Administrivia

- The bookstore definitely has books...
- Bug in compareTo example on page 107
- Should be "s1.compareTo(s2)" in the table header
- HW1 updates

3

Agenda

- Finish writing out some Java list code
- Basic big-Oh notation
- Begin sorting
$4 \square$ Lists
- Ordered Insert
- Book has a cleverer technique; see page 60
- Once you find the Insert point, work from the bottom up
- Ordered Find
- Book page 57; very similar to what I did, but some subtle differences
- How much do each of the previous entries cost in the worst case?
- Most are linear, some are unit
- Binary search is special - it's better than linear time
- Divide the range by half until too small to divide further == \# of comparisons needed
- Reverse: what's the range that can be covered with n steps? (Book page 63)
- i.e., r=2s
- What's this expressed as in terms of s ?
- $\mathrm{s}=\log _{2} \mathrm{r}$
- Algorithm grows logarithmically

6 Formalizing costs

- Terminology differs based on details; we'll go light
- Time to insert one element is some constant K
- e.g., $T(N)=K$
- Time to search for an element is $T(N)=K$ * N
- "Big-Oh Notation": upper-bound on worst-case time
- We drop the constant K - for sufficiently large N, the constant is unimportant
- The idea of doubling your computer's speed is embedded in K
$-T(N)=O(N)$, for example
$7 \square$ Examples of costs
- For lists using arrays?
- Linear search: O(N)
- Etc.
- Draw a graph of the comparative costs, page 72
- What are bad about arrays?
- Slow search in unordered, slow insert in ordered - can we speed both? Yes
- Fixed size
- But it's easy
- You can write your own Vector if you want

8

- Applets!
- Bubble (p. 85)
- Sort pairwise repeatedly
- Biggest placed each time
- Selection (p. 89)
- Search for smallest, swap with first
- Search for smallest, swap with second
- Insertion (p. 95)
- Take the next one, and put it into the existing sorted subset
- All O(n^{2})
- But they're not the exact same performance
- Let's write out a little bit of psuedocode for each

9Next time...

- Finish sorts
- Stacks

