1 CS3134 #25
 12/4/03
 Janak J Parekh

2 Administrivia
 • Last lecture!
 • Reminder: course evaluations
 • HW6 due on Monday
 – Minor clarifications; redownload
 • HW5 return next week
 • Extra exam
 – Thursday, 11am-2pm
 • Final review session
 – Tuesday, 2pm-4pm

3 Agenda
 • Do Floyd’s once again
 – My algorithm last time on the board was (slightly) wrong
 • Discuss HW#6
 • Tie things together
 • What will the final exam be?

4 Floyd’s Algorithm
 • For all-pairs shortest path, in V^3 time
 • Idea based on Warshall’s algorithm, but add weights together
 • For all rows y,
 – For all columns x in row y,
 • If any value (x,y) is 1,
 • For all rows z in column y,
 – If $(y,z) + (x,y)$ is less than (x,z), then update (x,z)
 – Optionally, store path (x,z) through y
 • That’s it!
 – Remember array references are “backwards” $[y][x]$

5 Putting it all together…
 • What have we studied?
 • Low-level structures
 – Arrays, references
 • High-level structures
 – Lists, hash tables, trees, graphs
 • Algorithms
 – Recursion
 – Insertion sort, Quicksort, Mergesort, Heapsort
 • Multiple ways to slice-and-dice
 – Book: “general-purpose” vs. “specialized”
 • Nifty tables on pgs 722, 724, 725

6 Intractable problems
• There are graph (and other!) problems that can’t be done in any reasonable time (linear, logarithmic, polynomial) – they’re often exponential time, e.g., \(x^n \) – and grow way too quickly
• Considered NP-complete (Non-deterministic Polynomial)
• Insta-Ph.D.: prove \(P=\text{NP} \) (or vice-versa)
• Example: traveling salesman problem -- visit all cities exactly once, and return to starting point, taking minimum-cost path
 – Hamiltonian cycle problem
 – \(N! \) time!

7 Java data structures
• Collections (container) API
• Collections and maps
 – Collections: Sets, SortedSets and Lists
 – Maps: Map and SortedMap
• Implementations:
 – Sets: HashSet, TreeSet
 – Lists: ArrayList, LinkedList
 – Maps: HashMap, TreeMap
• Lots of utility methods
 – Sort, shuffle, search, findMax/findMin
• Works with generic "Object"s
• In the real world, get comfortable with these – they work well!

8 The Exam
• Similar to midterm, but about 50-75% longer
• What you don’t need to know
 – Shellsort
 – Red-black trees
 – 2-3-4 trees/external storage
 – Floyd’s algorithm (too hard to do on the exam)
• What you do need to know
 – Pretty much everything else
 – Remember, stuff in class – use my slides
• Chapter 15 is a useful overview

9 Next time
• Review session
• Final