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Administrivia

e I'm going to make HW#5
smaller, and due this Friday

— Simpler administratively than to
push it off after July 4t

* Final exam on Wednesday

— Covers everything through this
lecture



Bipartite graphs

A simple graph G is called
bipartite If its vertex set V can
be partitioned into two disjoint
sets, V, and V,, such that
every edge In the graph
connects a vertex in V; and a
vertex in V..

— Is C, bipartite?
— Is K, bipartite?

— K, IS @ complete bipartite graph

partitioned into m and n vertices.




Special applications of
special types of networks

e Local area networks — star,
ring, hybrid (starred ring), bus
topologies

 Interconnection networks for
parallel computation
— K,, — but expensive and limited

— Linear array — need lots of
Intermediate hops?

— Mesh network — grid (2d array);
communication requires O(\n)
Intermediate links

— Hypercube



Generating new graphs
from old graphs

* A subgraph of a graph G=(V,E)
Is a graph H=(W,F) where W ¢
Vand F c E.

e The union of two simple graphs
G,=(V,,E,) and G,=(V,,E,) IS
the simple graph with vertex
set V,UV, and edge set E,UE,,
and the graph is denoted by
G,UG..



Representing graphs and
graph isomorphisms

e Adjacency list
— Simple table, page 557

— For undirected graph, for each vertex list
adjacent vertices

— For directed graph, list initial vertex and
terminal vertices associated with it

— Sometimes cumbersome, So...

e Adjacency matrix

— It's an n X n zero-one matrix with 1 as its (i,j)th
entry if v; and v, are adjacent, or O otherwise.

— For dlrected graphs if (v;,v) Is an edge in G
— Symmetric for simple graphs

— Typically sparse if there aren’t many edges,
which may be inefficient

— For more complex graphs, can use values > 1
* Incidence matrix

— N X m matrix, n vertices, m edges

— M =[m,], where m; = 1 when g is incident with
v; O otherwise



Isomorphism

Simple graphs G, and G, are isomorphic
If there is a 1-to-1 and onto function f
from V, to V, with the property that a and
b are in G, If and only if f(a) and f(b) are
adjacent in G,, for all a and b in V;. Such
a function is called an isomorphism.

Often more difficult than you’d initially
Imagine.

Sometimes can use clues (# of vertices, #
of edges, vertex degrees) to help decide
If something is not isomorphic, but if

they’re the same, then you have to figure
out another way

Examples on page 561
How about...



Example

 |Is the following graph isomorphic?

1 2 A B

) 4 E O

— Yes: (A,B,C,D,E,F) =(6,3,2,4,5,1)
o Strategies

— Subgraphs

— Invariants

« Degree sequences
« Correspondences

— Can sometimes use adjacency matrix to
demonstrate isomorphism

— By hand!



Connectivity

 Now that we've defined graphs, we’re concerned with
their traversal

 We define a path of lengthnfromutovin G as a
sequence of n edges e, ..., €, such that f(e,) = {X,,X},
f(e,) = {X . X}, ..., f(e,) = {X..1, X}, where X, = u and X, =
V.

— When the graph is simple, we can denote this by a
sequence of vertices X, ..., X,

— A pathis a circuit if it starts and ends at the same vertex
and has length greater than zero

— The path/circuit “passes through” the vertices/"traverses
the edges”.

— A path or circuit is simple if it does not contain the same
edge more than once. (Differences about duplicating
vertices...)

« For directed (multigraphs), a path of length n from u to
vin G as a sequence of n edges e,, ..., e, such that
fley) = (Xg.Xp), f(e,) = (X1,Xy), ..., f(e,) = (X1, X,,), Where
X, =uandXx, = V.

— When no multiple edges, we can denote this by a
sequence of vertices Xy, ..., X,

— A path of length greater than zero that begins and ends at
the same vertex is a circuit or cycle.

— A path or circuit is simple if it does not contain the same
edge more than once. (Unclear about duplicating
vertices!)



Examples...

 “Degrees of separation”

— Design a graph with people, and an
edge linking them if they know each
other

— Proposed that most pairs of people
are linked by a small chain of people,
perhaps five or fewer (“six degrees of
separation”), which would imply a very
short, bushy graph

— Erdos number of a mathematician m is
the length of the shortest path
between m and the vertex
representing Erdos, with edges
representing “written papers with”

— Bacon number of an actor c is the
length of the shortest path between c
and Bacon, where an edge represents
“*having acted with”



Connectedness In
undirected graph

e An undirected graph is called connected
If there is a path between every pair of
distinct vertices of the graph.

— There is a simple path between every pair of
distinct vertices of a connected undirected
graph

— A graph doesn’t need all the vertices to be
connected!

e A graph that is not connected is the union
of two or more connected subgraphs
(“connected components”), each pair of
which has no vertex in common.

« If removal of a vertex and all edges
iIncident with it produces a subgraph with
more connected components than the
original graph, it’s a cut vertex/articulation
point. Similarly, cut edges or bridges
represent edges whose removal
disconnects the graph.



Connectedness In
directed graphs

« A directed graph is strongly
connected If there Is a path
from ato b and from b to a
whenever a and b are vertices
In the graph.

« A directed graph is weakly
connected if there Is a path
between every two vertices in
the underlying undirected
graph.

— Graph iIs “one piece”



Isomorphism, counting

* The extistence of a simple circuit of
a particular length is a useful
Invariant to demonstrate
nonisomorphism
— Figure 6 on page 573
— Paths can be used to construct

mappings that may be isomorphisms
 Let G be a graph with adjacency
matrix A with respect to the
ordering v, V,, ..., V. The number
of different paths of length r from v,
to v;, where r Is a positive integer,
equals the (i,))th entry of A"

— We're not going to do this, too
annoying by hand



Eulerian circuits and
paths

« Motivated by the Konigsberg bridge
problem

— Was divided into four sections by the
branches of the Pregel river

— Seven bridges connected these
regions in the 18" century (page 578)

— |Is it possible to start at point, wander
across all the brdges exactly once,
and return to the starting point?

* Euler found the answer, and
generalized for graphs in general

— An Euler circuit in graph G is a simple
circuit containing every edge of G.

— An Euler path in G is a simple path
containing every edge of G.

 Examples, page 578



Conditions for Eulerian
circuits and paths

A connected multigraph has an
Euler circuit if and only if each of its
vertices has even degree.

This simple fact can be used to
determine If you can “draw a
picture without lifting a pencil”.

A connected multigraph has an
Euler path (and no Euler circuit) if
there are exactly two vertices of
odd degree.

So what about Konigsburg?

— Not only is there no Eulerian circulit,
there isn’t even an Eulerian path

Many applications

— Optimal postman routes, circuit layout,
network multicasting, etc.



Hamiltonian paths and
cycles

What if we want every vertex to be
counted exactly once?

— Eulerian paths and circuits allow vertices to be
counted more than once
We define a Hamiltonian path x,,X4,...,X,.
1 X IN G=(V,E) 1TV = {Xg,Xy,.... X1, X} and
X=X for0<l<j<n.
— A Hamiltonian circuit Xy,Xq, ..., Xp.1: X5, X, N > 1, If
X1 X1, -+ Xp.1: X 1S @ Hamiltonian path.
Sadly, there is no necessary and
sufficient criteria for Hamiltonian circuit

— There are some theorems with sufficient
conditions, and there are a few ways of
showing no Hamiltonian circuit.

Examples: show K, has a Hamiltonian
circuit whenever n > 3.

— How about an Eulerian circuit?



Hamilton’s game

e Origin was Hamilton’s Icosian puzzle;
wooden dodecahedron (12 regular
pentagons) with a peg at each vertex of
the dodecahedron, and a string.

— Each face was a city, i.e., “around the world”.
— We can visualize the graph as the following...




And more Hamilton...

e (Dirac’s Theorem) If G Is a simple
graph with n vertices, n > 3, such
that the degree of every vertex in G
IS at least n/2, then G has a
Hamiltonian circuit.

e (Ore’s Theorem) If G Is a simple
graph with n vertices with n > 3
such that deg(u)+deg(v) > n for
every pair of nonadjacent vertices u
and vin G, then G has a
Hamiltonian circuit.

o Sufficient, but not necessary.
— Graph C., for example.



Shortest-path problems

 What If we assign weights to the
edges”?
 Examples

— Modeling an airline system: distances,
flight time, fares, etc.

— Modeling a computer network:
distance, response times, lease rates
e Such graphs are called weighted
graphs, and we’'re interested in the
cost (sometimes length) of a path
where it's the sum of the weights of
the edges of this path.

— Finding the path of least cost of great
Interest.



Dijkstra’s shortest-path
algorithm

Strategy: first, find the shortest path from start to
each of its neighbors. Then, do this repeatedly for
each neighbor, but keep track of the total cost.
Initialize a length “function” L(v;) := o, L(a) := 0,
and a set S of seen vertices to the empty set.

Psuedocode is in the book, but:

— Add the first unseen vertex of minimum length from
the start.

— Update the lengths in L based on this new vertex’s
unseen neighbors.

— Repeat!
Not only does this provide the shortest path

between two vertices in a connected, simple
undirected weighted graph, it does so in v2time.

Another algorithm — Floyd — uses Warshall but
distances instead of connectivity, and does it for
all vertices in v3 time.



Traveling salesman
problem

Goal here is to find the minimum
Hamiltonian cycle of a weighted graph

Imagine the poor salesman who'’s trying
to minimize his travel cost and/or time

One strategy: brute force

— Assuming a complete graph, there are (n-1)!
different Hamiltonian circuits (counting
problem); we need to examine half of these

— i.e., this is very much an NP problem

No polynomial algorithm has been found
to find this, so people use approximation
algorithms that come within some
constant ratio of the optimal solution.

— Within 2% of an exact solution of a 1000-
vertex graph in a few minutes of CPU time.



Planar graphs

« Example: consider the problem of joining
three houses to each of three separate
utilities, without crossing any of the
connections.

— This Is a bipartite graph K, ;.
— Another way of phrasing it: can we draw this

graph in the plane such that no two links
Cross?

— No.

A graph is called planar if it can be drawn
In the plane without any edges crossing
(where a crossing of edges is the
Intersection of the lines or arcs
representing them at a point other than
their common endpoint). Such a drawing
Is called a planar representation of the
graph.

— Note that the graph doesn’t have to be drawn
without crossed edges for it to be planar; it has

to have the potential to be drawn without
crossed edges.



Several examples

e Is K, planar? (yes)
* Is Q; planar? (yes)

* S0 why not K 5,7

— v, and v, must be both connected to v,
and v;; this forms a closed curve that
splits the plane, and so on as we add
vertices. v5tov,and v: split R, (or R,)
Into two subregions.

— No matter where v Is placed, It's
going to cross a region.

— Similarly, Kg Is not planar.
e Also important in circuit design
(minimizing crossings, if any)



Euler’'s formula

* Any way to get a better handle on
this?
— Let G be a connected planar simple
graph with e edges and v vertices. Let
r be the number of regions in a planar

representation of G. Thenr=e—-v +
2

 Can use for the following
colloraries.

— Given a simple, planar G with > 3
vertices, then e < 3v — 6.

— If the graph has no circuits of length 3,
then e < 2v — 4.

— If G is a connected planar simple
graph, then G has a vertex of degree
not exceeding 5.

« Can we be more precise?



Proving non-planarity?

 We can use the knowledge that
K3,3 and Kg are non-planar to help
concisely prove any non-planar
graph.

* First, we define homeomorphic
graphs G, and G, if they can be
obtained from the same graph by a
sequence of elementary
subdivisions.
— An elementary subdivision is one

formed by removing an edge {u,v} and

adding w along with edges {u,w} and
{w,v}

— Fundamental idea: adding a vertex
doesn’t reduce the non-planarity of a
graph




Kuratowskli’'s theorem

e A graph is nonplanar if and
only If it contains a subgraph
homeomorphic to K, ; or K.
— Tip re homeomorphism: if you

“smooth” out a node to find a

subgraph, you can only do it
‘one way"”.

e Let’s take a look at a couple of
examples...

— Pages 611, 612



Graph Coloring

e Graph coloring has had many
contexts and useful applications

e Simple one: map coloring

— We can convert a map into a graph by
using the dual graph, which is defined
as a graph whose region is
represented by a vertex and whose
edges beween two vertices signify that
those two regions touch.

— Thus, map coloring reduces to
coloring the vertices of a dual graph.

* A coloring in a simple graph iIs the
assignment of a color to each
vertex of the graph so that no two

adjacent vertices are assigned the
same color.



Minimize # of colors

 We'd like to figure out the minimum
numbers of colors for a graph — the
chromatic number.

— The Four Color Theorem says that no planar
graph needs more than four colors.

— Was proven by counterexample; if it was false,
one of approximately 2000 different types of
graphs would have more than 5 colors, and
proved that none of these types existed.

 Nonplanar graphs, of course, can have

arbitrarily large chromatic numbers.
e To prove a chromatic number, we must
show two things:

— Show the graph can be colored using k colors;

— Show that it cannot be colored by fewer than
K.

« Some examples... (page 616)



More examples...

What's the chromatic number of
Kn? What of K, ,? (nand 2)

What's the chromatic number of
C,? (Hint: there are two different
answers)

The best algorithms for finding the
chromatic number of a graph have
exponential worst-case time
complexity.

Applications

— Scheduling final exams: vertices
represent courses and edge
represents common students; colors
denote slots

— Freguency assignments: each vertex
IS a station, edges represent overlap
(e.qg., closer than 150 miles), and
colors represent the channel
assignments.



Next time

e Trees
e FInal exam



