)

m Generally want to avoid high loads. ..




What can’t you do?

m Specific ordering — it’s essentially random

m Growable — can’t use a linked list and maintain
performance metrics

m Expect it to be automagically fast — need good
hash functions

m Although Java does have a number of hash
functions built in...

Next time

m Heaps




