
1

1 CS3134 #9
9/30/03
Janak J Parekh

2 Administrivia
• None, for a change
• Questions?

3 Agenda
• Circular queues
• Priority queues
• Linked lists

4 Queues: Review
• FIFO, instead of LIFO
• Insert, Remove, Peek
• Book’s convention: front is at bottom, near beginning of array – doesn’t matter as

long as you’re consistent
• Problem: how to represent in array?

– We can’t stick it at one end or the other, unless we slide all the elements around
– There’s a better approach

5 Circular queue
• Don’t move elements around, keep front and back pointers
• Yes, back/front can wrap around: “broken sequence”
• Keep track of number of elements – i.e., full/empty
• Convention: initialize rear to -1, front to 0

6 Circular queue operations
• Be very careful of keeping pointers consistent

– Pointers should not “cross” unless empty
• Insert

– If rear at last element (length-1), reset to -1
– Increment rear, and then place the object in the new rear
– Increment # of items

• Remove
– Grab element at front, and then increment it
– If front is off the end (== length), reset to 0
– Decrement # of items

• Why -1?
– Convention so that rear actually points to the newest-added element
– You can program with 0 if you’re careful

• Efficiency of operations?

7 Circular queue: miscellany
• Having to keep count is a little extra work
• Book has sample code to deal with “no-count” implementation, but more complex

– Basic problem: how to tell queue empty vs. full
– Trick: if full, leave an empty space (i.e., make array one cell larger than maximum # of items), and check

for the empty space
• One apart => empty; two apart => full

2

– Two cases for each:
• If front is “ahead” of rear
• If front is “behind” rear

8 Other queues
• Deque: “double-ended” queue – essentially a stack and queue combined: insert/remove

left/right
• Priority queue

– The idea is that the object of “highest priority” will be next to be dequeued
– Typically, process array during insert such that front is pointing to highest-priority element
– Book’s implementation does insertion sort: starts at end, and moves elements up until it’s in the right

position
– No benefit to using circular constructs, so very similar to naïve queue approach
– Complexity? (Heaps are better, but later)

9 Linked lists
• Arrays are rather limited, cumbersome data structures – cells are “fixed” together, limited

length
• What if we could break apart the cells?
• We can!
• In fact, linked list-style structures are used more frequently unless you need very fast random

index-based access
• Trees, graphs, etc. are generalizations of linked lists

10 Linked List structure
• Two basic objects:

– The list “parent” itself
– An “element” (book calls “link”), with data
– Technically, we don’t need both

• Parent contains reference to the first element
• Each element contains a reference to the next element
• Last element’s “next” is set to null

11 Next time…
• Finish linked lists

