
1

1 CS3134 #8
9/25/03
Janak J Parekh

2 Administrivia
• HW#1 was due about 5 minutes ago… ;)

– Feedback?
• HW#2 is out!

– i.e., I had homework too :(
– A little more thoughtprovoking and a less handholding

3 Agenda
• Finish up stacks, look at examples
• Start queues

4 Stacks, redux
• Basic operations

– Push
– Pop
– Peek
– “LIFO”

• Extraordinarily simple!

5 Basic Stack examples
• Reverse a word
• Conversation

– Sentence with parentheses?
• Delimiter matching: {}()

– Conceptually simple to use, less error-prone than array
• Function/method calls

6 More complex stack example
• How do computers parse arithmetic expressions?
• First step: transform expression into postfix notation
• Second step: evaluate postfix expression using a stack

7 Postfix
• Also called Reverse Polish Notation (RPN); HP calculators
• Why?

– Parentheses unneeded – no ambiguity
– Can process in one pass from left-to-right

• Fairly straightforward to translate from infix to postfix, but let’s hold off on this

8 Evaluating a Postfix expression
• Go left-to-right

– If operand, push on stack

2

– If operator, pop two operands, use operator, and push result on stack
• When done, there should be one value on the stack

– Pop it

9 Converting Infix to Postfix
• See pages 158-159, although I think my slides make more sense ;)
• Need to encode operator precedence
• To process:

– Operand: write straight to output
– (: push on stack
–): pop all items until (encountered, and output them; don’t write the (
– Operator: interesting problem

10 Converting Infix-to-Postfix (II)
• Operator handling

– If stack is empty, push
– Else, pop, determine precedence of new vs. popped

• If popped is a (, put it back on the stack, and put the new operator on top
• Else if new has higher precedence, push popped back on, and push new on top of it
• Else if popped has higher or equal precedence, output it, and repeat this process
• (PE)MDAS for precedence

• No more?
– Pop, output repeatedly

11 Queues
• FIFO, instead of LIFO
• “Standing in line”: print queue
• Insert: places at rear of queue
• Remove: takes from front
• Peek: looks at front
• Book’s convention: front is at bottom, near beginning of array
• Problem: how to represent in array?

– We can’t stick it at one end or the other, unless we slide all the elements around
– There’s a better approach

12 Next time…
• Circular Queues
• Priority Queues
• Linked Lists

