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Administrivia

• I’m going to make HW#5 
smaller, and due this Friday
– Simpler administratively than to 

push it off after July 4th

• Final exam on Wednesday
– Covers everything through this 

lecture



Bipartite graphs

• A simple graph G is called 
bipartite if its vertex set V can 
be partitioned into two disjoint 
sets, V1 and V2, such that 
every edge in the graph 
connects a vertex in V1 and a 
vertex in V2.
– Is C6 bipartite?
– Is K3 bipartite?
– Km,n is a complete bipartite graph 

partitioned into m and n vertices.



Special applications of 
special types of networks

• Local area networks – star, 
ring, hybrid (starred ring), bus 
topologies

• Interconnection networks for 
parallel computation
– Kn – but expensive and limited
– Linear array – need lots of 

intermediate hops?
– Mesh network – grid (2d array); 

communication requires O(√n) 
intermediate links

– Hypercube



Generating new graphs 
from old graphs

• A subgraph of a graph G=(V,E) 
is a graph H=(W,F) where W ⊆
V and F ⊆ E.

• The union of two simple graphs 
G1=(V1,E1) and G2=(V2,E2) is 
the simple graph with vertex 
set V1∪V2 and edge set E1∪E2, 
and the graph is denoted by 
G1∪G2.



Representing graphs and 
graph isomorphisms

• Adjacency list
– Simple table, page 557
– For undirected graph, for each vertex list 

adjacent vertices
– For directed graph, list initial vertex and 

terminal vertices associated with it
– Sometimes cumbersome, so…

• Adjacency matrix
– It’s an n x n zero-one matrix with 1 as its (i,j)th

entry if vi and vj are adjacent, or 0 otherwise.
– For directed graphs, if (vi,vj) is an edge in G
– Symmetric for simple graphs
– Typically sparse if there aren’t many edges, 

which may be inefficient
– For more complex graphs, can use values > 1

• Incidence matrix
– n x m matrix, n vertices, m edges
– M = [mij], where mij = 1 when ej is incident with 

vi, 0 otherwise



Isomorphism

• Simple graphs G1 and G2 are isomorphic 
if there is a 1-to-1 and onto function f
from V1 to V2 with the property that a and 
b are in G1 if and only if f(a) and f(b) are 
adjacent in G2, for all a and b in V1.  Such 
a function is called an isomorphism.

• Often more difficult than you’d initially 
imagine.

• Sometimes can use clues (# of vertices, # 
of edges, vertex degrees) to help decide 
if something is not isomorphic, but if 
they’re the same, then you have to figure 
out another way

• Examples on page 561
• How about…



Example

• Is the following graph isomorphic?

– Yes: (A,B,C,D,E,F) = (6,3,2,4,5,1)
• Strategies

– Subgraphs
– Invariants

• Degree sequences
• Correspondences

– Can sometimes use adjacency matrix to 
demonstrate isomorphism

– By hand!



Connectivity

• Now that we’ve defined graphs, we’re concerned with 
their traversal

• We define a path of length n from u to v in G as a 
sequence of n edges e1, …, en such that f(e1) = {x0,x1}, 
f(e2) = {x1,x2}, …, f(en) = {xn-1, xn}, where x0 = u and xn = 
v.

– When the graph is simple, we can denote this by a 
sequence of vertices x0, …, xn.

– A path is a circuit if it starts and ends at the same vertex 
and has length greater than zero

– The path/circuit “passes through” the vertices/”traverses 
the edges”.

– A path or circuit is simple if it does not contain the same 
edge more than once.  (Differences about duplicating 
vertices…)

• For directed (multigraphs), a path of length n from u to 
v in G as a sequence of n edges e1, …, en such that 
f(e1) = (x0,x1), f(e2) = (x1,x2), …, f(en) = (xn-1, xn), where 
x0 = u and xn = v.

– When no multiple edges, we can denote this by a 
sequence of vertices x0, …, xn.

– A path of length greater than zero that begins and ends at 
the same vertex is a circuit or cycle.

– A path or circuit is simple if it does not contain the same 
edge more than once. (Unclear about duplicating 
vertices!)



Examples…

• “Degrees of separation”
– Design a graph with people, and an 

edge linking them if they know each 
other

– Proposed that most pairs of people 
are linked by a small chain of people, 
perhaps five or fewer (“six degrees of 
separation”), which would imply a very 
short, bushy graph

– Erdos number of a mathematician m is 
the length of the shortest path 
between m and the vertex 
representing Erdos, with edges 
representing “written papers with”

– Bacon number of an actor c is the 
length of the shortest path between c 
and Bacon, where an edge represents 
“having acted with”



Connectedness in 
undirected graph

• An undirected graph is called connected
if there is a path between every pair of 
distinct vertices of the graph.
– There is a simple path between every pair of 

distinct vertices of a connected undirected 
graph

– A graph doesn’t need all the vertices to be 
connected!

• A graph that is not connected is the union 
of two or more connected subgraphs
(“connected components”), each pair of 
which has no vertex in common.

• If removal of a vertex and all edges 
incident with it produces a subgraph with 
more connected components than the 
original graph, it’s a cut vertex/articulation 
point.  Similarly, cut edges or bridges 
represent edges whose removal 
disconnects the graph.



Connectedness in 
directed graphs

• A directed graph is strongly 
connected if there is a path 
from a to b and from b to a 
whenever a and b are vertices 
in the graph.

• A directed graph is weakly 
connected if there is a path 
between every two vertices in 
the underlying undirected 
graph.
– Graph is “one piece”



Isomorphism, counting

• The extistence of a simple circuit of 
a particular length is a useful 
invariant to demonstrate 
nonisomorphism
– Figure 6 on page 573
– Paths can be used to construct 

mappings that may be isomorphisms
• Let G be a graph with adjacency 

matrix A with respect to the 
ordering v1, v2, …, vn.  The number 
of different paths of length r from vi
to vj, where r is a positive integer, 
equals the (i,j)th entry of Ar.

– We’re not going to do this, too 
annoying by hand



Eulerian circuits and 
paths

• Motivated by the Konigsberg bridge 
problem
– Was divided into four sections by the 

branches of the Pregel river
– Seven bridges connected these 

regions in the 18th century (page 578)
– Is it possible to start at point, wander 

across all the brdges exactly once, 
and return to the starting point?

• Euler found the answer, and 
generalized for graphs in general
– An Euler circuit in graph G is a simple 

circuit containing every edge of G.  
– An Euler path in G is a simple path 

containing every edge of G.
• Examples, page 578



Conditions for Eulerian
circuits and paths

• A connected multigraph has an 
Euler circuit if and only if each of its 
vertices has even degree.

• This simple fact can be used to 
determine if you can “draw a 
picture without lifting a pencil”.

• A connected multigraph has an 
Euler path (and no Euler circuit) if 
there are exactly two vertices of 
odd degree.

• So what about Konigsburg?
– Not only is there no Eulerian circuit, 

there isn’t even an Eulerian path
• Many applications

– Optimal postman routes, circuit layout, 
network multicasting, etc.



Hamiltonian paths and 
cycles

• What if we want every vertex to be 
counted exactly once?
– Eulerian paths and circuits allow vertices to be 

counted more than once
• We define a Hamiltonian path x0,x1,…,xn-

1,xn in G=(V,E) if V = {x0,x1,…,xn-1,xn} and 
xi ≠ xj for 0 ≤ I < j ≤ n.
– A Hamiltonian circuit x0,x1,…,xn-1,xn,x0, n > 1, if 

x0,x1,…,xn-1,xn is a Hamiltonian path.
• Sadly, there is no necessary and 

sufficient criteria for Hamiltonian circuit
– There are some theorems with sufficient 

conditions, and there are a few ways of 
showing no Hamiltonian circuit.

• Examples: show Kn has a Hamiltonian 
circuit whenever n ≥ 3.
– How about an Eulerian circuit?



Hamilton’s game

• Origin was Hamilton’s Icosian puzzle; 
wooden dodecahedron (12 regular 
pentagons) with a peg at each vertex of 
the dodecahedron, and a string.
– Each face was a city, i.e., “around the world”.
– We can visualize the graph as the following…



And more Hamilton…

• (Dirac’s Theorem) If G is a simple 
graph with n vertices, n ≥ 3, such 
that the degree of every vertex in G 
is at least n/2, then G has a 
Hamiltonian circuit.

• (Ore’s Theorem) If G is a simple 
graph with n vertices with n ≥ 3 
such that deg(u)+deg(v) ≥ n for 
every pair of nonadjacent vertices u 
and v in G, then G has a 
Hamiltonian circuit.

• Sufficient, but not necessary.
– Graph C5, for example.



Shortest-path problems

• What if we assign weights to the 
edges?

• Examples
– Modeling an airline system: distances, 

flight time, fares, etc.
– Modeling a computer network: 

distance, response times, lease rates
• Such graphs are called weighted 

graphs, and we’re interested in the 
cost (sometimes length) of a path 
where it’s the sum of the weights of 
the edges of this path.
– Finding the path of least cost of great 

interest.



Dijkstra’s shortest-path 
algorithm

• Strategy: first, find the shortest path from start to 
each of its neighbors.  Then, do this repeatedly for 
each neighbor, but keep track of the total cost.

• Initialize a length “function” L(vi) :=  ∞, L(a) := 0, 
and a set S of seen vertices to the empty set.

• Psuedocode is in the book, but:
– Add the first unseen vertex of minimum length from 

the start.
– Update the lengths in L based on this new vertex’s 

unseen neighbors.
– Repeat!

• Not only does this provide the shortest path 
between two vertices in a connected, simple 
undirected weighted graph, it does so in v2 time.

• Another algorithm – Floyd – uses Warshall but 
distances instead of connectivity, and does it for 
all vertices in v3 time.



Traveling salesman 
problem

• Goal here is to find the minimum 
Hamiltonian cycle of a weighted graph

• Imagine the poor salesman who’s trying 
to minimize his travel cost and/or time

• One strategy: brute force
– Assuming a complete graph, there are (n-1)! 

different Hamiltonian circuits (counting 
problem); we need to examine half of these

– i.e., this is very much an NP problem

• No polynomial algorithm has been found 
to find this, so people use approximation 
algorithms that come within some 
constant ratio of the optimal solution.
– Within 2% of an exact solution of a 1000-

vertex graph in a few minutes of CPU time.



Planar graphs
• Example: consider the problem of joining 

three houses to each of three separate 
utilities, without crossing any of the 
connections.
– This is a bipartite graph K3,3.
– Another way of phrasing it: can we draw this 

graph in the plane such that no two links 
cross?

– No.
• A graph is called planar if it can be drawn 

in the plane without any edges crossing 
(where a crossing of edges is the 
intersection of the lines or arcs 
representing them at a point other than 
their common endpoint).  Such a drawing 
is called a planar representation of the 
graph.
– Note that the graph doesn’t have to be drawn 

without crossed edges for it to be planar; it has 
to have the potential to be drawn without 
crossed edges.



Several examples

• Is K4 planar? (yes)
• Is Q3 planar? (yes)
• So why not K3,3?

– v1 and v2 must be both connected to v4
and v5; this forms a closed curve that 
splits the plane, and so on as we add 
vertices.  v3 to v4 and v5 split R2 (or R1) 
into two subregions.

– No matter where v6 is placed, it’s 
going to cross a region.

– Similarly, K5 is not planar.
• Also important in circuit design 

(minimizing crossings, if any)



Euler’s formula

• Any way to get a better handle on 
this?
– Let G be a connected planar simple 

graph with e edges and v vertices.  Let 
r be the number of regions in a planar 
representation of G.  Then r = e – v + 
2.

• Can use for the following 
colloraries.
– Given a simple, planar G with ≥ 3 

vertices, then e ≤ 3v – 6.
– If the graph has no circuits of length 3, 

then e ≤ 2v – 4.
– If G is a connected planar simple 

graph, then G has a vertex of degree 
not exceeding 5.

• Can we be more precise?



Proving non-planarity?

• We can use the knowledge that 
K3,3 and K5 are non-planar to help 
concisely prove any non-planar 
graph.

• First, we define homeomorphic
graphs G1 and G2 if they can be 
obtained from the same graph by a 
sequence of elementary 
subdivisions.
– An elementary subdivision is one 

formed by removing an edge {u,v} and 
adding w along with edges {u,w} and 
{w,v}

– Fundamental idea: adding a vertex 
doesn’t reduce the non-planarity of a 
graph



Kuratowski’s theorem

• A graph is nonplanar if and 
only if it contains a subgraph
homeomorphic to K3,3 or K5.
– Tip re homeomorphism: if you 

“smooth” out a node to find a 
subgraph, you can only do it 
“one way”.

• Let’s take a look at a couple of 
examples…
– Pages 611, 612



Graph Coloring

• Graph coloring has had many 
contexts and useful applications

• Simple one: map coloring
– We can convert a map into a graph by 

using the dual graph, which is defined 
as a graph whose region is 
represented by a vertex and whose 
edges beween two vertices signify that 
those two regions touch.

– Thus, map coloring reduces to 
coloring the vertices of a dual graph.

• A coloring in a simple graph is the 
assignment of a color to each 
vertex of the graph so that no two 
adjacent vertices are assigned the 
same color.



Minimize # of colors

• We’d like to figure out the minimum 
numbers of colors for a graph – the 
chromatic number.
– The Four Color Theorem says that no planar 

graph needs more than four colors.
– Was proven by counterexample; if it was false, 

one of approximately 2000 different types of 
graphs would have more than 5 colors, and 
proved that none of these types existed.

• Nonplanar graphs, of course, can have 
arbitrarily large chromatic numbers.

• To prove a chromatic number, we must 
show two things:
– Show the graph can be colored using k colors;
– Show that it cannot be colored by fewer than 

k.
• Some examples… (page 616)



More examples…
• What’s the chromatic number of 

Kn?  What of Km,n? (n and 2)
• What’s the chromatic number of 

Cn?  (Hint: there are two different 
answers)

• The best algorithms for finding the 
chromatic number of a graph have 
exponential worst-case time 
complexity.

• Applications
– Scheduling final exams: vertices 

represent courses and edge 
represents common students; colors 
denote slots

– Frequency assignments: each vertex 
is a station, edges represent overlap 
(e.g., closer than 150 miles), and 
colors represent the channel 
assignments.



Next time

• Trees
• Final exam


