
CS3203 #7

6/16/04
Janak J Parekh

Administrivia

• Exam will be returned next
week
– Any comments?

Monty Hall, redux

• Now is the chance of loosing: L = 1/3 ·
1/3 · ½ · 1 · 1 = 1/18

• And I got 6 L's so: Total chance for
loosing is: 6· 1/18 = 1/3

• For winning: W = 1/3 · 1/3 ·1 · 1 · 1 = 1/9
• And I got 6 W's so: Total chance for

winning is: 6 · 1/9 = 2/3. (check: 2/3 + 1/3
= 1 (OK))

• From http://www.cut-the-
knot.org/peter.shtml

Birthday Paradox

• How many people are needed in the
room such that it’s more likely than not
(e.g., greater than .5 probability) that two
people have the same birthday?
– We assume that birthdays are independent,

equally likely, and 366 birthdays per year.
– If pn = probability have all different birthdays,

then 1 – pn = probability two people have the
same birthday

– Compute probability has a different birthday
as people “walk in the room”.

– First person p1 = 1, second is 365/366, third is
364, 366, etc.

– pn is therefore 1 * 365/366 * 364/366 *
363/366 * … * 367-n/366, and 1 – pn is 1 –
same thing.

– Use formula for 1 – pn until it becomes greater
than ½, and we have our value n. 1 – pn ~
0.475 for n = 22, 1 – pn ~ 0.506 for n = 23.

• Should we try for months in this room?

Monte Carlo algorithms

• “Probabilistic” algorithms are those that
make “random” choices at one or more
steps
– Useful when you’ve got an algorithm where a

deterministic algorithm goes through a huge
number of choices

• Monte Carlo – specific subcategory of
probabilistic algorithms
– Always produce answers, but small probability

remains the answers are incorrect
– Given sufficient computation, chance that

algorithm is incorrect decreases
– For “decision problems”, MC algorithms use a

sequence of tests. At each step, possible
responses are “true”, which means no more
computation needed, or “unknown”, which
means either “true” or “false”.

– “False” is accomplished if, for all computation,
we still have “unknown”.

– For any p > 0, (1-p)n (“unknown”) shrinks

Example

• Chip testing
• PC manufacturer orders processor chips in

batches of size n, where n is a positive integer
• Chip maker only tests a few batches
• Random testing shows a 10% failure rate
• But to test a chip takes O(n) time for n tests
• Select a random subset of chips and test them

– Question: “Has this batch of chips not been tested
by the chip maker?”

– If a bad chip is encountered, answer “true” and stop
– If a tested chip is good, “unknown”
– After k chips, answer “false”

• Only possible incorrect answer is “false”
• Probability that a chip is good but that it came

from an untested branch is 1 – 0.1 = 0.9. 0.9k for
arbitrary k chips.
– If we test 66 chips, 1 - 0.966 < 0.001 chance the

algorithm decides a batch has been tested, i.e.,
less than 1-in-1000 chance that the algorithm has
answered incorrectly

– 132 tests imply error rate to less than 1 in
1,000,000

Probabilistic method

• We’re not doing this, you can check the
book if you want

Advanced Counting

• Simple example
– The number of bacteria in a colony doubles

every hour. If a colony begins with 5 bacteria,
how many will be present in n hours?

• a0 = 5
• an = 2an-1, where n is the # of hours.

• We have just found a “recurrence
relation”.
– Very similar to recursive algorithm, but here

we’ll focus on counting techniques
– How do we take the aforementioned equation

and come up with a “explicit” formula?
• To be precise, a recurrence relation for

the sequence {an} is an equation that
expresses an in terms of one or more of
the previous sequence, namely a0, a1, …,
an-1 for all integers n >= n0, where n0 is
nonnegative.

• A sequence is called the solution of a
recurrence relation if its terms satisfy the
recurrence relation.

Examples

• Let {an} be a sequence that satisfies an = an-1 – an-2 for n = 2,
3, 4, … and a0 = 3 and a1 = 5.

• Initial conditions specify the terms that precede the first term
where the recurrence relation takes effect, as in the example
above.

– Initial conditions plus the recurrence relation uniquely determine a
sequence.

• Can use to model problems…
• Deposit $10,000 in a savings account in a bank yielding 11%

per year, interest compounded annually; how much is in the
account after 30 years?

– What’s the explicit equation? Pn = (1.11)nP0. In general, 1+r
– Can use induction to prove.

• Rabbits can be modeled by Fibonacci?
– A pair of rabbits (one of each gender) is placed on an island. They

don’t breed until they’re two months old. After 2 months, each pair
of rabbits produces another pair each month.

– f1 = 1, f2 = 1, f3 = f2 + f1, fn = fn-1 + fn-2 (the n-2 term are the
newborns as they come from rabbits at least two months old)

• Bit strings of length n that do not have two consecutive zeros –
how many such bit strings are there? Give a recurrence
relation and an example for length 5.

– an = # of bitstrings of length n that do not have two consecutive
zeros.

– Either take a bitstring of length n-1 and add a 1, or a bitstring of
length n-2 and add a 10.

– Again, fibonacci!

Solving recurrence relations

• We can sometimes do it naively, but it
rapidly gets complicated
– Try to “spot a pattern”

• There are several “standard forms”
• Linear homogenous recurrence

relation of degree k with constant
coefficients is a recurrence relation of
the form
– an = c1an-1 + c2an-2 + … + ckan-k, where c1…ck

are real numbers, ck != 0. Note intermediate
terms can be zero, however.

• Examples
– Pn = (1.11)Pn-1 is of degree one.
– fn = fn-1 + fn-2 is of degree two.
– an = an-5 is of degree 5.

• What’s not?
– an = an-1 + an-2

2 (not linear)
– Hn = 2Hn-1 + 1 (not homogenous)
– Bn = nBn-1 (not constant coefficients)

Degree one

• For an = c1an-1

• Solution is an = a0c1
n

• Easy enough…
• Can we generalize the strategy

of raising it to a power for more
complex linear homogenous
recurrence relations?

Degree two

• Look for solutions of the form an = rn,
where r is a constant. Note that this is
only a solution if
– rn = c1rn-1 + c2rn-2 + … + ckrn-k

• Divide both sides by rn-k and subtract the
right hand side from the left
– rk – c1rk-1 – c2rk-2 - … - ck-1r – ck = 0
– Only a solution if r is a solution of this last

equation: characteristic equation of the
recurrence relation. Solutions are called the
characteristic roots.

• For degree two, there may be one or two
characteristic roots
– Let c1 and c2 be real numbers. Suppose that

r2 – c1r – c2 = 0 has two distinct roots r1 and r2.
Then the sequence {an} is a solution of the
recurrence relation an = c1an-1 + c2an-2 if and
only if an = α1r1

n + α2r2
n for n = 0, 1, 2, … and

α1 and α2 are constants.
– Characteristic roots may be complex numbers,

but we won’t deal with those

Examples

• Solution of the recurrence relation an = an-1 + 2an-2
with a0 = 2 and a1 = 7?
– Solve r2 – r – 2 = 0 (r = 2 and r = -1)
– So, an = α12n + α2-1n.

– Plug in a0 and a1 to determine α values.
– Solution: an = 3*2n – (-1)n.

• Fibonacci?
– Characteristic equation is r2-r-1 = 0. Ugh!
– Solutions are on page 416
– I’m not expecting you to remember this…

• an = 2an-1 + 3an-2, a0 = 0, a1 = 1
– r2-2r-3 = 0, or (r-3)(r+1)
– Final solution is an = ¼ * 3n - ¼ * (-1)n

• an = 6an-1 – 9an-2
– Solve r2-6r+9 = 0
– (r-3)2 = 0?
– Uh-oh…
– Second theorem: an = α1r0

n + α2nr0
n

– So, in this case an = 3n+n3n = (n+1)3n

Generalized

• For rk – c1rk-1 - … - ck = 0 with
distinct roots r1, …, rk, solution
is

• an = α1r1
n + α2r2

n + … + αkrk
n

• Again, I’m not expecting you to
solve such annoying
factorizations

• You can even generalize
multiplicities – see the mess on
page 418

Linear nonhomogeneous
recurrence relations

• If {an
(p)} is a particular solution of

the nonhomogeneous linear
recurrence relation with const.
coeff.
– an = c1an-1 + c2an-2 + … + ckan-k + F(n)
– Then every solution is of the form {an

(p)

+ an
(h)}, where {an

(h)} is a solution of
the associated homogeneous
recurrence relation an = c1an-1 + c2an-2
+ … + ckan-k

• Why we don’t do this?
– Figuring out an

(h) is not fun
– Check out the rest of the section if you

want…
– Good luck!

Divide-and-conquer
recurrence relations

• Example: binary search is a divide-
and-conquer algorithm
– Although it doesn’t actually “conquer”

much after dividing
– Mergesort is another example

• Forms the recurrence relation
– f(n) = af(n/b) + g(n)
– “a” subproblems, each sized n/b, plus

g(n) work to “combine”
• So, what’s binary search?

– f(n) = f(n/2) + 2
• Mergesort

– M(n) = 2M(n/2) + n

Solving these explicitly

• If f(n) = af(n/b) + c,
• f(n) is O(nlog(b)a) if a > 1, or

O(log n) if a = 1.
• When n = bk, where k is a

positive integer, f(n) = C1nlog(b)a

+ C2, where C1 = f(1) + c/(a-1)
and C2 = -c/(a-1)

• Just plug-and-play
• Generalization is the “Master

theorem”

Master theorem

• If f(n) = af(n/b) + cnd,
• f(n) is:

– O(nd) if a < bd

– O(nd log n) if a = bd,
– O(nlog(b)a) if a > bd.

• Literally plug-and-play.
• Lots more of this in CS 4231.

Relations

• Relationships between sets occur
in many contexts
– Business and telephone numbers,

employees and salary, etc.
– Numbers and those that it divides,

numbers and those congruent to mod
m, etc.

• Special structure called a relation
– A binary relation from A to B is a

subset of A x B.
– We use the notation a R b if (a, b) ∈ R

and a R b (where R is struck out) if
they’re not. If they are, a is said to be
related to b by R.

Examples

• Let A be the set of all cities,
and B be the set of the 50
states in the US. R specifies
(a,b) if a is in b. So, (New
York, New York), (Trenton,
New Jersey), (Boston,
Massachusetts), etc. are in R.

• Let A = {0,1,2} and B = {a,b}.
Then R =
{(0,a),(0,b),(1,a),(2,b)} is a
relation. You can show this
graphically or in tabular format
as well.

Functions as relations

• Why not?
– Since the graph of f (i.e., the set of

ordered pairs (a,b) such that b = f(a))
is a subset of A x B, it is a relation
from A to B.

• You can also define a function as
one where R is its graph.
– Just assign element a in A to be b in B

such that (a,b) ∈ R.
• Relation can be used to express a

many-to-many? relationship
between elements of the sets of A
and B
– So, a relation is a generalization of

functions

“Self-”relations are
useful…

• A relation on the set A is a relation
from A to A.
– Let A be the set {1, 2, 3, 4}; which

ordered pairs are in the relation R = {
(a, b) | a divides b}

• Can also define relations on infinite
sets
– R = {(a,b) | a < b}, for example

• How many relations on a set with n
elements?
– A x A has n2 elements, and a set with

m elements has 2m subsets, so
2^(n^2) subsets of AxA.

– 512 relations on {a, b, c}!

Properties of relations

• R on A is reflexive if (a, a) ∈ R for
every element a ∈ A.

• A relation R on A is called
symmetric if (b,a) ∈ R whenever
(a,b) ∈ R for all a, b ∈ A.

• A relation R on A is called
antisymmetric if (a,b) and (b,a) ∈ R
only if a = b, for all a,b ∈ A
– Sort of a “weakly reflexive”

• A relation R on A is called transitive
if whenever (a,b) and (b,c) ∈ R,
(a,c) ∈ R, for all a,b,c ∈ A

Examples

• Let R be the relation on {a, b,
c, d}:
– R = {(a,a), (a,c), (a,d), (b,a),

(b,b), (b,c), (b,d), (c,b), (c,c),
(d,b), (d,d))

– We can draw a graph…
– Is it

• Reflexive? Yes.
• Irreflexive? No.
• Symmetric? No (a,c) / (c,a)
• Asymmetric? No (b,c) and (c,b)
• Antisymmetric? No (b,c) and (c,b)
• Transitive? No (a,c) (c,b) no (a,b)

Next time

• Finish up relations

