CS3203 \#7

6/16/04
Janak J Parekh

Administrivia

- Exam will be returned next
week
- Any comments?

Monty Hall, redux

- Now is the chance of loosing: $L=1 / 3$. $1 / 3 \cdot 1 / 2 \cdot 1 \cdot 1=1 / 18$
- And I got 6 L's so: Total chance for loosing is: $6 \cdot 1 / 18=1 / 3$
- For winning: $\mathrm{W}=1 / 3 \cdot 1 / 3 \cdot 1 \cdot 1 \cdot 1=1 / 9$
- And I got 6 W 's so: Total chance for winning is: $6 \cdot 1 / 9=2 / 3$. (check: $2 / 3+1 / 3$
= 1 (OK))
- From http://www.cut-theknot.org/peter.shtml

Birthday Paradox

- How many people are needed in the room such that it's more likely than not (e.g., greater than .5 probability) that two people have the same birthday?
- We assume that birthdays are independent, equally likely, and 366 birthdays per year.
- If $p_{n}=$ probability have all different birthdays, then $1-p_{n}=$ probability two people have the same birthday
- Compute probability has a different birthday as people "walk in the room".
- First person $p_{1}=1$, second is $365 / 366$, third is 364, 366, etc.
$-p_{n}$ is therefore $1 * 365 / 366 * 364 / 366 *$
$363 / 366 * \ldots * 367-n / 366$, and $1-p_{n}$ is $1-2$ same thing.
- Use formula for $1-p_{n}$ until it becomes greater than $1 / 2$, and we have our value n. $1-p_{n}$ ~ 0.475 for $n=22,1-p_{n} \sim 0.506$ for $n=23$.
- Should we try for months in this room?

Monte Carlo algorithms

- "Probabilistic" algorithms are those that make "random" choices at one or more steps
- Useful when you've got an algorithm where a deterministic algorithm goes through a huge number of choices
- Monte Carlo - specific subcategory of probabilistic algorithms
- Always produce answers, but small probability remains the answers are incorrect
- Given sufficient computation, chance that algorithm is incorrect decreases
- For "decision problems", MC algorithms use a sequence of tests. At each step, possible responses are "true", which means no more computation needed, or "unknown", which means either "true" or "false".
- "False" is accomplished if, for all computation, we still have "unknown".
- For any p>0, (1-p) ${ }^{n}$ ("unknown") shrinks

Example

- Chip testing
- PC manufacturer orders processor chips in batches of size n, where n is a positive integer
- Chip maker only tests a few batches
- Random testing shows a 10% failure rate
- But to test a chip takes $O(n)$ time for n tests
- Select a random subset of chips and test them
- Question: "Has this batch of chips not been tested by the chip maker?"
- If a bad chip is encountered, answer "true" and stop
- If a tested chip is good, "unknown"
- After k chips, answer "false"
- Only possible incorrect answer is "false"
- Probability that a chip is good but that it came from an untested branch is $1-0.1=0.9 .0 .9^{\mathrm{k}}$ for arbitrary k chips.
- If we test 66 chips, $1-0.966<0.001$ chance the algorithm decides a batch has been tested, i.e., less than 1-in-1000 chance that the algorithm has answered incorrectly
- 132 tests imply error rate to less than 1 in 1,000,000

Probabilistic method

- We're not doing this, you can check the book if you want

Advanced Counting

- Simple example
- The number of bacteria in a colony doubles every hour. If a colony begins with 5 bacteria, how many will be present in n hours?
- $a_{0}=5$
- $a_{n}=2 a_{n-1}$, where n is the $\#$ of hours.
- We have just found a "recurrence relation".
- Very similar to recursive algorithm, but here we'll focus on counting techniques
- How do we take the aforementioned equation and come up with a "explicit" formula?
- To be precise, a recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous sequence, namely a_{0}, a_{1}, \ldots, $\mathrm{a}_{\mathrm{n}-1}$ for all integers $\mathrm{n}>=\mathrm{n}_{0}$, where n_{0} is nonnegative.
- A sequence is called the solution of a recurrence relation if its terms satisfy the recurrence relation.

Examples

- Let $\left\{a_{n}\right\}$ be a sequence that satisfies $a_{n}=a_{n-1}-a_{n-2}$ for $n=2$, $3,4, \ldots$ and $a_{0}=3$ and $a_{1}=5$.
- Initial conditions specify the terms that precede the first term where the recurrence relation takes effect, as in the example above.
- Initial conditions plus the recurrence relation uniquely determine a sequence.
- Can use to model problems...
- Deposit $\$ 10,000$ in a savings account in a bank yielding 11% per year, interest compounded annually; how much is in the account after 30 years?
- What's the explicit equation? $P_{n}=(1.11)^{\mathrm{n}} \mathrm{P}_{0}$. In general, $1+\mathrm{r}$
- Can use induction to prove.
- Rabbits can be modeled by Fibonacci?
- A pair of rabbits (one of each gender) is placed on an island. They don't breed until they're two months old. After 2 months, each pair of rabbits produces another pair each month.
- $f_{1}=1, f_{2}=1, f_{3}=f_{2}+f_{1}, f_{n}=f_{n-1}+f_{n-2}$ (the $n-2$ term are the newborns as they come from rabbits at least two months old)
- Bit strings of length n that do not have two consecutive zeros how many such bit strings are there? Give a recurrence relation and an example for length 5.
$-a_{n}=\#$ of bitstrings of length n that do not have two consecutive zeros.
- Either take a bitstring of length n-1 and add a 1, or a bitstring of length n-2 and add a 10.
- Again, fibonacci!

Solving recurrence relations

- We can sometimes do it naively, but it rapidly gets complicated
- Try to "spot a pattern"
- There are several "standard forms"
- Linear homogenous recurrence relation of degree k with constant coefficients is a recurrence relation of the form
$-a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$, where $c_{1} \ldots c_{k}$
are real numbers, $c_{1}: 0$. Note intermediate
terms can be zero, however.
- Examples
- $P_{n}=(1.11) P_{n-1}$ is of degree one.
$-f_{n}=f_{n-1}+f_{n-2}$ is of degree two.
$-a_{n}=a_{n-5}$ is of degree 5 .
- What's not?
$-a_{n}=a_{n-1}+a_{n-2}^{2}$ (not linear)
$-\mathrm{H}_{\mathrm{n}}=2 \mathrm{H}_{\mathrm{n}-1}+1$ (not homogenous)
$-B_{n}=n B_{n-1}$ (not constant coefficients)

Degree one

- For $a_{n}=c_{1} a_{n-1}$
- Solution is $a_{n}=a_{0} c_{1}{ }^{n}$
- Easy enough...
- Can we generalize the strategy of raising it to a power for more complex linear homogenous recurrence relations?

Degree two

- Look for solutions of the form $a_{n}=r^{n}$, where r is a constant. Note that this is only a solution if
$-r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\ldots+c_{k} r^{n-k}$
- Divide both sides by r^{n-k} and subtract the right hand side from the left
$-r^{k}-c_{1} 1^{k-1}-c_{2} 2^{k-2}-\ldots-c_{k-1} r-c_{k}=0$
- Only a solution if r is a solution of this last equation: characteristic equation of the recurrence relation. Solutions are called the characteristic roots.
- For degree two, there may be one or two characteristic roots
- Let c_{1} and c_{2} be real numbers. Suppose that $r^{2}-c_{1} r-c_{2}=0$ has two distinct roots r_{1} and r_{2}. Then the sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}$ for $n=0,1,2, \ldots$ and α_{1} and α_{2} are constants.
- Characteristic roots may be complex numbers, but we won't deal with those

Examples

- Solution of the recurrence relation $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+2 \mathrm{a}_{\mathrm{n}-2}$ with $\mathrm{a}_{0}=2$ and $\mathrm{a}_{1}=7$?
- Solve $r^{2}-r-2=0(r=2$ and $r=-1)$
- So, $a_{n}=\alpha_{1} 2^{n+} \alpha_{2}-1^{n}$.
- Plug in a_{0} and a_{1} to determine α values.
- Solution: $a_{n}=3^{*} 2^{n}-(-1)^{n}$.
- Fibonacci?
- Characteristic equation is $r^{2}-r-1=0$. Ugh!
- Solutions are on page 416
- I'm not expecting you to remember this...
- $a_{n}=2 a_{n-1}+3 a_{n-2}, a_{0}=0, a_{1}=1$
$-r^{2}-2 r-3=0$, or $(r-3)(r+1)$
- Final solution is $a_{n}=1 / 4 * 3^{n}-1 / 4 *(-1)^{n}$
- $a_{n}=6 a_{n-1}-9 a_{n-2}$
- Solve $r^{2}-6 r+9=0$
$-(r-3)^{2}=0$?
- Uh-oh...
- Second theorem: $a_{n}=\alpha_{1} r_{0}{ }^{n}+\alpha_{2} n r_{0}{ }^{n}$
- So, in this case $a_{n}=3^{n}+n 3^{n}=(n+1) 3^{n}$

Generalized

- For $\mathrm{r}^{\mathrm{k}}-\mathrm{c}_{1} \mathrm{r}^{\mathrm{k}-1}-\ldots-\mathrm{c}_{\mathrm{k}}=0$ with distinct roots r_{1}, \ldots, r_{k}, solution is
- $a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}+\ldots+\alpha_{k} r_{k}{ }^{n}$
- Again, I'm not expecting you to solve such annoying factorizations
- You can even generalize multiplicities - see the mess on page 418

Linear nonhomogeneous recurrence relations

- If $\left\{\mathrm{a}_{\mathrm{n}}{ }^{(\mathrm{p})}\right\}$ is a particular solution of the nonhomogeneous linear recurrence relation with const. coeff.
$-a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)$
- Then every solution is of the form $\left\{a_{n}{ }^{(p)}\right.$ $\left.+a_{n}{ }^{(h)}\right\}$, where $\left\{a_{n}{ }^{(h)}\right\}$ is a solution of the associated homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ $+\ldots+c_{k} a_{n-k}$
- Why we don't do this?
- Figuring out $a_{n}{ }^{(h)}$ is not fun
- Check out the rest of the section if you want...
- Good luck!

Divide-and-conquer recurrence relations

- Example: binary search is a divide-and-conquer algorithm
- Although it doesn't actually "conquer" much after dividing
- Mergesort is another example
- Forms the recurrence relation $-f(n)=a f(n / b)+g(n)$
- "a" subproblems, each sized n / b, plus $\mathrm{g}(\mathrm{n})$ work to "combine"
- So, what's binary search?
$-f(n)=f(n / 2)+2$
- Mergesort
$-M(n)=2 M(n / 2)+n$

Solving these explicitly

- If $f(n)=a f(n / b)+c$,
- $f(n)$ is $O\left(n^{\log (b) a}\right)$ if $a>1$, or
$O(\log n)$ if $a=1$.
- When $n=b^{k}$, where k is a positive integer, $\mathrm{f}(\mathrm{n})=\mathrm{C}_{1} \mathrm{n}^{\log (\mathrm{b}) a}$ $+\mathrm{C}_{2}$, where $\mathrm{C}_{1}=\mathrm{f}(1)+\mathrm{c} /(\mathrm{a}-1)$ and $\mathrm{C}_{2}=-\mathrm{c} /(\mathrm{a}-1)$
- Just plug-and-play
- Generalization is the "Master theorem"

Master theorem

- If $f(n)=a f(n / b)+c n^{d}$, - $f(n)$ is:
$-O\left(n^{d}\right)$ if $a<b^{d}$
$-O\left(n^{d} \log n\right)$ if $a=b^{d}$,
$-O\left(n^{\log (b) a}\right)$ if $a>b^{d}$.
- Literally plug-and-play.
- Lots more of this in CS 4231.

Relations

- Relationships between sets occur in many contexts
- Business and telephone numbers, employees and salary, etc.
- Numbers and those that it divides, numbers and those congruent to mod m , etc.
- Special structure called a relation
- A binary relation from A to B is a subset of $A \times B$.
- We use the notation $a R b$ if $(a, b) \in R$ and $a R b$ (where R is struck out) if they're not. If they are, a is said to be related to b by R.

Examples

- Let A be the set of all cities, and B be the set of the 50 states in the US. R specifies (a, b) if a is in b. So, (New York, New York), (Trenton, New Jersey), (Boston, Massachusetts), etc. are in R .
- Let $A=\{0,1,2\}$ and $B=\{a, b\}$. Then $\mathrm{R}=$
$\{(0, a),(0, b),(1, a),(2, b)\}$ is a relation. You can show this graphically or in tabular format as well.

Functions as relations

- Why not?
- Since the graph of f (i.e., the set of ordered pairs (a, b) such that $b=f(a)$) is a subset of $A \times B$, it is a relation from A to B.
- You can also define a function as one where R is its graph.
- Just assign element a in A to be b in B such that $(a, b) \in R$.
- Relation can be used to express a many-to-many? relationship between elements of the sets of A and B
- So, a relation is a generalization of functions

"Self-"relations are useful...

- A relation on the set A is a relation from A to A.
- Let A be the set $\{1,2,3,4\}$; which ordered pairs are in the relation $\mathrm{R}=\{$ $(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ divides b$\}$
- Can also define relations on infinite sets
$-\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}<\mathrm{b}\}$, for example
- How many relations on a set with n elements?
- A x A has n^{2} elements, and a set with m elements has 2^{m} subsets, so $2^{\wedge}\left(\mathrm{n}^{\wedge} 2\right)$ subsets of $A x A$.
- 512 relations on $\{a, b, c\}$!

Properties of relations

- R on A is reflexive if $(\mathrm{a}, \mathrm{a}) \in \mathrm{R}$ for every element $a \in A$.
- A relation R on A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.
- A relation R on A is called antisymmetric if (a, b) and $(b, a) \in R$ only if $a=b$, for all $a, b \in A$
- Sort of a "weakly reflexive"
- A relation R on A is called transitive if whenever (a, b) and $(b, c) \in R$, $(a, c) \in R$, for all $a, b, c \in A$

Examples

- Let R be the relation on $\{a, b$, $\mathrm{c}, \mathrm{d}\}$:
$-\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{a})$,
(b,b), (b,c), (b,d), (c,b), (c,c),
(d,b), (d,d))
- We can draw a graph...
- Is it
- Reflexive? Yes.
- Irreflexive? No.
- Symmetric? No (a,c) / (c,a)
- Asymmetric? No (b,c) and (c,b)
- Antisymmetric? No (b,c) and (c,b)
- Transitive? No (a,c) (c,b) no (a,b)

Next time

- Finish up relations

