
CS3203 #10

6/28/04
Janak J Parekh

Administrivia

• I’m going to make HW#5
smaller, and due this Friday
– Simpler administratively than to

push it off after July 4th

• Final exam on Wednesday
– Covers everything through this

lecture

Bipartite graphs

• A simple graph G is called
bipartite if its vertex set V can
be partitioned into two disjoint
sets, V1 and V2, such that
every edge in the graph
connects a vertex in V1 and a
vertex in V2.
– Is C6 bipartite?
– Is K3 bipartite?
– Km,n is a complete bipartite graph

partitioned into m and n vertices.

Special applications of
special types of networks

• Local area networks – star,
ring, hybrid (starred ring), bus
topologies

• Interconnection networks for
parallel computation
– Kn – but expensive and limited
– Linear array – need lots of

intermediate hops?
– Mesh network – grid (2d array);

communication requires O(√n)
intermediate links

– Hypercube

Generating new graphs
from old graphs

• A subgraph of a graph G=(V,E)
is a graph H=(W,F) where W ⊆
V and F ⊆ E.

• The union of two simple graphs
G1=(V1,E1) and G2=(V2,E2) is
the simple graph with vertex
set V1∪V2 and edge set E1∪E2,
and the graph is denoted by
G1∪G2.

Representing graphs and
graph isomorphisms

• Adjacency list
– Simple table, page 557
– For undirected graph, for each vertex list

adjacent vertices
– For directed graph, list initial vertex and

terminal vertices associated with it
– Sometimes cumbersome, so…

• Adjacency matrix
– It’s an n x n zero-one matrix with 1 as its (i,j)th

entry if vi and vj are adjacent, or 0 otherwise.
– For directed graphs, if (vi,vj) is an edge in G
– Symmetric for simple graphs
– Typically sparse if there aren’t many edges,

which may be inefficient
– For more complex graphs, can use values > 1

• Incidence matrix
– n x m matrix, n vertices, m edges
– M = [mij], where mij = 1 when ej is incident with

vi, 0 otherwise

Isomorphism

• Simple graphs G1 and G2 are isomorphic
if there is a 1-to-1 and onto function f
from V1 to V2 with the property that a and
b are in G1 if and only if f(a) and f(b) are
adjacent in G2, for all a and b in V1. Such
a function is called an isomorphism.

• Often more difficult than you’d initially
imagine.

• Sometimes can use clues (# of vertices, #
of edges, vertex degrees) to help decide
if something is not isomorphic, but if
they’re the same, then you have to figure
out another way

• Examples on page 561
• How about…

Example

• Is the following graph isomorphic?

– Yes: (A,B,C,D,E,F) = (6,3,2,4,5,1)
• Strategies

– Subgraphs
– Invariants

• Degree sequences
• Correspondences

– Can sometimes use adjacency matrix to
demonstrate isomorphism

– By hand!

Connectivity

• Now that we’ve defined graphs, we’re concerned with
their traversal

• We define a path of length n from u to v in G as a
sequence of n edges e1, …, en such that f(e1) = {x0,x1},
f(e2) = {x1,x2}, …, f(en) = {xn-1, xn}, where x0 = u and xn =
v.

– When the graph is simple, we can denote this by a
sequence of vertices x0, …, xn.

– A path is a circuit if it starts and ends at the same vertex
and has length greater than zero

– The path/circuit “passes through” the vertices/”traverses
the edges”.

– A path or circuit is simple if it does not contain the same
edge more than once. (Differences about duplicating
vertices…)

• For directed (multigraphs), a path of length n from u to
v in G as a sequence of n edges e1, …, en such that
f(e1) = (x0,x1), f(e2) = (x1,x2), …, f(en) = (xn-1, xn), where
x0 = u and xn = v.

– When no multiple edges, we can denote this by a
sequence of vertices x0, …, xn.

– A path of length greater than zero that begins and ends at
the same vertex is a circuit or cycle.

– A path or circuit is simple if it does not contain the same
edge more than once. (Unclear about duplicating
vertices!)

Examples…

• “Degrees of separation”
– Design a graph with people, and an

edge linking them if they know each
other

– Proposed that most pairs of people
are linked by a small chain of people,
perhaps five or fewer (“six degrees of
separation”), which would imply a very
short, bushy graph

– Erdos number of a mathematician m is
the length of the shortest path
between m and the vertex
representing Erdos, with edges
representing “written papers with”

– Bacon number of an actor c is the
length of the shortest path between c
and Bacon, where an edge represents
“having acted with”

Connectedness in
undirected graph

• An undirected graph is called connected
if there is a path between every pair of
distinct vertices of the graph.
– There is a simple path between every pair of

distinct vertices of a connected undirected
graph

– A graph doesn’t need all the vertices to be
connected!

• A graph that is not connected is the union
of two or more connected subgraphs
(“connected components”), each pair of
which has no vertex in common.

• If removal of a vertex and all edges
incident with it produces a subgraph with
more connected components than the
original graph, it’s a cut vertex/articulation
point. Similarly, cut edges or bridges
represent edges whose removal
disconnects the graph.

Connectedness in
directed graphs

• A directed graph is strongly
connected if there is a path
from a to b and from b to a
whenever a and b are vertices
in the graph.

• A directed graph is weakly
connected if there is a path
between every two vertices in
the underlying undirected
graph.
– Graph is “one piece”

Isomorphism, counting

• The extistence of a simple circuit of
a particular length is a useful
invariant to demonstrate
nonisomorphism
– Figure 6 on page 573
– Paths can be used to construct

mappings that may be isomorphisms
• Let G be a graph with adjacency

matrix A with respect to the
ordering v1, v2, …, vn. The number
of different paths of length r from vi
to vj, where r is a positive integer,
equals the (i,j)th entry of Ar.

– We’re not going to do this, too
annoying by hand

Eulerian circuits and
paths

• Motivated by the Konigsberg bridge
problem
– Was divided into four sections by the

branches of the Pregel river
– Seven bridges connected these

regions in the 18th century (page 578)
– Is it possible to start at point, wander

across all the brdges exactly once,
and return to the starting point?

• Euler found the answer, and
generalized for graphs in general
– An Euler circuit in graph G is a simple

circuit containing every edge of G.
– An Euler path in G is a simple path

containing every edge of G.
• Examples, page 578

Conditions for Eulerian
circuits and paths

• A connected multigraph has an
Euler circuit if and only if each of its
vertices has even degree.

• This simple fact can be used to
determine if you can “draw a
picture without lifting a pencil”.

• A connected multigraph has an
Euler path (and no Euler circuit) if
there are exactly two vertices of
odd degree.

• So what about Konigsburg?
– Not only is there no Eulerian circuit,

there isn’t even an Eulerian path
• Many applications

– Optimal postman routes, circuit layout,
network multicasting, etc.

Hamiltonian paths and
cycles

• What if we want every vertex to be
counted exactly once?
– Eulerian paths and circuits allow vertices to be

counted more than once
• We define a Hamiltonian path x0,x1,…,xn-

1,xn in G=(V,E) if V = {x0,x1,…,xn-1,xn} and
xi ≠ xj for 0 ≤ I < j ≤ n.
– A Hamiltonian circuit x0,x1,…,xn-1,xn,x0, n > 1, if

x0,x1,…,xn-1,xn is a Hamiltonian path.
• Sadly, there is no necessary and

sufficient criteria for Hamiltonian circuit
– There are some theorems with sufficient

conditions, and there are a few ways of
showing no Hamiltonian circuit.

• Examples: show Kn has a Hamiltonian
circuit whenever n ≥ 3.
– How about an Eulerian circuit?

Hamilton’s game

• Origin was Hamilton’s Icosian puzzle;
wooden dodecahedron (12 regular
pentagons) with a peg at each vertex of
the dodecahedron, and a string.
– Each face was a city, i.e., “around the world”.
– We can visualize the graph as the following…

And more Hamilton…

• (Dirac’s Theorem) If G is a simple
graph with n vertices, n ≥ 3, such
that the degree of every vertex in G
is at least n/2, then G has a
Hamiltonian circuit.

• (Ore’s Theorem) If G is a simple
graph with n vertices with n ≥ 3
such that deg(u)+deg(v) ≥ n for
every pair of nonadjacent vertices u
and v in G, then G has a
Hamiltonian circuit.

• Sufficient, but not necessary.
– Graph C5, for example.

Shortest-path problems

• What if we assign weights to the
edges?

• Examples
– Modeling an airline system: distances,

flight time, fares, etc.
– Modeling a computer network:

distance, response times, lease rates
• Such graphs are called weighted

graphs, and we’re interested in the
cost (sometimes length) of a path
where it’s the sum of the weights of
the edges of this path.
– Finding the path of least cost of great

interest.

Dijkstra’s shortest-path
algorithm

• Strategy: first, find the shortest path from start to
each of its neighbors. Then, do this repeatedly for
each neighbor, but keep track of the total cost.

• Initialize a length “function” L(vi) := ∞, L(a) := 0,
and a set S of seen vertices to the empty set.

• Psuedocode is in the book, but:
– Add the first unseen vertex of minimum length from

the start.
– Update the lengths in L based on this new vertex’s

unseen neighbors.
– Repeat!

• Not only does this provide the shortest path
between two vertices in a connected, simple
undirected weighted graph, it does so in v2 time.

• Another algorithm – Floyd – uses Warshall but
distances instead of connectivity, and does it for
all vertices in v3 time.

Traveling salesman
problem

• Goal here is to find the minimum
Hamiltonian cycle of a weighted graph

• Imagine the poor salesman who’s trying
to minimize his travel cost and/or time

• One strategy: brute force
– Assuming a complete graph, there are (n-1)!

different Hamiltonian circuits (counting
problem); we need to examine half of these

– i.e., this is very much an NP problem

• No polynomial algorithm has been found
to find this, so people use approximation
algorithms that come within some
constant ratio of the optimal solution.
– Within 2% of an exact solution of a 1000-

vertex graph in a few minutes of CPU time.

Planar graphs
• Example: consider the problem of joining

three houses to each of three separate
utilities, without crossing any of the
connections.
– This is a bipartite graph K3,3.
– Another way of phrasing it: can we draw this

graph in the plane such that no two links
cross?

– No.
• A graph is called planar if it can be drawn

in the plane without any edges crossing
(where a crossing of edges is the
intersection of the lines or arcs
representing them at a point other than
their common endpoint). Such a drawing
is called a planar representation of the
graph.
– Note that the graph doesn’t have to be drawn

without crossed edges for it to be planar; it has
to have the potential to be drawn without
crossed edges.

Several examples

• Is K4 planar? (yes)
• Is Q3 planar? (yes)
• So why not K3,3?

– v1 and v2 must be both connected to v4
and v5; this forms a closed curve that
splits the plane, and so on as we add
vertices. v3 to v4 and v5 split R2 (or R1)
into two subregions.

– No matter where v6 is placed, it’s
going to cross a region.

– Similarly, K5 is not planar.
• Also important in circuit design

(minimizing crossings, if any)

Euler’s formula

• Any way to get a better handle on
this?
– Let G be a connected planar simple

graph with e edges and v vertices. Let
r be the number of regions in a planar
representation of G. Then r = e – v +
2.

• Can use for the following
colloraries.
– Given a simple, planar G with ≥ 3

vertices, then e ≤ 3v – 6.
– If the graph has no circuits of length 3,

then e ≤ 2v – 4.
– If G is a connected planar simple

graph, then G has a vertex of degree
not exceeding 5.

• Can we be more precise?

Proving non-planarity?

• We can use the knowledge that
K3,3 and K5 are non-planar to help
concisely prove any non-planar
graph.

• First, we define homeomorphic
graphs G1 and G2 if they can be
obtained from the same graph by a
sequence of elementary
subdivisions.
– An elementary subdivision is one

formed by removing an edge {u,v} and
adding w along with edges {u,w} and
{w,v}

– Fundamental idea: adding a vertex
doesn’t reduce the non-planarity of a
graph

Kuratowski’s theorem

• A graph is nonplanar if and
only if it contains a subgraph
homeomorphic to K3,3 or K5.
– Tip re homeomorphism: if you

“smooth” out a node to find a
subgraph, you can only do it
“one way”.

• Let’s take a look at a couple of
examples…
– Pages 611, 612

Graph Coloring

• Graph coloring has had many
contexts and useful applications

• Simple one: map coloring
– We can convert a map into a graph by

using the dual graph, which is defined
as a graph whose region is
represented by a vertex and whose
edges beween two vertices signify that
those two regions touch.

– Thus, map coloring reduces to
coloring the vertices of a dual graph.

• A coloring in a simple graph is the
assignment of a color to each
vertex of the graph so that no two
adjacent vertices are assigned the
same color.

Minimize # of colors

• We’d like to figure out the minimum
numbers of colors for a graph – the
chromatic number.
– The Four Color Theorem says that no planar

graph needs more than four colors.
– Was proven by counterexample; if it was false,

one of approximately 2000 different types of
graphs would have more than 5 colors, and
proved that none of these types existed.

• Nonplanar graphs, of course, can have
arbitrarily large chromatic numbers.

• To prove a chromatic number, we must
show two things:
– Show the graph can be colored using k colors;
– Show that it cannot be colored by fewer than

k.
• Some examples… (page 616)

More examples…
• What’s the chromatic number of

Kn? What of Km,n? (n and 2)
• What’s the chromatic number of

Cn? (Hint: there are two different
answers)

• The best algorithms for finding the
chromatic number of a graph have
exponential worst-case time
complexity.

• Applications
– Scheduling final exams: vertices

represent courses and edge
represents common students; colors
denote slots

– Frequency assignments: each vertex
is a station, edges represent overlap
(e.g., closer than 150 miles), and
colors represent the channel
assignments.

Next time

• Trees
• Final exam

