CS3203 \#8

6/16/04
Janak J Parekh

Administrivia

- Exam statistics: 76.9 ± 12.3 out of 90 (85.4\%) - Go over answers...
- We lost one student $)^{(}$
- HW4 will go out today

Relations

- Quick review
- A binary relation from A to B is a subset of $A \times B$.
- We use the notation $a R b$ if $(a, b) \in R$ and $a R b$ (where R is struck out) if they're not. If they are, a is said to be related to b by R.
- A relation on the set A is a relation from A to A.
- Let A be the set $\{1,2,3,4\}$; which ordered pairs are in the relation $R=\{(a, b) \mid$ a divides $b\}$
- Several properties of relations... let R be the relation on $\{a, b, c, d\}$:
$-R=\{(a, a),(a, c),(a, d),(b, a),(b, b),(b, c),(b, d)$, (c,b), (c,c), (d,b), (d,d))
- Is it
- Reflexive? Yes.
- Irreflexive? No.
- Symmetric? No (a,c) but no (c,a)
- Asymmetric? No (b,c) and (c,b)
- Antisymmetric? No (b,c) and (c,b)
- Transitive? No (a,c) (c,b) no (a,b)

Combining relations

- Union, intersection, subtraction all work
- Composite of R and S, R from A to B and S from B to C, produces a new relation from A to C. Termed S o R (note backwards)
- Powers $R^{n}, n=1,2,3 \ldots$ are defined by $R^{1}=R$ and $R^{n+1}=R^{n} o$ R.
- Example: $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a})\} \ldots$ what's R^{2} ?
- R on A is transitive if and only if R^{n} $\subseteq R$ for $n=1,2,3 \ldots$

n-ary relations

- All the examples we've seen so far are between two sets.
- An n-ary relation on sets $A_{1}, A_{2}, \ldots, A_{n}$ is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$. The sets are the domains of the relation, and n is the degree.
- Let R be the relation on $N \times N \times N$ consisting of triples ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) where $\mathrm{a}<\mathrm{b}<\mathrm{c}$.
- All the sets don't have to be the same; remember that tuples are ordered
- Basis for modeling databases, and the relational data model in particular.
- A record is an n-tuple, made up of fields.
- For example, (STUDENT NAME, ID NUMBER, MAJOR, GPA)
- Tables can be used to represent these relations; each column represents an attribute of the database.
- A domain of the n-ary relation is a primary key when the value of the n -tuple from this domain determines the n-tuple (i.e., uniqueness).
- Should always remain a primary key (i.e., over the intension of a database, which contains all possible theoretical n-tuples).
- Sometimes, need several fields to form a composite key to determine uniqueness.

Operations on n-ary relations

- Let R be an n -ary relation and C a condition that elements in R may satisfy. The selection operator s_{C} maps the n-ary relation R to the n-ary relation of n tuples from R that satisfy C.
- Example, $\mathrm{s}_{\mathrm{C} 1}$, where C_{1} is the condition "Major = Computer Science".
- The projection $P_{\text {iii2 } \ldots . . \text { im }}$ maps the n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to the m-tuple $\left(\mathrm{a}_{\mathrm{i1}}, \mathrm{a}_{\mathrm{i} 2}, \ldots, \mathrm{a}_{\mathrm{im}}\right)$ where $\mathrm{m}<=\mathrm{n}$.
- What's $P_{1,4}$ on (49, 21, 45, 6)?
- The two combine to form a "view" on a database.
- A join $J_{p}(R, S)$ where $p<m$ and $p<n$, is a relation of degree $m+n-p$ that consists of the ($m+n-p$)-tuples where the m-tuple belongs to R and the n-tuple belongs to S and they have some common components $\mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{p}}$.
- Example: join teaching assignments and class schedule; see page 486.
- SQL SELECT can be used to express these; I'll leave it as a optional reading exercise unless people really want to see...

Representing relations

- List ordered pairs

- Matrices

- For a binary relation, we define $\mathrm{M}_{R}=\left[\mathrm{m}_{\mathrm{ij}} \mathrm{l}\right.$, where $\mathrm{m}_{\mathrm{ij}}=1$ if $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}\right)$ $\in \mathrm{R}$ and 0 if not.
- Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}\right.$, $\left.\mathrm{b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}, \mathrm{~b}_{5}\right\}$. What ordered pairs are in the matrix

$$
M_{R}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

How to represent properties using matrices?

$\left[\begin{array}{llll} 1 & & & \text { any- } \\ & 1 & \text { thing } \\ & & 1 & \\ \text { any- } & & \\ \text { thing } & & 1 \end{array}\right]$	$\left[\begin{array}{llll}0 & & & \text { any- } \\ & 0 & \text { thing } \\ & & 0 & \\ \text { any- } \\ \text { thing }\end{array}\right.$		$\left[\begin{array}{cccc} \ddots & 0 & & \\ 1 & \ddots & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & \\ 0 & \ddots & \ddots \end{array}\right]$
Reflexive: all 1's on diagonal	Irreflexive: all 0's on diagonal	Symmetric: all identical across diagonal	Antisymmetric all 1's are across from 0's

- Note this is relation of a single set, which has to be square
- Example: Given M_{R}, what is it?
- More
discussion
$M_{R}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$

Using digraphs

- Preview of next chapter, strangely
- "Directed graph" consists of a set V of vertices (nodes) together with a set E of edges (arcs). The vertex a is called the initial vertex on the edge (a, b), and the vertex b is called the terminal vertex.
- An edge (a,a) forms a self-loop.
- Example: Given $S=\{a, b, c, d\}$ and R on $S=\{(a, b),(a, d),(b, b),(b, d)$, (c,a), (c,b), (d,b)\}.
- How to determine reflexivity, symmetry, antisymmetry, transitivity?

Closures of relations

- Useful transformation for a large variety of applications
- Suppose we have a relation that documents telephone links between five different data centers
- Not completely interconnected
- How can we find out if each node is reachable from each other? Transitive closure
- In general, given R over A ; if there is a relation S with property P containing R such that S is a subset of ever relation with property P containing R, then S is called the closure of R with respect to P.
- We'll discuss reflexive, symmetric, and transitive closures...

Reflexive closure

- Given R on A, the reflexive closure of R can be formed by adding to R all pairs of the form (a, a) with $a \in A$, not already in R. This process produces a relation that's reflexive in R.
- Compute reflexive closure of $\{(1,2),(2,3),(3,4)\}$ over $\{1,2,3,4\}$
- Can be viewed as R $\cup \Delta$ where the latter term is $\{(a, a) \mid a \in A\}$, or the diagonal relation on A
- What's the closure of $R=\{(a, b) \mid$ $\mathrm{a}<\mathrm{b}\}$ over Z?

Symmetric closure

- Symmetric closure can be created by adding all pairs of the form (b,a), where (a, b) exists but where (b,a) doesn't.
- Alternatively, take the union of the R with its inverse R^{-1} where the inverse $=\{(b, a) \mid(a, b) \in R\}$.
- What's the symmetric closure on $\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}<\mathrm{b}\}$ over Z ?

Transitive closure

- Not quite so easy to do
- Given $\{(1,3),(1,4)(2,1),(3,2)\}$, if we compute the transitive results of each pair, we do not get the transitive closure
$-(1,2),(2,3),(2,4),(3,1)$, if unioned with the original relation, still doesn't give a closure that holds for transitivity.
- Simply put, need to add ordered pairs over and over and over again until there are no more needed.
- How can we do this procedurally? We'll see...

Paths in directed graphs

- By representing relations using digraphs, it'll help us define a transitive closure.
- A path from a to b in a graph G is a sequence of edges $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right)$, $\left(x_{2}, x_{3}\right), \ldots,\left(x_{n-1}, x_{n}\right)$ in G, where n is a nonnegative integer, and $x_{0}=a$ and $x_{n}=b$. This path is denoted as $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}$ and has length n.
- Construct an example...
- Theorem: let R over A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^{n}$.

Transitive closure, redux

- Let R be on A . The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of at least one from a to b in R.
- $R^{*}=$ the union of $R^{n} s, n=1$ to infinity
- Let R be the relation on the set of all subway stops in NYC that contains (a, b) if it is possible to travel between a and b without changing trains. What is R^{n} for positive n ? What is R^{*} ?
- The transitive closure of R equals R^{*}.
- Given set A with n elements and R on A, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, if a is not b , there is a path not exceeding $n-1$.
- What does this mean?
- Provable by pigeonhole (remove the extra circuit in the path)
- Can also "or" derivative matrices together
- To be precise, n matrices where $\mathrm{n}=$ number of elements in S

Warshall's algorithm

- Reasonably efficient way of computing transitive closure. $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Sounds like a lot, but the matrix multiplication is $\mathrm{O}\left(\mathrm{n}^{4}\right)$!
- Done over a matrix: procedure Warshall(M_{R} : $\mathrm{n} \times \mathrm{n}$ zero-one matrix)
W:= M
for $\mathrm{k}:=1$ to n ; begin
$\begin{aligned} & \text { for } i:=1 \text { to } n ; \text { begin } \\ & \text { for } j:=1 \text { to } n \\ & w_{i j}=w_{i j} \vee\left(w_{i k} \wedge w_{k j}\right)\end{aligned}$
end
end $\left\{W\right.$ is $\left.M_{R^{*}}\right\}$
- Fundamental idea: for all vertices k, compute paths between i and j for which k is an intermediate
- Floyd's algorithm is a variation on this which calculates shortest paths
(Wednesday)

Next time

- Finish up equivalence relations, partial orderings - Start graphs

