1 🔲 CS3134 #16

10/28/03

Janak J Parekh

2 🔲 Administrivia

• HW#3 due today

- If people don't mind, I might rearrange this to 25 points...

HW#4 out

- Start earlier! Don't make last-minute appointments - it makes my life hard

3 🔲 Agenda

• Continue trees

⁴ Binary search trees

- What's a binary tree?
 - Two children, always
- Main concept:
 - Max(left subtree) must be < current node, min(right subtree) must be > current node
- Why?
 - Combines advantages of a linked list and an ordered array
 - Can insert fast and search fast
 - Unlimited growth
 - Relatively fast indexed access

5 🔲 Writing the Tree in Java

- "Node" class, with left and right children
- Data in node as well
- Very similar to Link
- Main "Tree" class that links to root, with find, insert, delete, etc. methods

6 Operations in a BST

- Search
 - Simple: walk left or right depending if < or > than current
 - If we hit the bottom, we can't find it
 - O(log N) time
- Insert
 - "Search", and then put in the appropriate place
 - Need a "current" and a "parent" pointer, similar to linked-list

⁷ Traversing the tree

- Unlike search, want to walk in an abstract order, sort of like arrays
- Three means of traversal; all recursive
 - Inorder
 - Visit left subtree
 - Visit node
 - Visit right subtree
 - Preorder

- Postorder
- The latter two have use in expressions (pg. 386)

⁸ Other operations

- Min/max values
- Deleting a node
 - More complicated!
 - If no children, then nuke
 - One child
 - More than one child
 - Make one left, and go all the way right, or;
 - Make one right, and go all the way left
 - Take that node and put it at the deleted node's location
 Move the right child of the moved node up one notch
 - Book uses latter convention

Image: Pree complexity

- # of levels of a full tree is log N
 - Search, insert, delete is O(log N)
- What if it isn't full? Difficult analysis
 - Insert(1)
 - Insert(2)
 - ...
 - In fact, this is the one downside of simple BST trees: easy to make unbalanced
 - There are alternatives; you can read chapter 9 should you like

10 🔲 Next time

- Finish Trees
- Begin Hashing