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Administrivia

• Is it OK if I assign HW5 next 
Monday and make it due the 
Monday thereafter?

• “Final exam” is next week



Warshall’s algorithm

• I didn’t assign it on the 
homework.

• You should still try a simple 
example and see if it works.



Equivalence relations

• Book example: “Students register the day 
before the start of a semester.  They’re 
partitioned into “A-G”, “H-N”, and “O-Z”, 
who register from 8-11, 11-2, and 2-5 
respectively.

• Define relation R containing (x,y) if and 
only if x and y are students with last 
names beginning with letters in the same 
block.
– Is R reflexive, symmetric, transitive?
– R also divides the set of students into three 

classes, depending on the first letters of their 
last names

– To know when a student can register, we’re 
only concerned with which class the student 
falls into

• Equivalence relations arise when we only 
care whether an element of a set is in a 
certain class of elements, instead of 
caring about its particular identity.



Equivalence relations 
(II)

• A relation on a set A is called an 
equivalence relation if it is reflexive, 
symmetric, and transitive.
– Two elements related by an 

equivalence relation are called 
equivalent.

– Given R, over reals, such that a R b if 
and only if a – b is an integer… is this 
an equivalence relation?

• Very common equivalence relation 
is congruence modulo m
– Given m a positive integer > 1, R = 

{(a,b) | a ≡ b (mod m)} is an 
equivalence relation on Z.



Equivalence classes

• Given R, an equivalence relation, on A, 
the set of all elements related to a of A is 
called the equivalence class of A.  The 
equivalence class of a with respect to R 
is denoted by [a]R.  
– When only one relation is under consideration, 

no subscript.
• If R is the relation on the set of integers 

such that a R b if and only if a = b or a = -
b, what is the equivalence class of any 
arbitrary integer for R?
– [a] = {-a, a}
– What’s the equivalence class for 0 mod 5?
– How many equivalence classes are there for a 

number mod m?



Equivalence classes 
and partitions

• Given A = set of students majoring in exactly one 
subject, and R be on A consisting of (x,y) where x 
and y are students with the same major

• R splits all students in A into a collection of 
disjoint subsets, where each subset contains 
students with a specified major.

• Each of these subsets are equivalence classes in 
R; they’re partitions on A.
– A partition of a set S is a collection of disjoint 

nonempty subsets of S that have S as their union.
– If S = {1,2,3,4,5,6}, give me a partition on S.

• Let R be an equivalence relation on A.  These 
statements are equivalent:
– a R b
– [a] = [b]
– [a] ∩ [b]  ≠  ∅

• To be precise, let R be an equivalence relation on 
S.  The equivalence classes of R form a partition 
of S.  Conversely, given a partition of S, there is 
an R that has the sets as its equivalence classes.



Partial Orderings

• Instead of an equivalence relation 
which is symmetric, what if 
something is antisymmetric?

• A relation R on S is called a partial 
ordering or a partial order if it is 
reflexive, antisymmetric, and 
transitive.  A S together with a 
partial ordering R is called a 
partially ordered set, or poset, and 
is denoted by (S, R).
– Is ≥ a partial ordering?
– (Z, ≥) is a poset

• In a poset, a ˜ b denotes (a,b) in R.
– a — b suggests that a ˜ b, but a ≠ b.



Comparable

• Elements a and b of a poset (S, ˜) 
are called comparable if either a ˜
b or b ˜ a.  When a and b are 
elements of S such that neither a ˜
b nor b ˜ a, a and b are called 
incomparable.
– In the poset (Z+, |), are 3 and 9 

comparable?  Are 5 and 7 
comparable?

• When every pair of elements are 
comparable, the relation is a total 
ordering
– If (S, ˜) is a poset and every pair of 

elements of S are comparable, S is 
called totally ordered or a linearly 
ordered set, and ˜ is a total order or a 
linear order.  Totally ordered sets are 
also called chains.



Well-ordering

• (S, ˜) is a well-ordered set if it 
is a poset such that ˜ is a total 
ordering and such that every 
nonempty subset of S has a 
least element.
– Is (Z, ≤) totally ordered?
– Is it well ordered?  (No –

negative integers have no 
minimum)

– What subset of Z can we say is 
well-ordered? (We can use Z+

has a “minimum” element)



Lexicographic order

• Special case of an ordering of 
strings from a set constructed from 
a partial ordering on the set.

• In terms of Cartesian product of two 
posets (A1, ˜1) and (A2, ˜2)
– We define the lexicographic 

ordering ˜ on A1 x A2 by specifying 
that one pair is less than a second pair 
if the first entry of the first pair is less 
than the first entry of the second pair, 
or if the first entries are equal, but the 
second entry of this pair is less than 
the second entry of the second pair.

– In other words, (a1,a2) — (b1,b2) if a1 —1
b1 or if both a1 = b1 and a2 —2 b2.



Lexicographic order, 
cont’d.

• Example
– Determine whether (3,5) — (4,8), 

whether (3,8) — (4,5), and/or 
whether (4,9) — (4,11) in the 
poset (Z x Z, ˜), where ˜ is the 
lexicographic ordering 
constructed from the usual ≤
relation on Z.

• Can generalize for n posets;
– (a1, a2, …, an) — (b1, b2, …, bn) if 

a1 —1 b1, or if there is an integer i 
> 0 s.t. a1 = b1, …, ai = bi, and 
ai+1 —i+1 bi+1.



Lexicographic order as 
applied to strings

• Given unequal strings a1a2…am
and b1b2…bn on a poset S, we 
let t be the minimum of m and 
n. a1a2…am is less then 
b1b2…bn if and only if
– (a1, a2, …, at) — (b1, b2, …, bt) or
– (a1, a2, …, at) = (b1, b2, …, bt) 

and m < n.



Hasse diagrams

• Consider the directe graph for the partial 
ordering {(a,b) | a ≤ b} over {1,2,3,4}.
– Start with the complete graph.  Since it’s a 

partial ordering by definition, it’s reflexive, and 
we can just keep that in mind and get rid of the 
loops.

– Next, since it’s transitive, we can take out all 
edges that are there because of transitivity.

– Finally, if we assume “upwards” orientation, 
we can get rid of the arrows.

• The resulting graph, called a Hasse
diagram, is sufficient to show/find the 
partial ordering.

• Examples
– Draw a Hasse diagram for {(A,B) | A ⊆ B} on 

P(S) where S = { a, b, c }.
– Draw ({2,4,5,10,12,20,25}, |).



Properties of posets

• Maximal elements are elements a in S for which 
there is no b, b ∈ S, a — b.

• Minimal is the opposite.
– You can have multiple maximal and minimal 

elements.
• Greatest elements and least elements are unique 

if they exist
– In other words, greatest element of (S, ˜) is a if b 

˜ a for all b ∈ S, and vice versa.
• Can often determine by quick inspection of a 

Hasse diagram… let’s look at the ones on the 
board.
– Is there a greatest and least element for (Z+, |)?

• If you can find an element that is greater than all 
the elements in a subset A of (S, ˜), then that 
element is an upper bound of A.  Likewise for 
lower bound.
– Least upper bound on A suggests that x is an 

upper bound that is less than every other upper 
bound of A.

– Vice-versa for greatest lower bound.
– Example: greatest lower bound and least upper 

bound of the sets {3,9,12} and {1,2,4,5,10} in the 
poset (Z+, |).



Lattices

• A partially ordered set in which 
every pair of elements has 
both a least upper bound and a 
greatest lower bound is called 
a lattice.
– Is (Z+, |) a lattice?  Yes (LCM, 

GCD)
– Determine whether ({1,2,3,4,5}, 

|) and ({1,2,4,8,16}, |) are 
lattices.

• Used in things like multilevel 
security (“security classes”) –
making sure they’re bounded



Topological sorting

• Useful way of coming up with a 
total ordering from a partial 
ordering

• Numerous applications, especially 
for ordering tasks or prerequisites

• A total ordering ˜ is said to be 
compatible with the partial 
ordering R if a ˜ b whenever a R b.  
Constructing a compatible total 
ordering from a partial ordering is 
called topological sorting.
– Lemma: Every finite nonempty poset

(S, ˜) has a minimal element



Topsort algorithm

• procedure topsort(S: finite poset)
k := 1
while S ≠ ∅
begin

ak := a minimal element of S
{Lemma 1}

S := S – {ak}
k := k + 1

end {a1,a2,…,an is a compatible 
total ordering of S}

• Very easy to do with Hasse
diagrams

• Examples:
– Find a compatible total ordering for the 

poset ({1,2,4,5,12,20}, |)
– Class dependencies



Graphs

• Graph theory used to solve problems in many 
fields
– Circuit boards
– Structure of the web
– Chemical compounds
– Shortest paths in transportation networks

• Types of graphs
– Simple graph G = (V,E) contains a set V of vertices, 

and a set E of edges (denoted by unordered pairs 
of vertices) such that no two edges connect the 
same pair of vertices, and they’re undirected (also, 
no self-loops)

– Multigraph G = (V,E) allows multiple/parallel edges; 
function f from E to {{u,v} | u,v ∈ V, u ≠ v}

– Psuedograph G=(V,E) allows loops, i.e., f(e) = {u,u} 
= {u} for some u ∈ V

– Directed graph (digraph) uses ordered pairs for 
edges; allows loops, but no two edges between the 
same pair of vertices in the same direction are 
allowed.

– Directed multigraphs allow it all; f from E to {(u,v) | 
u,v ∈ V}.

• In general, you don’t need to worry too much 
unless it’s explicitly specified; primary criterion is 
directionality (“undirected graph” vs “directed 
graph”)



Undirected graph 
terminology

• Two vertices u and v are adjacent if 
{u,v} is an edge in G.  e = {u,v} is 
called incident with (or connects) u 
and v.  u and v are called endpoints
of the edge {u,v}.

• Degree of a vertex in an undirected 
graph is the number of edges 
incident with it
– A self-loop increases the degree by 

two
• Handshaking theorem: if G = (V,E) 

is an undirected graph with e 
edges, 2*#edges is equal to the 
sum of the degrees
– An undirected graph has an even 

number of vertices of odd degree.



Directed graph 
terminology

• When (u,v) is an edge of the graph 
G with directed edges, u is adjacent 
to v and v is adjacent from u.  u is 
the initial vertex, and v is the 
terminal vertex (which are same for 
a self-loop).

• In graphs with directed edges the 
in-degree of a vertex v (deg-(v)) is 
the number of edges with v as their 
terminal vertex, and the out-degree 
(deg+(v)) is the number of edges 
with v as their initial vertex.  (Self-
loops contribute to both.)

• The sum of the in-degrees = sum of 
the out-degrees = # of edges.



Special simple graphs

• Complete graphs Kn, n > 0
• Cycles Cn, n > 2
• Wheel Wn is obtained by adding an 

additional vertex to Cn and 
connecting this new vertex to all of 
the existing n vertices.

• n-dimensional cube (n-cube) Qn
has 2n vertices, represented by 
bitstrings of length n.  Two vertices 
are adjacent if and inly if the 
bitstrings differ by exactly one bit.
– Can construct Qn+1 from Qn by taking 

two Qn, prefacing a 0 to the first and a 
1 to the second’s vertices, and 
connecting those.



Bipartite graphs

• A simple graph G is called 
bipartite if its vertex set V can 
be partitioned into two disjoint 
sets, V1 and V2, such that 
every edge in the graph 
connects a vertex in V1 and a 
vertex in V2.
– Is C6 bipartite?
– Is K3 bipartite?
– Km,n is a complete bipartite graph 

partitioned into m and n vertices.



Special applications of 
special types of networks

• Local area networks – star, 
ring, hybrid (starred ring), bus 
topologies

• Interconnection networks for 
parallel computation
– Kn – but expensive and limited
– Linear array – need lots of 

intermediate hops?
– Mesh network – grid (2d array); 

communication requires O(√n) 
intermediate links

– Hypercube



Next time

• Finish graphs
• Start trees


