CS3203 #10

6/28/04 Janak J Parekh

Administrivia

- I'm going to make HW#5 smaller, and due this Friday
 - Simpler administratively than to push it off after July 4th
- Final exam on Wednesday
 - Covers everything through this lecture

Bipartite graphs

- A simple graph G is called *bipartite* if its vertex set V can be partitioned into two disjoint sets, V₁ and V₂, such that every edge in the graph connects a vertex in V₁ and a vertex in V₂.
 - Is C₆ bipartite?
 - Is K₃ bipartite?
 - $-K_{m,n}$ is a complete bipartite graph partitioned into *m* and *n* vertices.

Special applications of special types of networks

- Local area networks star, ring, hybrid (starred ring), bus topologies
- Interconnection networks for parallel computation
 - K_n but expensive and limited
 - Linear array need lots of intermediate hops?
 - Mesh network grid (2d array); communication requires O(√n) intermediate links
 - Hypercube

Generating new graphs from old graphs

- A subgraph of a graph G=(V,E) is a graph H=(W,F) where W ⊆ V and F ⊆ E.
- The union of two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ is the simple graph with vertex set $V_1\cup V_2$ and edge set $E_1\cup E_2$, and the graph is denoted by $G_1\cup G_2$.

Representing graphs and graph isomorphisms

- Adjacency list
 - Simple table, page 557
 - For undirected graph, for each vertex list adjacent vertices
 - For directed graph, list initial vertex and terminal vertices associated with it
 - Sometimes cumbersome, so...
- Adjacency matrix
 - It's an n x n zero-one matrix with 1 as its (i,j)th entry if v_i and v_j are adjacent, or 0 otherwise.
 - For directed graphs, if (v_i, v_j) is an edge in G
 - Symmetric for simple graphs
 - Typically sparse if there aren't many edges, which may be inefficient
 - For more complex graphs, can use values > 1
- Incidence matrix
 - n x m matrix, n vertices, m edges
 - $M = [m_{ij}]$, where $m_{ij} = 1$ when e_j is incident with $v_{i,}$ 0 otherwise

Isomorphism

- Simple graphs G₁ and G₂ are isomorphic if there is a 1-to-1 and onto function *f* from V₁ to V₂ with the property that *a* and *b* are in G₁ if and only if f(a) and f(b) are adjacent in G₂, for all *a* and *b* in V₁. Such a function is called an *isomorphism*.
- Often more difficult than you'd initially imagine.
- Sometimes can use clues (# of vertices, # of edges, vertex degrees) to help decide if something is not isomorphic, but if they're the same, then you have to figure out another way
- Examples on page 561
- How about...

Example

• Is the following graph isomorphic?

- Yes: (A,B,C,D,E,F) = (6,3,2,4,5,1)
- Strategies
 - Subgraphs
 - Invariants
 - Degree sequences
 - Correspondences
 - Can sometimes use adjacency matrix to demonstrate isomorphism
 - By hand!

Connectivity

- Now that we've defined graphs, we're concerned with their traversal
- We define a path of length n from u to v in G as a sequence of *n* edges e_1, \ldots, e_n such that $f(e_1) = \{x_0, x_1\}, f(e_2) = \{x_1, x_2\}, \ldots, f(e_n) = \{x_{n-1}, x_n\},$ where $x_0 = u$ and $x_n = v$.
 - When the graph is simple, we can denote this by a sequence of vertices x₀, ..., x_n.
 - A path is a *circuit* if it starts and ends at the same vertex and has length greater than zero
 - The path/circuit "passes through" the vertices/"traverses the edges".
 - A path or circuit is simple if it does not contain the same edge more than once. (Differences about duplicating vertices...)
- For directed (multigraphs), a path of length n from u to v in G as a sequence of *n* edges $e_1, ..., e_n$ such that $f(e_1) = (x_0, x_1), f(e_2) = (x_1, x_2), ..., f(e_n) = (x_{n-1}, x_n)$, where $x_0 = u$ and $x_n = v$.
 - When no multiple edges, we can denote this by a sequence of vertices x₀, ..., x_n.
 - A path of length greater than zero that begins and ends at the same vertex is a *circuit* or *cycle*.
 - A path or circuit is simple if it does not contain the same edge more than once. (Unclear about duplicating vertices!)

Examples...

- "Degrees of separation"
 - Design a graph with people, and an edge linking them if they know each other
 - Proposed that most pairs of people are linked by a small chain of people, perhaps five or fewer ("six degrees of separation"), which would imply a very short, bushy graph
 - Erdos number of a mathematician *m* is the length of the shortest path between m and the vertex representing Erdos, with edges representing "written papers with"
 - Bacon number of an actor c is the length of the shortest path between c and Bacon, where an edge represents "having acted with"

Connectedness in undirected graph

- An undirected graph is called *connected* if there is a path between every pair of distinct vertices of the graph.
 - There is a simple path between every pair of distinct vertices of a connected undirected graph
 - A graph doesn't need all the vertices to be connected!
- A graph that is not connected is the union of two or more connected subgraphs ("connected components"), each pair of which has no vertex in common.
- If removal of a vertex and all edges incident with it produces a subgraph with more connected components than the original graph, it's a cut vertex/articulation point. Similarly, cut edges or bridges represent edges whose removal disconnects the graph.

Connectedness in directed graphs

- A directed graph is strongly connected if there is a path from a to b and from b to a whenever a and b are vertices in the graph.
- A directed graph is *weakly* connected if there is a path between every two vertices in the underlying undirected graph.
 - Graph is "one piece"

Isomorphism, counting

- The extistence of a simple circuit of a particular length is a useful invariant to demonstrate nonisomorphism
 - Figure 6 on page 573
 - Paths can be used to construct mappings that may be isomorphisms
- Let G be a graph with adjacency matrix A with respect to the ordering v₁, v₂, ..., v_n. The number of different paths of length *r* from v_i to v_j, where *r* is a positive integer, equals the (i,j)th entry of A^{r.}
 - We're not going to do this, too annoying by hand

Eulerian circuits and paths

- Motivated by the Konigsberg bridge problem
 - Was divided into four sections by the branches of the Pregel river
 - Seven bridges connected these regions in the 18th century (page 578)
 - Is it possible to start at point, wander across all the brdges exactly once, and return to the starting point?
- Euler found the answer, and generalized for graphs in general
 - An Euler circuit in graph G is a simple circuit containing every edge of G.
 - An Euler path in G is a simple path containing every edge of G.
- Examples, page 578

Conditions for Eulerian circuits and paths

- A connected multigraph has an Euler circuit if and only if each of its vertices has even degree.
- This simple fact can be used to determine if you can "draw a picture without lifting a pencil".
- A connected multigraph has an Euler path (and no Euler circuit) if there are exactly two vertices of odd degree.
- So what about Konigsburg?
 - Not only is there no Eulerian circuit, there isn't even an Eulerian path
- Many applications
 - Optimal postman routes, circuit layout, network multicasting, etc.

Hamiltonian paths and cycles

- What if we want every vertex to be counted exactly once?
 - Eulerian paths and circuits allow vertices to be counted more than once
- We define a Hamiltonian path x_0, x_1, \dots, x_{n-1} , x_n in G=(V,E) if V = { $x_0, x_1, \dots, x_{n-1}, x_n$ } and $x_i \neq x_j$ for $0 \le I < j \le n$.
 - A Hamiltonian circuit $x_0, x_1, \dots, x_{n-1}, x_n, x_0, n > 1$, if $x_0, x_1, \dots, x_{n-1}, x_n$ is a Hamiltonian path.
- Sadly, there is *no* necessary and sufficient criteria for Hamiltonian circuit
 - There are some theorems with sufficient conditions, and there are a few ways of showing no Hamiltonian circuit.
- Examples: show K_n has a Hamiltonian circuit whenever $n \ge 3$.
 - How about an Eulerian circuit?

Hamilton's game

- Origin was Hamilton's Icosian puzzle; wooden dodecahedron (12 regular pentagons) with a peg at each vertex of the dodecahedron, and a string.
 - Each face was a city, i.e., "around the world".
 - We can visualize the graph as the following...

And more Hamilton...

- (Dirac's Theorem) If G is a simple graph with n vertices, n ≥ 3, such that the degree of every vertex in G is at least n/2, then G has a Hamiltonian circuit.
- (Ore's Theorem) If G is a simple graph with *n* vertices with n ≥ 3 such that deg(u)+deg(v) ≥ n for every pair of nonadjacent vertices u and v in G, then G has a Hamiltonian circuit.
- Sufficient, but not necessary.
 - Graph C_5 , for example.

Shortest-path problems

- What if we assign weights to the edges?
- Examples
 - Modeling an airline system: distances, flight time, fares, etc.
 - Modeling a computer network: distance, response times, lease rates
- Such graphs are called **weighted** graphs, and we're interested in the cost (sometimes length) of a path where it's the sum of the weights of the edges of this path.
 - Finding the path of least cost of great interest.

Dijkstra's shortest-path algorithm

- Strategy: first, find the shortest path from start to each of its neighbors. Then, do this repeatedly for each neighbor, but *keep track of the total cost*.
- Initialize a length "function" L(v_i) := ∞, L(a) := 0, and a set S of seen vertices to the empty set.
- Psuedocode is in the book, but:
 - Add the first unseen vertex of minimum length from the start.
 - Update the lengths in L based on this new vertex's unseen neighbors.
 - Repeat!
- Not only does this provide the shortest path between two vertices in a connected, simple undirected weighted graph, it does so in v² time.
- Another algorithm Floyd uses Warshall but distances instead of connectivity, and does it for *all* vertices in v³ time.

Traveling salesman problem

- Goal here is to find the minimum Hamiltonian cycle of a weighted graph
- Imagine the poor salesman who's trying to minimize his travel cost and/or time
- One strategy: brute force
 - Assuming a complete graph, there are (n-1)! different Hamiltonian circuits (counting problem); we need to examine half of these
 - i.e., this is very much an NP problem
- No polynomial algorithm has been found to find this, so people use approximation algorithms that come within some constant ratio of the optimal solution.
 - Within 2% of an exact solution of a 1000vertex graph in a few minutes of CPU time.

Planar graphs

- Example: consider the problem of joining three houses to each of three separate utilities, without crossing any of the connections.
 - This is a bipartite graph $K_{3,3}$.
 - Another way of phrasing it: can we draw this graph in the plane such that no two links cross?
 - No.
- A graph is called *planar* if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoint). Such a drawing is called a *planar representation* of the graph.
 - Note that the graph doesn't have to be drawn without crossed edges for it to be planar; it has to have the *potential* to be drawn without crossed edges.

Several examples

- Is K₄ planar? (yes)
- Is Q₃ planar? (yes)
- So why not K_{3,3}?
 - v_1 and v_2 must be both connected to v_4 and v_5 ; this forms a closed curve that splits the plane, and so on as we add vertices. v_3 to v_4 and v_5 split R_2 (or R_1) into two subregions.
 - No matter where v₆ is placed, it's going to cross a region.
 - Similarly, K_5 is not planar.
- Also important in circuit design (minimizing crossings, if any)

Euler's formula

- Any way to get a better handle on this?
 - Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r = e - v + 2.
- Can use for the following colloraries.
 - Given a simple, planar G with ≥ 3 vertices, then $e \le 3v 6$.
 - If the graph has no circuits of length 3, then $e \le 2v 4$.
 - If G is a connected planar simple graph, then G has a vertex of degree not exceeding 5.
- Can we be more precise?

Proving non-planarity?

- We can use the knowledge that K₃,₃ and K₅ are non-planar to help concisely prove any non-planar graph.
- First, we define homeomorphic graphs G₁ and G₂ if they can be obtained from the same graph by a sequence of elementary subdivisions.
 - An elementary subdivision is one formed by removing an edge {u,v} and adding w along with edges {u,w} and {w,v}
 - Fundamental idea: adding a vertex doesn't *reduce* the non-planarity of a graph

Kuratowski's theorem

- A graph is nonplanar if and only if it contains a subgraph homeomorphic to K_{3,3} or K₅.
 - Tip re homeomorphism: if you "smooth" out a node to find a subgraph, you can only do it "one way".
- Let's take a look at a couple of examples...

- Pages 611, 612

Graph Coloring

- Graph coloring has had many contexts and useful applications
- Simple one: map coloring
 - We can convert a map into a graph by using the *dual graph*, which is defined as a graph whose region is represented by a vertex and whose edges beween two vertices signify that those two regions touch.
 - Thus, map coloring reduces to coloring the vertices of a dual graph.
- A *coloring* in a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Minimize # of colors

- We'd like to figure out the minimum numbers of colors for a graph the **chromatic number**.
 - The Four Color Theorem says that no planar graph needs more than four colors.
 - Was proven by counterexample; if it was false, one of approximately 2000 different types of graphs would have more than 5 colors, and proved that none of these types existed.
- Nonplanar graphs, of course, can have arbitrarily large chromatic numbers.
- To prove a chromatic number, we must show two things:
 - Show the graph can be colored using *k* colors;
 - Show that it cannot be colored by fewer than k.
- Some examples... (page 616)

More examples...

- What's the chromatic number of K_n? What of K_{m,n}? (n and 2)
- What's the chromatic number of C_n? (Hint: there are two different answers)
- The best algorithms for finding the chromatic number of a graph have exponential worst-case time complexity.
- Applications
 - Scheduling final exams: vertices represent courses and edge represents common students; colors denote slots
 - Frequency assignments: each vertex is a station, edges represent overlap (e.g., closer than 150 miles), and colors represent the channel assignments.

Next time

- Trees
- Final exam