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Administrivia

• Exam will be returned next 
week
– Any comments?



Monty Hall, redux

• Now is the chance of loosing: L = 1/3 ·
1/3 · ½ · 1 · 1 = 1/18

• And I got 6 L's so: Total chance for 
loosing is: 6· 1/18 = 1/3

• For winning: W = 1/3 · 1/3 ·1 · 1 · 1 = 1/9
• And I got 6 W's so: Total chance for 

winning is: 6 · 1/9 = 2/3. (check: 2/3 + 1/3 
= 1 (OK))

• From http://www.cut-the-
knot.org/peter.shtml



Birthday Paradox

• How many people are needed in the 
room such that it’s more likely than not 
(e.g., greater than .5 probability) that two 
people have the same birthday?
– We assume that birthdays are independent, 

equally likely, and 366 birthdays per year.
– If pn = probability have all different birthdays, 

then 1 – pn = probability two people have the 
same birthday

– Compute probability has a different birthday 
as people “walk in the room”.

– First person p1 = 1, second is 365/366, third is 
364, 366, etc.

– pn is therefore 1 * 365/366 * 364/366 * 
363/366 * … * 367-n/366, and 1 – pn is 1 –
same thing.

– Use formula for 1 – pn until it becomes greater 
than ½, and we have our value n.  1 – pn ~ 
0.475 for n = 22, 1 – pn ~ 0.506 for n = 23.

• Should we try for months in this room?



Monte Carlo algorithms

• “Probabilistic” algorithms are those that 
make “random” choices at one or more 
steps
– Useful when you’ve got an algorithm where a 

deterministic algorithm goes through a huge 
number of choices

• Monte Carlo – specific subcategory of 
probabilistic algorithms
– Always produce answers, but small probability 

remains the answers are incorrect
– Given sufficient computation, chance that 

algorithm is incorrect decreases
– For “decision problems”, MC algorithms use a 

sequence of tests.  At each step, possible 
responses are “true”, which means no more 
computation needed, or “unknown”, which 
means either “true” or “false”.

– “False” is accomplished if, for all computation, 
we still have “unknown”.

– For any p > 0, (1-p)n (“unknown”) shrinks



Example

• Chip testing
• PC manufacturer orders processor chips in 

batches of size n, where n is a positive integer
• Chip maker only tests a few batches
• Random testing shows a 10% failure rate
• But to test a chip takes O(n) time for n tests
• Select a random subset of chips and test them

– Question: “Has this batch of chips not been tested 
by the chip maker?”

– If a bad chip is encountered, answer “true” and stop
– If a tested chip is good, “unknown”
– After k chips, answer “false”

• Only possible incorrect answer is “false”
• Probability that a chip is good but that it came 

from an untested branch is 1 – 0.1 = 0.9.  0.9k for 
arbitrary k chips.
– If we test 66 chips, 1 - 0.966 < 0.001 chance the 

algorithm decides a batch has been tested, i.e., 
less than 1-in-1000 chance that the algorithm has 
answered incorrectly

– 132 tests imply error rate to less than 1 in 
1,000,000



Probabilistic method

• We’re not doing this, you can check the 
book if you want



Advanced Counting

• Simple example
– The number of bacteria in a colony doubles 

every hour.  If a colony begins with 5 bacteria, 
how many will be present in n hours?

• a0 = 5
• an = 2an-1, where n is the # of hours.

• We have just found a “recurrence 
relation”.
– Very similar to recursive algorithm, but here 

we’ll focus on counting techniques
– How do we take the aforementioned equation 

and come up with a “explicit” formula?
• To be precise, a recurrence relation for 

the sequence {an} is an equation that 
expresses an in terms of one or more of 
the previous sequence, namely a0, a1, …, 
an-1 for all integers n >= n0, where n0 is 
nonnegative.

• A sequence is called the solution of a 
recurrence relation if its terms satisfy the 
recurrence relation.



Examples

• Let {an} be a sequence that satisfies an = an-1 – an-2 for n = 2, 
3, 4, … and a0 = 3 and a1 = 5.

• Initial conditions specify the terms that precede the first term 
where the recurrence relation takes effect, as in the example 
above.

– Initial conditions plus the recurrence relation uniquely determine a 
sequence.

• Can use to model problems…
• Deposit $10,000 in a savings account in a bank yielding 11% 

per year, interest compounded annually; how much is in the 
account after 30 years?

– What’s the explicit equation?  Pn = (1.11)nP0.  In general, 1+r
– Can use induction to prove.

• Rabbits can be modeled by Fibonacci?
– A pair of rabbits (one of each gender) is placed on an island.  They 

don’t breed until they’re two months old.  After 2 months, each pair 
of rabbits produces another pair each month.

– f1 = 1, f2 = 1, f3 = f2 + f1, fn = fn-1 + fn-2 (the n-2 term are the 
newborns as they come from rabbits at least two months old)

• Bit strings of length n that do not have two consecutive zeros –
how many such bit strings are there?  Give a recurrence 
relation and an example for length 5.

– an = # of bitstrings of length n that do not have two consecutive 
zeros.

– Either take a bitstring of length n-1 and add a 1, or a bitstring of 
length n-2 and add a 10.

– Again, fibonacci!



Solving recurrence relations

• We can sometimes do it naively, but it 
rapidly gets complicated
– Try to “spot a pattern”

• There are several “standard forms”
• Linear homogenous recurrence 

relation of degree k with constant 
coefficients is a recurrence relation of 
the form
– an = c1an-1 + c2an-2 + … + ckan-k, where c1…ck

are real numbers, ck != 0.  Note intermediate 
terms can be zero, however.

• Examples
– Pn = (1.11)Pn-1 is of degree one.
– fn = fn-1 + fn-2 is of degree two.
– an = an-5 is of degree 5.

• What’s not?
– an = an-1 + an-2

2 (not linear)
– Hn = 2Hn-1 + 1 (not homogenous)
– Bn = nBn-1 (not constant coefficients)



Degree one

• For an = c1an-1

• Solution is an = a0c1
n

• Easy enough…
• Can we generalize the strategy 

of raising it to a power for more 
complex linear homogenous 
recurrence relations?



Degree two

• Look for solutions of the form an = rn, 
where r is a constant.  Note that this is 
only a solution if
– rn = c1rn-1 + c2rn-2 + … + ckrn-k

• Divide both sides by rn-k and subtract the 
right hand side from the left
– rk – c1rk-1 – c2rk-2 - … - ck-1r – ck = 0
– Only a solution if r is a solution of this last 

equation: characteristic equation of the 
recurrence relation.  Solutions are called the 
characteristic roots.

• For degree two, there may be one or two 
characteristic roots
– Let c1 and c2 be real numbers.  Suppose that 

r2 – c1r – c2 = 0 has two distinct roots r1 and r2.  
Then the sequence {an} is a solution of the 
recurrence relation an = c1an-1 + c2an-2 if and 
only if an =  α1r1

n + α2r2
n for n = 0, 1, 2, … and 

α1 and α2 are constants.
– Characteristic roots may be complex numbers, 

but we won’t deal with those



Examples

• Solution of the recurrence relation an = an-1 + 2an-2
with a0 = 2 and a1 = 7?
– Solve r2 – r – 2 = 0 (r = 2 and r = -1)
– So, an = α12n + α2-1n.

– Plug in a0 and a1 to determine α values.
– Solution: an = 3*2n – (-1)n.

• Fibonacci?
– Characteristic equation is r2-r-1 = 0.  Ugh!
– Solutions are on page 416
– I’m not expecting you to remember this…

• an = 2an-1 + 3an-2, a0 = 0, a1 = 1
– r2-2r-3 = 0, or (r-3)(r+1)
– Final solution is an = ¼ * 3n - ¼ * (-1)n

• an = 6an-1 – 9an-2
– Solve r2-6r+9 = 0
– (r-3)2 = 0?
– Uh-oh…
– Second theorem: an =  α1r0

n + α2nr0
n

– So, in this case an = 3n+n3n = (n+1)3n



Generalized

• For rk – c1rk-1 - … - ck = 0 with 
distinct roots r1, …, rk, solution 
is

• an =  α1r1
n + α2r2

n + … + αkrk
n

• Again, I’m not expecting you to 
solve such annoying 
factorizations

• You can even generalize 
multiplicities – see the mess on 
page 418



Linear nonhomogeneous
recurrence relations

• If {an
(p)} is a particular solution of 

the nonhomogeneous linear 
recurrence relation with const. 
coeff.
– an = c1an-1 + c2an-2 + … + ckan-k + F(n)
– Then every solution is of the form {an

(p)

+ an
(h)}, where {an

(h)} is a solution of 
the associated homogeneous 
recurrence relation an = c1an-1 + c2an-2
+ … + ckan-k

• Why we don’t do this?
– Figuring out an

(h) is not fun
– Check out the rest of the section if you 

want…
– Good luck!



Divide-and-conquer 
recurrence relations

• Example: binary search is a divide-
and-conquer algorithm
– Although it doesn’t actually “conquer”

much after dividing
– Mergesort is another example

• Forms the recurrence relation
– f(n) = af(n/b) + g(n)
– “a” subproblems, each sized n/b, plus 

g(n) work to “combine”
• So, what’s binary search?

– f(n) = f(n/2) + 2
• Mergesort

– M(n) = 2M(n/2) + n



Solving these explicitly

• If f(n) = af(n/b) + c,
• f(n) is O(nlog(b)a) if a > 1, or 

O(log n) if a = 1.
• When n = bk, where k is a 

positive integer, f(n) = C1nlog(b)a

+ C2, where C1 = f(1) + c/(a-1) 
and C2 = -c/(a-1)

• Just plug-and-play
• Generalization is the “Master 

theorem”



Master theorem

• If f(n) = af(n/b) + cnd,
• f(n) is:

– O(nd) if a < bd

– O(nd log n) if a = bd,
– O(nlog(b)a) if a > bd.

• Literally plug-and-play.
• Lots more of this in CS 4231.



Relations

• Relationships between sets occur 
in many contexts
– Business and telephone numbers, 

employees and salary, etc.
– Numbers and those that it divides, 

numbers and those congruent to mod 
m, etc.

• Special structure called a relation
– A binary relation from A to B is a 

subset of A x B.
– We use the notation a R b if (a, b) ∈ R 

and a R b (where R is struck out) if 
they’re not.  If they are, a is said to be 
related to b by R.



Examples

• Let A be the set of all cities, 
and B be the set of the 50 
states in the US.  R specifies 
(a,b) if a is in b.  So, (New 
York, New York), (Trenton, 
New Jersey), (Boston, 
Massachusetts), etc. are in R.

• Let A = {0,1,2} and B = {a,b}.  
Then R = 
{(0,a),(0,b),(1,a),(2,b)} is a 
relation.  You can show this 
graphically or in tabular format 
as well.



Functions as relations

• Why not?
– Since the graph of f (i.e., the set of 

ordered pairs (a,b) such that b = f(a)) 
is a subset of A x B, it is a relation 
from A to B.

• You can also define a function as 
one where R is its graph.
– Just assign element a in A to be b in B 

such that (a,b) ∈ R.
• Relation can be used to express a 

many-to-many? relationship 
between elements of the sets of A 
and B
– So, a relation is a generalization of 

functions



“Self-”relations are 
useful…

• A relation on the set A is a relation 
from A to A.
– Let A be the set {1, 2, 3, 4}; which 

ordered pairs are in the relation R = { 
(a, b) | a divides b}

• Can also define relations on infinite 
sets
– R = {(a,b) | a < b}, for example

• How many relations on a set with n
elements?
– A x A has n2 elements, and a set with 

m elements has 2m subsets, so 
2^(n^2) subsets of AxA.

– 512 relations on {a, b, c}!



Properties of relations

• R on A is reflexive if (a, a) ∈ R for 
every element a ∈ A.

• A relation R on A is called 
symmetric if (b,a) ∈ R whenever 
(a,b) ∈ R for all a, b ∈ A.

• A relation R on A is called 
antisymmetric if (a,b) and (b,a) ∈ R 
only if a = b, for all a,b ∈ A
– Sort of a “weakly reflexive”

• A relation R on A is called transitive 
if whenever (a,b) and (b,c) ∈ R, 
(a,c) ∈ R, for all a,b,c ∈ A 



Examples

• Let R be the relation on {a, b, 
c, d}:
– R = {(a,a), (a,c), (a,d), (b,a), 

(b,b), (b,c), (b,d), (c,b), (c,c), 
(d,b), (d,d))

– We can draw a graph…
– Is it

• Reflexive? Yes.
• Irreflexive? No.
• Symmetric? No (a,c) / (c,a)
• Asymmetric? No (b,c) and (c,b)
• Antisymmetric? No (b,c) and (c,b)
• Transitive? No (a,c) (c,b) no (a,b)



Next time

• Finish up relations


