
1

1 CS3134 #18
11/6/03
Janak J Parekh

2 Administrivia
• HW4 due on Tuesday!

– Anyone not understand what the HW is saying?
• HW2 tester to be posted…

– And HW3 solutions
– Give me a few days

• I have to cancel today’s office hours
– Come see me for a make-up time

3 Agenda
• Hashing

4 Hash Table
• Believe it or not, we can build a data structure that has O(1) performance for

insert, search, remove
• Several disadvantages

– Array-based, so sometimes difficult to expand
– Performance can suffer based on various parameters
– Can’t visit items in order

5 Dictionary/Map Model
• First, explain how hash tables are frequently used
• Many applications keep a tuple of data

– (key, data), i.e., key maps to data
• For example,

– (Dictionary, definition) – this is why it’s called a “dictionary” structure
– (SSN, Employee Record)

• Not only for hash tables
• Alternative: set data model

– Does it exist, or does it not?
– What you’re doing for HW4

6 Keys?
• In general, we want to make lookup by keys very fast
• In an array, the index number is the key

– Not useful as a “real” key, as this number may change
– But numbers are very fast.

• OK, so how do we use a “word” as a key?
– We convert it to a number somehow

7 Here’s a simple one…
• Take the numeric value of all the letters

– a = 1, b = 2, … , z = 26
– Add them together

2

– Put the word in that cell
• cats == 43

• How well would this work?
– What’s the minimum value?
– What’s the maximum value for a 10-letter word?
– How many words could be in between?

8 A bit more sophisticated
• For each character, multiply it by 26 to the position

– Always produces unique number for each word
• cats == 3 * 263 + 1 * 262 + 20 * 261 + 19 * 260

• What’s the minimum value?
• What’s the maximum value for a 10-letter word?
• Why is this so inefficient?
• Need to hash this large value into a smaller one

– How about % arraySize?
– This is one of the simplest hash functions

9 Collisions
• All of this would be good if we could come up with a perfect hash function: one

that maps every possible entry into a different cell
• Guess what? We usually can’t, unless we know precisely what data we’ll be

inputting
• Several different methodologies to deal with this

10 Collision handling: separate chaining
• Make each hash cell a “bucket” for multiple entries
• Use a linked list or array or similar construct to store the entries
• Must make sure lists don’t get too long: good hash function

– But much less sensitive to load factors than open addressing

11 Next time
• Finish hashing

– Open addressing
– Good hash functions?
– Hashing efficiency

• Begin heaps

