
1

1 CS3134 #17
10/30/03
Janak J Parekh

2 Administrivia
3 Agenda

• Binary non-search trees
– Trees as arrays
– Expression trees
– Huffman trees

4 Trees as arrays
• Array[0] is the root
• 2*index+1 is the left child
• 2*index+2 is the right child
• Parent of a node is, correspondingly, (index-1)/2
• Actually works surprisingly well, but…

– No unlimited growth
– Inefficient use of memory
– Deletes are slow

5 Expression trees
• Operators are root and intermediate nodes, operands are leaf nodes
• To create

– Start with postfix expression and a stack
– Operand: form unit tree with value and push onto the stack
– Operator: pop two things off of stack, combine “by” operator, push result on stack

• When done, one element on stack
• What does inorder, preorder, postorder mean?

6 Huffman trees
• Goal: form trees that let us figure out short binary string prefixes for each letter

– We can then represent each letter with fewer # of bits
– Ordinarily, each letter eats 8 or 16 bits (what’s a bit?)

• Procedure
– Create unit trees with each character and its frequency
– Put all of these in a priority queue sorted by frequency

7 Huffman trees (II)
• Procedure (cont’d)

– While there’s more than one element in the priority queue…
• Pull off two elements
• Combine them with a “blank” parent node, whose frequency is the sum of the two children
• Push back onto priority queue

– When priority queue has one element, pop it; that’s the Huffman tree
• Navigating the tree

– Left == 0, Right == 1



2

8 Quick review
• We’ve learned…

– Array Lists
– Linked Lists
– Stacks
– Queues
– Trees

• Various performance metrics?
• We can do better on a number of them!

9 Next time
• Start hashing


