CS3203 \#10

6/28/04
Janak J Parekh

Administrivia

- I'm going to make HW\#5 smaller, and due this Friday
- Simpler administratively than to push it off after July $4^{\text {th }}$
- Final exam on Wednesday - Covers everything through this lecture

Bipartite graphs

- A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets, V_{1} and V_{2}, such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2}.
- Is C_{6} bipartite?
- Is K_{3} bipartite?
$-\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is a complete bipartite graph partitioned into m and n vertices.

Special applications of special types of networks

- Local area networks - star, ring, hybrid (starred ring), bus topologies
- Interconnection networks for parallel computation
- K_{n} - but expensive and limited
- Linear array - need lots of intermediate hops?
- Mesh network - grid (2d array); communication requires $O(\sqrt{ } n)$ intermediate links
- Hypercube

Generating new graphs from old graphs

- A subgraph of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph $\mathrm{H}=(\mathrm{W}, \mathrm{F})$ where $\mathrm{W} \subseteq$ V and $F \subseteq E$.
- The union of two simple graphs
$\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ is the simple graph with vertex set $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and edge set $\mathrm{E}_{1} \cup \mathrm{E}_{2}$, and the graph is denoted by $\mathrm{G}_{1} \cup \mathrm{G}_{2}$.

Representing graphs and graph isomorphisms

- Adjacency list
- Simple table, page 557
- For undirected graph, for each vertex list adjacent vertices
- For directed graph, list initial vertex and terminal vertices associated with it
- Sometimes cumbersome, so...
- Adjacency matrix
- It's an $n \times n$ zero-one matrix with 1 as its (i,j)th entry if v_{i} and v_{j} are adjacent, or 0 otherwise.
- For directed graphs, if $\left(v_{i}, v_{j}\right)$ is an edge in G
- Symmetric for simple graphs
- Typically sparse if there aren't many edges, which may be inefficient
- For more complex graphs, can use values > 1
- Incidence matrix
- $\mathrm{n} \times \mathrm{m}$ matrix, n vertices, m edges
$-M=\left[m_{i j}\right]$, where $m_{i j}=1$ when e_{j} is incident with $\mathrm{v}_{\mathrm{i},} 0$ otherwise

Isomorphism

- Simple graphs G_{1} and G_{2} are isomorphic if there is a 1-to-1 and onto function f from V_{1} to V_{2} with the property that a and b are in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Such a function is called an isomorphism.
- Often more difficult than you'd initially imagine.
- Sometimes can use clues (\# of vertices, \# of edges, vertex degrees) to help decide if something is not isomorphic, but if they're the same, then you have to figure out another way
- Examples on page 561
- How about...

Example

- Is the following graph isomorphic?

- Yes: (A,B,C,D,E,F) = (6,3,2,4,5,1)
- Strategies
- Subgraphs
- Invariants
- Degree sequences
- Correspondences
- Can sometimes use adjacency matrix to demonstrate isomorphism
- By hand!

Connectivity

- Now that we've defined graphs, we're concerned with their traversal
- We define a path of length n from u to v in G as a sequence of n edges e_{1}, \ldots, e_{n} such that $f\left(e_{1}\right)=\left\{x_{0}, x_{1}\right\}$, $f\left(e_{2}\right)=\left\{x_{1}, x_{2}\right\}, \ldots, f\left(e_{n}\right)=\left\{x_{n-1}, x_{n}\right\}$, where $x_{0}=u$ and $x_{n}=$ V .
- When the graph is simple, we can denote this by a sequence of vertices x_{0}, \ldots, x_{n}.
- A path is a circuit if it starts and ends at the same vertex and has length greater than zero
- The path/circuit "passes through" the vertices/"traverses the edges".
- A path or circuit is simple if it does not contain the same edge more than once. (Differences about duplicating vertices...)
- For directed (multigraphs), a path of length n from u to v in G as a sequence of n edges e_{1}, \ldots, e_{n} such that $\mathrm{f}\left(\mathrm{e}_{1}\right)=\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right), \mathrm{f}\left(\mathrm{e}_{2}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \ldots, \mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$, where $\mathrm{x}_{0}=\mathrm{u}$ and $\mathrm{x}_{\mathrm{n}}=\mathrm{v}$.
- When no multiple edges, we can denote this by a sequence of vertices x_{0}, \ldots, x_{n}.
- A path of length greater than zero that begins and ends at the same vertex is a circuit or cycle.
- A path or circuit is simple if it does not contain the same edge more than once. (Unclear about duplicating vertices!)

Examples...

- "Degrees of separation"

- Design a graph with people, and an edge linking them if they know each other
- Proposed that most pairs of people are linked by a small chain of people, perhaps five or fewer ("six degrees of separation"), which would imply a very short, bushy graph
- Erdos number of a mathematician m is the length of the shortest path between m and the vertex representing Erdos, with edges representing "written papers with"
- Bacon number of an actor c is the length of the shortest path between c and Bacon, where an edge represents "having acted with"

Connectedness in undirected graph

- An undirected graph is called connected if there is a path between every pair of distinct vertices of the graph.
- There is a simple path between every pair of distinct vertices of a connected undirected graph
- A graph doesn't need all the vertices to be connected!
- A graph that is not connected is the union of two or more connected subgraphs ("connected components"), each pair of which has no vertex in common.
- If removal of a vertex and all edges incident with it produces a subgraph with more connected components than the original graph, it's a cut vertex/articulation point. Similarly, cut edges or bridges represent edges whose removal disconnects the graph.

Connectedness in directed graphs

- A directed graph is strongly connected if there is a path from a to b and from b to a whenever a and b are vertices in the graph.
- A directed graph is weakly connected if there is a path between every two vertices in the underlying undirected graph.
- Graph is "one piece"

Isomorphism, counting

- The extistence of a simple circuit of a particular length is a useful invariant to demonstrate nonisomorphism
- Figure 6 on page 573
- Paths can be used to construct mappings that may be isomorphisms
- Let G be a graph with adjacency matrix A with respect to the ordering $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$. The number of different paths of length r from v_{i} to v_{j}, where r is a positive integer, equals the (i,j)th entry of \mathbf{A}^{r}.
- We're not going to do this, too annoying by hand

Eulerian circuits and paths

- Motivated by the Konigsberg bridge problem
- Was divided into four sections by the branches of the Pregel river
- Seven bridges connected these regions in the $18^{\text {th }}$ century (page 578)
- Is it possible to start at point, wander across all the brdges exactly once, and return to the starting point?
- Euler found the answer, and generalized for graphs in general
- An Euler circuit in graph G is a simple circuit containing every edge of G.
- An Euler path in G is a simple path containing every edge of G .
- Examples, page 578

Conditions for Eulerian circuits and paths

- A connected multigraph has an Euler circuit if and only if each of its vertices has even degree.
- This simple fact can be used to determine if you can "draw a picture without lifting a pencil".
- A connected multigraph has an Euler path (and no Euler circuit) if there are exactly two vertices of odd degree.
- So what about Konigsburg?
- Not only is there no Eulerian circuit, there isn't even an Eulerian path
- Many applications
- Optimal postman routes, circuit layout, network multicasting, etc.

Hamiltonian paths and

 cycles- What if we want every vertex to be counted exactly once?
- Eulerian paths and circuits allow vertices to be counted more than once
- We define a Hamiltonian path $x_{0}, x_{1}, \ldots, x_{n-}$ ${ }_{1}, x_{n}$ in $G=(V, E)$ if $V=\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\}$ and $\mathrm{X}_{\mathrm{i}} \neq \mathrm{X}_{\mathrm{j}}$ for $0 \leq \mathrm{l}<\mathrm{j} \leq \mathrm{n}$.
- A Hamiltonian circuit $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}, x_{0}, n>1$, if $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}$ is a Hamiltonian path.
- Sadly, there is no necessary and sufficient criteria for Hamiltonian circuit
- There are some theorems with sufficient conditions, and there are a few ways of showing no Hamiltonian circuit.
- Examples: show K_{n} has a Hamiltonian circuit whenever $\mathrm{n} \geq 3$.
- How about an Eulerian circuit?

Hamilton's game

- Origin was Hamilton's Icosian puzzle; wooden dodecahedron (12 regular pentagons) with a peg at each vertex of the dodecahedron, and a string.
- Each face was a city, i.e., "around the world".
- We can visualize the graph as the following...

And more Hamilton...

- (Dirac's Theorem) If G is a simple graph with n vertices, $n \geq 3$, such that the degree of every vertex in G is at least $n / 2$, then G has a Hamiltonian circuit.
- (Ore's Theorem) If G is a simple graph with n vertices with $n \geq 3$ such that $\operatorname{deg}(\mathrm{u})+\operatorname{deg}(\mathrm{v}) \geq \mathrm{n}$ for every pair of nonadjacent vertices u and v in G, then G has a Hamiltonian circuit.
- Sufficient, but not necessary.
- Graph C5, for example.

Shortest-path problems

- What if we assign weights to the edges?
- Examples
- Modeling an airline system: distances, flight time, fares, etc.
- Modeling a computer network: distance, response times, lease rates
- Such graphs are called weighted graphs, and we're interested in the cost (sometimes length) of a path where it's the sum of the weights of the edges of this path.
- Finding the path of least cost of great interest.

Dijkstra's shortest-path algorithm

- Strategy: first, find the shortest path from start to each of its neighbors. Then, do this repeatedly for each neighbor, but keep track of the total cost.
- Initialize a length "function" $\mathrm{L}\left(\mathrm{v}_{\mathrm{i}}\right):=\infty, \mathrm{L}(\mathrm{a}):=0$, and a set S of seen vertices to the empty set.
- Psuedocode is in the book, but:
- Add the first unseen vertex of minimum length from the start.
- Update the lengths in L based on this new vertex's unseen neighbors.
- Repeat!
- Not only does this provide the shortest path between two vertices in a connected, simple undirected weighted graph, it does so in v^{2} time.
- Another algorithm - Floyd - uses Warshall but distances instead of connectivity, and does it for all vertices in v^{3} time.

Traveling salesman problem

- Goal here is to find the minimum Hamiltonian cycle of a weighted graph
- Imagine the poor salesman who's trying to minimize his travel cost and/or time
- One strategy: brute force
- Assuming a complete graph, there are (n-1)! different Hamiltonian circuits (counting problem); we need to examine half of these
- i.e., this is very much an NP problem
- No polynomial algorithm has been found to find this, so people use approximation algorithms that come within some constant ratio of the optimal solution.
- Within 2% of an exact solution of a 1000vertex graph in a few minutes of CPU time.

Planar graphs

- Example: consider the problem of joining three houses to each of three separate utilities, without crossing any of the connections.
- This is a bipartite graph $\mathrm{K}_{3,3}$.
- Another way of phrasing it: can we draw this graph in the plane such that no two links cross?
- No.
- A graph is called planar if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoint). Such a drawing is called a planar representation of the graph.
- Note that the graph doesn't have to be drawn without crossed edges for it to be planar; it has to have the potential to be drawn without crossed edges.

Several examples

- Is K_{4} planar? (yes)
- Is Q_{3} planar? (yes)
- So why not $\mathrm{K}_{3,3}$?
- v_{1} and v_{2} must be both connected to v_{4} and v_{5}; this forms a closed curve that splits the plane, and so on as we add vertices. v_{3} to v_{4} and v_{5} split R_{2} (or R_{1}) into two subregions.
- No matter where v_{6} is placed, it's going to cross a region.
- Similarly, K_{5} is not planar.
- Also important in circuit design (minimizing crossings, if any)

Euler's formula

- Any way to get a better handle on this?
- Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then $r=e-v+$ 2.
- Can use for the following colloraries.
- Given a simple, planar G with ≥ 3 vertices, then e $\leq 3 \mathrm{v}-6$.
- If the graph has no circuits of length 3 , then $\mathrm{e} \leq 2 \mathrm{v}-4$.
- If G is a connected planar simple graph, then G has a vertex of degree not exceeding 5 .
- Can we be more precise?

Proving non-planarity?

- We can use the knowledge that $\mathrm{K}_{3,3}$ and K_{5} are non-planar to help concisely prove any non-planar graph.
- First, we define homeomorphic graphs G_{1} and G_{2} if they can be obtained from the same graph by a sequence of elementary subdivisions.
- An elementary subdivision is one formed by removing an edge $\{u, v\}$ and adding w along with edges $\{u, w\}$ and $\{\mathrm{w}, \mathrm{v}\}$
- Fundamental idea: adding a vertex doesn't reduce the non-planarity of a graph

Kuratowski's theorem

- A graph is nonplanar if and only if it contains a subgraph homeomorphic to $\mathrm{K}_{3,3}$ or K_{5}.
- Tip re homeomorphism: if you "smooth" out a node to find a subgraph, you can only do it "one way".
- Let's take a look at a couple of examples...
- Pages 611, 612

Graph Coloring

- Graph coloring has had many contexts and useful applications
- Simple one: map coloring
- We can convert a map into a graph by using the dual graph, which is defined as a graph whose region is represented by a vertex and whose edges beween two vertices signify that those two regions touch.
- Thus, map coloring reduces to
coloring the vertices of a dual graph.
- A coloring in a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Minimize \# of colors

- We'd like to figure out the minimum numbers of colors for a graph - the chromatic number.
- The Four Color Theorem says that no planar graph needs more than four colors.
- Was proven by counterexample; if it was false, one of approximately 2000 different types of graphs would have more than 5 colors, and proved that none of these types existed.
- Nonplanar graphs, of course, can have arbitrarily large chromatic numbers.
- To prove a chromatic number, we must show two things:
- Show the graph can be colored using k colors;
- Show that it cannot be colored by fewer than k.
- Some examples... (page 616)

More examples...

- What's the chromatic number of K_{n} ? What of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$? (n and 2)
- What's the chromatic number of C_{n} ? (Hint: there are two different answers)
- The best algorithms for finding the chromatic number of a graph have exponential worst-case time complexity.
- Applications
- Scheduling final exams: vertices represent courses and edge represents common students; colors denote slots
- Frequency assignments: each vertex is a station, edges represent overlap (e.g., closer than 150 miles), and colors represent the channel assignments.

Next time

- Trees - Final exam

