
1

1 CS3134 #22
11/20/03
Janak J Parekh

2 Administrivia
• Minor typo on HW#5 (points)
• Scheduling final exam?

3 Agenda
• Minimum spanning tree
• Directed graph algorithms

4 Complexity of BFS and DFS?
• Optimally, O(V+E) – we visit every vertex a constant number of times and 

potentially travel every edge a constant number of times
• But this is only for an adjacency list; in an adjacency matrix version, it’s O(V2) –

we scan every row and every column in the adjacency matrix once
• Admittedly inefficient, but we knew that

5 Minimum spanning trees
• A (minimum) spanning tree is a subgraph with no cycles

– Different in weighted graphs
• Remove graph redundancy
• Useful for many applications

– Ex: minimize wiring
• In a minimum spanning tree, #E = #V – 1
• Simple algorithm (p. 644): DFS and record the edges traveled

– Don’t worry about backtracking
– Can also use BFS…

6 Directed graphs
• As earlier mentioned, useful for situations where we need to model “one-way” information

– Streets
– Trees are a subclass of directed graphs
– Book: course prerequisites

• Topological sorting: come up with a legitimate ordering of processing the nodes
– Often useful for partial ordering problems, such as aforementioned course prerequisites
– Result: a order where no vertex y comes before a vertex x where x y
– There can be multiple correct answers!

7 Topological sort
• Find a vertex that has no successors, i.e., arrows that point to it

– Look at columns of the adjacency matrix
• Delete that vertex and print it out
• Repeat
• What kinds of graphs doesn’t this work for?

– Cycles – what happens?
– “Catch-22” in real life



2

– In other words, works on generalized trees (multiple roots, etc.) – DAG
• Complexity again O(V+E)/O(V2)

8 Topological sort (II)
• How to find node with no successors?
• How do you delete a node?

9 Next time
• Warshall’s Algorithm
• Start weighted graphs


