
1

1 CS3134 #20
11/13/03
Janak J Parekh

2 Administrivia
• HW3 returned today
• HW5 out
• Solutions, testers, etc. next week

3 Agenda
• Heaps

4 Heaps
• More efficient way of implementing a priority queue as opposed to array
• Modeled as binary tree, but usually implemented as an array

– Not a binary search tree, but instead a binary tree that fulfills the heap property: a node is larger (or 
smaller, depending) than all nodes below it

– Given a node n, left is 2n+1 and right is 2n+2; parent is (x-1)/2
– Complete binary tree: we fill each level from left-to-right

• Performance: O(log n) insert and remove

5 Heap operations
• Insert

– If root, simple
– If not, put it at the “end”, i.e., next leaf, and then bubble up until we hit the appropriate 

node
• Remove

– Always “remove” the root
– Take the last element and put it into the root to replace the removed element
– Then, bubble (trickle) down

• Bubbling doesn’t require individual swaps…

6 Other operations
• Key change

– Given an index and a new value
– Then bubble up or bubble down, depending on the situation
– Finding the index can be a problem if it’s not supplied

• Expanding array
– Just like a list – don’t need to rehash

7 Tree-based heaps
• Can represent heaps as real trees
• Parent pointers needed
• Advantage: growable
• Disadvantage: finding last node is a problem

– Convert index into bitstring, and ignore the first digit
• Then, 0 is left, 1 is right



2

• Don’t need to move nodes around, just values (why?)

8 Heapsort
• If we insert N elements into a heap…
• Then remove N elements…
• We’ve got a sorted heap!
• Can we make it more efficient?

– Don’t bubble up for each new insert; instead, add everything and then start trickling (heapify)
– Don’t need to trickle leaf nodes, just intermediate nodes, e.g. start at n/2-1 and work backwards from 

there
– Recursive: heapify right heap, heapify left heap, and then trickle ourselves down (stopping condition is a 

leaf)

9 Heapsort (II)
• Other optimizations

– Work within the same array
– First, heapify
– Then, remove and put at bottom of array (since one less element in heap)

• Advantage over quicksort: less sensitive to distribution of data – always O(n log 
n) time

10 Next time
• Finish heaps
• Start graphs


