
1

1 CS3134 #7
9/23/03
Janak J Parekh

2 Administrivia
• Why it’s not n(n+1)/2 – we do one less comparison on the first step

– If you want to see the slowness, run the applet with 100 bars…
• Who hasn’t started HW1?

– Uh-oh…. ;)
– Are you using the webboard?

3 Agenda
• Implement sort examples

– Look at complexity metrics based on code
• Start looking at linked lists

4 Sorts
• By the way, look at applets
• Bubble (p. 85)

– Sort pairwise repeatedly
– Biggest placed each time

• Outer loop starts at n-1 and goes down

• Selection (p. 89)
– Search for smallest, swap with first
– Search for smallest, swap with second
– Outer loop starts with 1 and goes up

• Insertion (p. 95)
– Take the next one, and put it into the existing sorted subset
– Outer loop similar; difference is “slide” instead of swap

• By the way, this isn’t the only way to do these…

5 Sorts II
• Lexicographical comparisons?
• Stability of existing items?

– Does your homework need a stable unordered array? 
• Sidebar: Comparable interface

– All you have to do is implement boolean compareTo(Object o)
– Generally a good thing to program to, I prefer to book’s example
– Arrays.sort()

6 Stacks and Queues
• Useful programmer’s tools, will encounter it in many places
• “Restricted access”: no index – only manipulate one item at a time
• More abstract – the underlying implementation is unimportant or not similar to the 

structure

7 Stacks
• Basic operations



2

– Push
– Pop
– Peek
– “LIFO”

• Analogy: mail basket
– Not as rigorous as a real stack, of course

• Another analogy: life
– Conversations
– Workday

• Extraordinarily simple!

8 Array-based stacks
• Limited size; ways to get around this
• Decoupled from array index!
• Very simple to implement

– Keep top variable, initialized to 
-1

• Boundary conditions?
• Complexity bounds?

– Apart from simplicity, biggest reason to use

9 Next time…
• Reasons to use stacks
• Queues
• Arithmetic expression parsing


