¹ CS3134 #1

9/2/03

Janak J Parekh

² Intro

- · Website location
- · Instructor and TA contact info, office hours, locations
- Textbook (why, applets)
- Course structure (HW: 6*150 + Q = 50 + F = 100 + class participation)
- Homework structure, submission, lateness
- · Exams open-book; midterm on 10/16?
- Prerequisite (Java)
- · Reasonable Person Principle, lecture material, sleeping
- · Cheating, feedback

3 🔲 Poll

- School (GS, SEAS, CC)
- Level of Java knowledge
 - Who took CS1004
 - Basic applications
 - Basic applets, AWT, Swing
 - 00
 - Subclassing
 - Interfaces
 - PolymorphismInheritance
 - Visibility modifiers
 - Java Collections: Vector/ArrayList, Hashtable/HashMap, etc.
 - Intro recitation?
- C/C++ knowledge
- Midterm

⁴ Motivation

- · What are the two things computers do?
 - Store information
 - Manipulate information
- · Why do we need to know how it does it? There's Java Collections, right?
 - No "one" way of doing it
 - Each way has its advantages and disadvantages
 - Raw CPU power can't overcome inefficiency
 - Java Collections aren't a catch-all, even though they're a nice abstraction
- · But don't we need to know the problem beforehand?
 - Not necessarily
 - We want to develop a "toolkit" to be useable in the future
 - One fundamental concept makes it feasible...

5 🔳 Abstraction

- · Fundamental concept in Computer Science, especially applies here
- · Lafore defines it as "considered apart from detailed specifications or implementation"
- · Create a layered system, building up to complex applications
- Abstract data types as fundamental building blocks of information
 - What data types does Java support?
 - Primitive vs. reference data types
- Abstract algorithms as fundamentally useful to a broad range of applications
 Manipulation, sorts, searches
- · You won't always have to design them, but you'll always have to use them

⁶ Example

- Employee database
 - How can we represent this information?
 - What kinds of operations would we do on such a application?
 - What problems do we encounter with a naïve implementation?
 - Can we do better?
- · Can an abstract knowledge of data structures and algorithms help?

7 What's out there?

- Data structures?
 - Arrays (sorted or unsorted), stacks, queues, linked lists, trees, hashtables, heaps, graphs
- Algorithms?
 - Insert
 - Search
 - Delete
 - Iterate
 - Sort
 - Recurse

8 🔲 Object-Oriented Programming, Java

- What is OO?
- · How does OO help?
 - Improves abstraction
 - Allows code reuse
 - Access control to data: makes it more reliable encapsulation
- · Why do we use Java in a class like this?
 - OO is nice, but...
 - Java has no pointers
 - Strongly-typed
 - Garbage collection

9 What we'll be doing the rest of the semester...

- · Learning about these data structures
- · Learning about some of the algorithms for them
- · Learning which is best when
 - Elementary analysis of algorithms
 - Take the real class if you want to know the details
- Becoming better programmers!

¹⁰ Homework & Next Time

- No "official" homework, but...
- HW0 posted on webpage no submission
- Get the book
- Next time: start looking at ADTs and OO design more closely, "refresher" on Java OO constructs