CS3134 \#23
11/25/03
Janak J Parekh
$2 \square$
Administrivia

- HW\#5 submission trouble!
- HW\#6 will be out shortly
- HW\#4 will be returned next week; solutions are up now
- HW\#3 Q1a grading (it is 24), programming grading
- Scheduling final exam?
- Read the webboard!
- I beg of you, start earlier!

Agenda

- Finish directed graphs
- Start weighted graphs

4Connectivity in directed graphs

- Can't just do an arbitrary BFS or DFS
- Connectivity depends on starting node, i.e., "what can you reach from node X?"
- Do DFS from every vertex!
- Alternative: develop connectivity matrix from adjacency matrix
- Transitive closure of adjacency matrix
- If $L \rightarrow M$ and $M \rightarrow N, L \rightarrow N$
$5 \square$ Warshall's Algorithm
- For all rows y,
- For all columns x in row y,
- If any value (x, y) is 1 ,
- For all rows z in column y, - If (y, z) is 1 , then (x, z) should be 1
- That's it!
- Remember array references are "backwards" [y][x]
- Yes, this actually works in one pass - all the holes are filled
- What's the complexity of this algorithm?
$6 \square$ Weighted graphs
- How to represent? Not just 0s and 1s in the adjacency matrix; weight instead
- Example
- Roadmap!
- Can be directed or undirected
$7 \square$ MSTs with weights
- Many possible STs; how do we figure out the minimum?
- Simple idea: grow the tree from one node
- Pick smallest edge from vertices that we know to nodes not in tree
- Add edge and corresponding destination vertex to tree
- Add edges from new vertex to unknown nodes into priority queue
- Picking smallest edges: priority queue
- Applications
- Minimizing wiring given multiple choices
- In general, undirected graphs

However...

- If an edge to a destination vertex already exists in PQ, and we find a shorter path, need to replace the existing entry with shorter path
- Simplest way: scan through PQ, see if any such edges exist, remove them, and insert the new one
- Slicker ways of doing it include backpointers from vertices
- By the way, this is "Prim"

Shortest-path problem

- Given a graph with weighted edges, and a starting vertex, find shortest path to a target
- Dijkstra's algorithm most canonical way of doing it
- So turns out you get shortest paths to all remote vertices from that starting vertex
- Can handle both directed and undirected graphs
- Produces a directed tree
- Cannot handle negative weights

Dijkstra's Algorithm: Basic idea

- Initialize an array of distances from starting node to each vertex - if there doesn't exist a direct edge to a vertex, consider it at "infinite" distance
- Add the closest node not already in the shortest-path tree
- Update weights based on edges from newest node plus distance from starting to new - and keep track of the node we used to get to that target
- Repeat
- To find a path to a node, go backwards through the parent nodes

Next time

- Finish Dijkstra's algorithm
- Floyd's algorithm
- Putting things together, HW6 discussion

