Administrivia

• Exam will be returned next week
 – Any comments?
Monty Hall, redux

- Now is the chance of loosing: \(L = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{18} \)
- And I got 6 L's so: Total chance for loosing is: \(6 \cdot \frac{1}{18} = \frac{1}{3} \)
- For winning: \(W = \frac{1}{3} \cdot \frac{1}{3} \cdot 1 \cdot 1 \cdot 1 = \frac{1}{9} \)
- And I got 6 W's so: Total chance for winning is: \(6 \cdot \frac{1}{9} = \frac{2}{3} \). (check: \(\frac{2}{3} + \frac{1}{3} = 1 \) (OK))
- From http://www.cut-the-knot.org/peter.shtml
Birthday Paradox

- How many people are needed in the room such that it’s more likely than not (e.g., greater than .5 probability) that two people have the same birthday?
 - We assume that birthdays are independent, equally likely, and 366 birthdays per year.
 - If $p_n = \text{probability have all different birthdays}$, then $1 - p_n = \text{probability two people have the same birthday}$
 - Compute probability has a different birthday as people “walk in the room”.
 - First person $p_1 = 1$, second is $365/366$, third is $364, 366$, etc.
 - p_n is therefore $1 \times \frac{365}{366} \times \frac{364}{366} \times \frac{363}{366} \times \ldots \times \frac{367-n}{366}$, and $1 - p_n$ is $1 - \text{same thing}$.
 - Use formula for $1 - p_n$ until it becomes greater than $\frac{1}{2}$, and we have our value n. $1 - p_n \approx 0.475$ for $n = 22$, $1 - p_n \approx 0.506$ for $n = 23$.

- Should we try for months in this room?
Monte Carlo algorithms

• “Probabilistic” algorithms are those that make “random” choices at one or more steps
 – Useful when you’ve got an algorithm where a deterministic algorithm goes through a huge number of choices
• Monte Carlo – specific subcategory of probabilistic algorithms
 – Always produce answers, but small probability remains the answers are incorrect
 – Given sufficient computation, chance that algorithm is incorrect decreases
 – For “decision problems”, MC algorithms use a sequence of tests. At each step, possible responses are “true”, which means no more computation needed, or “unknown”, which means either “true” or “false”.
 – “False” is accomplished if, for all computation, we still have “unknown”.
 – For any p > 0, \((1-p)^n\) (“unknown”) shrinks
Example

- Chip testing
- PC manufacturer orders processor chips in batches of size \(n \), where \(n \) is a positive integer
- Chip maker only tests a few batches
- Random testing shows a 10% failure rate
- But to test a chip takes \(O(n) \) time for \(n \) tests
- Select a random subset of chips and test them
 - Question: “Has this batch of chips not been tested by the chip maker?”
 - If a bad chip is encountered, answer “true” and stop
 - If a tested chip is good, “unknown”
 - After \(k \) chips, answer “false”
- Only possible incorrect answer is “false”
- Probability that a chip is good but that it came from an untested branch is \(1 - 0.1 = 0.9 \). \(0.9^k \) for arbitrary \(k \) chips.
 - If we test 66 chips, \(1 - 0.9^{66} < 0.001 \) chance the algorithm decides a batch has been tested, i.e., less than 1-in-1000 chance that the algorithm has answered incorrectly
 - 132 tests imply error rate to less than 1 in 1,000,000
Probabilistic method

- We’re not doing this, you can check the book if you want
Advanced Counting

• Simple example
 – The number of bacteria in a colony doubles every hour. If a colony begins with 5 bacteria, how many will be present in \(n \) hours?
 • \(a_0 = 5 \)
 • \(a_n = 2a_{n-1} \), where \(n \) is the # of hours.

• We have just found a “recurrence relation”.
 – Very similar to recursive algorithm, but here we’ll focus on counting techniques
 – How do we take the aforementioned equation and come up with a “explicit” formula?

• To be precise, a **recurrence relation** for the sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one or more of the previous sequence, namely \(a_0, a_1, \ldots, a_{n-1} \) for all integers \(n \geq n_0 \), where \(n_0 \) is nonnegative.

• A sequence is called the **solution** of a recurrence relation if its terms satisfy the recurrence relation.
Examples

- Let \(\{a_n\} \) be a sequence that satisfies \(a_n = a_{n-1} - a_{n-2} \) for \(n = 2, 3, 4, \ldots \) and \(a_0 = 3 \) and \(a_1 = 5 \).

- **Initial conditions** specify the terms that precede the first term where the recurrence relation takes effect, as in the example above.
 - Initial conditions plus the recurrence relation uniquely determine a sequence.

- Can use to model problems...

- Deposit $10,000 in a savings account in a bank yielding 11% per year, interest compounded annually; how much is in the account after 30 years?
 - What’s the explicit equation? \(P_n = (1.11)^n P_0 \). In general, \(1+r \)
 - Can use induction to prove.

- Rabbits can be modeled by Fibonacci?
 - A pair of rabbits (one of each gender) is placed on an island. They don’t breed until they’re two months old. After 2 months, each pair of rabbits produces another pair each month.
 - \(f_1 = 1, f_2 = 1, f_3 = f_2 + f_1, f_n = f_{n-1} + f_{n-2} \) (the \(n-2 \) term are the newborns as they come from rabbits at least two months old)

- Bit strings of length \(n \) that do not have two consecutive zeros – how many such bit strings are there? Give a recurrence relation and an example for length 5.
 - \(a_n = \) # of bitstrings of length \(n \) that do not have two consecutive zeros.
 - Either take a bitstring of length \(n-1 \) and add a 1, or a bitstring of length \(n-2 \) and add a 10.
 - Again, fibonacci!
Solving recurrence relations

• We can sometimes do it naively, but it rapidly gets complicated
 – Try to “spot a pattern”
• There are several “standard forms”
• **Linear homogenous recurrence relation of degree k with constant coefficients** is a recurrence relation of the form
 \[a_n = c_1a_{n-1} + c_2a_{n-2} + \ldots + c_{k}a_{n-k}, \text{ where } c_1\ldots c_k \text{ are real numbers, } c_k \neq 0. \text{ Note intermediate terms can be zero, however.} \]
• Examples
 – \(P_n = (1.11)P_{n-1} \) is of degree one.
 – \(f_n = f_{n-1} + f_{n-2} \) is of degree two.
 – \(a_n = a_{n-5} \) is of degree 5.
• What’s not?
 – \(a_n = a_{n-1} + a_{n-2}^2 \) (not linear)
 – \(H_n = 2H_{n-1} + 1 \) (not homogenous)
 – \(B_n = nB_{n-1} \) (not constant coefficients)
Degree one

• For $a_n = c_1 a_{n-1}$
• Solution is $a_n = a_0 c_1^n$
• Easy enough…
• Can we generalize the strategy of raising it to a power for more complex linear homogenous recurrence relations?
• Look for solutions of the form $a_n = r^n$, where r is a constant. Note that this is only a solution if

 \[r^n = c_1 r^{n-1} + c_2 r^{n-2} + \ldots + c_k r^{n-k} \]

• Divide both sides by r^{n-k} and subtract the right hand side from the left

 \[r^k - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_k - r - c_k = 0 \]

 Only a solution if r is a solution of this last equation: characteristic equation of the recurrence relation. Solutions are called the characteristic roots.

• For degree two, there may be one or two characteristic roots

 Let c_1 and c_2 be real numbers. Suppose that $r^2 - c_1 r - c_2 = 0$ has two distinct roots r_1 and r_2. Then the sequence \(\{a_n\} \) is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if

 \[a_n = \alpha_1 r_1^n + \alpha_2 r_2^n \text{ for } n = 0, 1, 2, \ldots \text{ and } \alpha_1 \text{ and } \alpha_2 \text{ are constants.} \]

 Characteristic roots may be complex numbers, but we won’t deal with those.
Examples

• Solution of the recurrence relation \(a_n = a_{n-1} + 2a_{n-2} \) with \(a_0 = 2 \) and \(a_1 = 7 \)?
 – Solve \(r^2 - r - 2 = 0 \) (\(r = 2 \) and \(r = -1 \))
 – So, \(a_n = \alpha_1 2^n + \alpha_2 (-1)^n \).
 – Plug in \(a_0 \) and \(a_1 \) to determine \(\alpha \) values.
 – Solution: \(a_n = 3 \times 2^n - (-1)^n \).

• Fibonacci?
 – Characteristic equation is \(r^2 - r - 1 = 0 \). Ugh!
 – Solutions are on page 416
 – I’m not expecting you to remember this...

• \(a_n = 2a_{n-1} + 3a_{n-2} \), \(a_0 = 0 \), \(a_1 = 1 \)
 – \(r^2 - 2r - 3 = 0 \), or \((r-3)(r+1) \)
 – Final solution is \(a_n = \frac{1}{4} \times 3^n - \frac{1}{4} \times (-1)^n \)

• \(a_n = 6a_{n-1} - 9a_{n-2} \)
 – Solve \(r^2 - 6r + 9 = 0 \)
 – \((r-3)^2 = 0 \)
 – Uh-oh...
 – Second theorem: \(a_n = \alpha_1 r_0^n + \alpha_2 nr_0^n \)
 – So, in this case \(a_n = 3^n + n3^n = (n+1)3^n \)
Generalized

• For $r^k - c_1 r^{k-1} - \ldots - c_k = 0$ with distinct roots r_1, \ldots, r_k, solution is

• $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \ldots + \alpha_k r_k^n$

• Again, I’m not expecting you to solve such annoying factorizations

• You can even generalize multiplicities – see the mess on page 418
Linear nonhomogeneous recurrence relations

• If \(\{a_n^{(p)}\} \) is a particular solution of the nonhomogeneous linear recurrence relation with const. coeff.

 \[a_n = c_1a_{n-1} + c_2a_{n-2} + \ldots + c_ka_{n-k} + F(n) \]

 – Then every solution is of the form \(\{a_n^{(p)} + a_n^{(h)}\} \), where \(\{a_n^{(h)}\} \) is a solution of the associated homogeneous recurrence relation \(a_n = c_1a_{n-1} + c_2a_{n-2} + \ldots + c_ka_{n-k} \)

• Why we don’t do this?
 – Figuring out \(a_n^{(h)} \) is not fun
 – Check out the rest of the section if you want…
 – Good luck!
Divide-and-conquer recurrence relations

• Example: binary search is a divide-and-conquer algorithm
 – Although it doesn’t actually “conquer” much after dividing
 – Mergesort is another example

• Forms the recurrence relation
 – $f(n) = af(n/b) + g(n)$
 – “a” subproblems, each sized n/b, plus $g(n)$ work to “combine”

• So, what’s binary search?
 – $f(n) = f(n/2) + 2$

• Mergesort
 – $M(n) = 2M(n/2) + n$
Solving these explicitly

• If \(f(n) = af(n/b) + c, \)
• \(f(n) \) is \(O(n^{\log(b)a}) \) if \(a > 1 \), or \(O(\log n) \) if \(a = 1 \).
• When \(n = b^k \), where \(k \) is a positive integer, \(f(n) = C_1n^{\log(b)a} + C_2 \), where \(C_1 = f(1) + c/(a-1) \) and \(C_2 = -c/(a-1) \)
• Just plug-and-play
• Generalization is the “Master theorem”
Master theorem

- If \(f(n) = af(n/b) + cn^d \),
- \(f(n) \) is:
 - \(O(n^d) \) if \(a < b^d \)
 - \(O(n^d \log n) \) if \(a = b^d \),
 - \(O(n^{\log(b)a}) \) if \(a > b^d \).
- Literally plug-and-play.
- Lots more of this in CS 4231.
Relations

• Relationships between sets occur in many contexts
 – Business and telephone numbers, employees and salary, etc.
 – Numbers and those that it divides, numbers and those congruent to mod m, etc.
• Special structure called a relation
 – A *binary relation* from A to B is a *subset* of A x B.
 – We use the notation a R b if (a, b) ∈ R and a R b (where R is struck out) if they’re not. If they are, a is said to be *related to* b by R.
Examples

• Let A be the set of all cities, and B be the set of the 50 states in the US. R specifies (a,b) if a is in b. So, $(\text{New York, New York})$, $(\text{Trenton, New Jersey})$, $(\text{Boston, Massachusetts})$, etc. are in R.

• Let $A = \{0,1,2\}$ and $B = \{a,b\}$. Then $R = \{(0,a),(0,b),(1,a),(2,b)\}$ is a relation. You can show this graphically or in tabular format as well.
Functions as relations

• Why not?
 – Since the graph of \(f \) (i.e., the set of ordered pairs \((a,b)\) such that \(b = f(a) \)) is a subset of \(A \times B \), it is a relation from \(A \) to \(B \).

• You can also define a function as one where \(R \) is its graph.
 – Just assign element \(a \) in \(A \) to be \(b \) in \(B \) such that \((a,b) \in R\).

• Relation can be used to express a many-to-many? relationship between elements of the sets of \(A \) and \(B \)
 – So, a relation is a generalization of functions
“Self-”relations are useful...

• A relation on the set A is a relation from A to A.
 – Let A be the set \{1, 2, 3, 4\}; which ordered pairs are in the relation \(R = \{ (a, b) \mid a \text{ divides } b \} \)

• Can also define relations on infinite sets
 – \(R = \{(a,b) \mid a < b\} \), for example

• How many relations on a set with \(n \) elements?
 – A \(\times A \) has \(n^2 \) elements, and a set with \(m \) elements has \(2^m \) subsets, so \(2^{(n^2)} \) subsets of \(A \times A \).
 – 512 relations on \{a, b, c\}!
Properties of relations

• R on A is reflexive if \((a, a) \in R\) for every element \(a \in A\).

• A relation R on A is called symmetric if \((b,a) \in R\) whenever \((a,b) \in R\) for all \(a, b \in A\).

• A relation R on A is called antisymmetric if \((a,b)\) and \((b,a) \in R\) only if \(a = b\), for all \(a,b \in A\)
 – Sort of a “weakly reflexive”

• A relation R on A is called transitive if whenever \((a,b)\) and \((b,c) \in R\), \((a,c) \in R\), for all \(a,b,c \in A\)
Examples

• Let R be the relation on \{a, b, c, d\}:

 - $R = \{(a,a), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,b), (c,c), (d,b), (d,d)\}$

 - We can draw a graph...

 - Is it

 • Reflexive? Yes.
 • Irreflexive? No.
 • Symmetric? No (a,c) / (c,a)
 • Asymmetric? No (b,c) and (c,b)
 • Antisymmetric? No (b,c) and (c,b)
 • Transitive? No (a,c) (c,b) no (a,b)
Next time

• Finish up relations