CS W3134: Data
Structures in Java

Lecture #11: Linked lists
10/12/04
Janak ] Parekh

Administrivia

m HW#2 questions?
m enqueue / push / insert
m dequeue / pop / remove
m Yes, you can #se what you dequeue!
m I’ll put up HW#1 solutions shortly — I have one
situation to resolve

m Midterm next Thursday

Agenda

m Linked lists

m Recursion, if time allows




Linked lists

m Arrays are rather limited, cumbersome data structures —
cells are “fixed” together, limited length

m What if we could break apart the cells?

n We canl

m In fact, linked list-style structures are used more
frequently unless you need very fast random index-
based access

m Trees, graphs, etc. are generalizations of linked lists

Linked List structure

m T'wo basic objects:
m The list “parent” itself
m An “element” (book calls “link”), with data
m Technically, we don’t need both

m Parent contains reference to the first element

w Fach element contains a reference to the next element

133

m Last element’s “next” is set to null

IRk

m Meaning of the “.” operator, reviewed

Basic Linked List operations

= How to tell if empty?
m Insertions
m insertFirst()
m deleteFirst()
m displayList()
m insertlast()
m More complex operations
m How to find an arbitrary element?

m How to delete arbitrary element?




Doubling up

® Double-ended lists

m Contains pointer to last element

m Makes insertLast() much faster (how much?)
= Doubly-linked lists

m Keep a back (prev) pointer at every node

m Advantage: faster to go backwards

m Disadvantage: more memory and bookkeeping
m Be careful of syntax!

m What does last.prev.next = null mean?

Linked list complexity?

m Similar to arrays

m O(1) insert/delete at beginning (also end of list
for double-ended)

m Other operations take O(N), but faster than
array if “sliding” is needed in array

= Memory?

m Linked list more efficient, although it has to keep
lots of references

Revisit abstraction

m Book finally covers abstraction here

m We can redo all of our previous data structures,
previously array-backed, as linked list-backed

m [nterface — high-level contract, while the dirty details are
hidden

m How to do a stack?
m How to do a queue?

® You should read through this section




Other linked-list considerations

m Sorted List: how to do?
m Cases when inserting at beginning, middle, or end
m Sorting an unsorted List

m Insertion sort is faster than the other two sorts, since
“sliding” is very easy to do

Iterators

m With lists, frequently need to walk through a list
m Increase minimum wages of all employees, etc.
m But there’s no array index! How to step through?
m One way is to keep references to current cell, but
requires “outsider” to know the internals of how the list
works

Iterators (II)

m Structure: list, current, and previous references
m Methods — book suggests:

m reset() — go back to beginning

m nextLink()

m getCurrent()

m atEnd() — /as? element, not after it

m insertAfter()

m insertBefore()

m deleteCurrent()




Iterators (III)

m Java has its own, simpler, Iterator, with next()
and hasNext(), and that’s it

m Supports more than linked lists

Iteration vs. Recursion

m So, what is iteration, anyway?

m Dictionary.com: “The process of repeating a set
of instructions a specified number of times or until a
specific result is achieved.”

m Any other way of repeating over and over?

m Well, let’s think about it...

How to calculate...

m What’s the sequence 1, 3, 6, 10, 15, 21, 28,
36...
m Triangle numbers
m How to do as loop?

m How to do as addition on previous resulf?

m Recursion!




Next time...

m Continue recursion




