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Administrivia

• HW#1 due, HW#2 will be out 
right after class

• Still need to confirm Aaron’s 
office hour; I’ll update the 
website after I talk to him 
tonight



Proof strategies

• Forward reasoning: either start 
with hypotheses (direct) or 
negation of conclusion 
(indirect)
– We’ve done this several times

• Backward reasoning: To prove 
a statement q, find a statement 
p that we can prove with the 
property that p q.
– Example: Prove that the square 

of every odd integer has the form 
8k+1, where k is an integer.



Example…

We begin by taking an odd integer , which must have the 

form for some integer . Then 

. We need to show that this has 

the form . Reasoning backwards, this would follow if 

we could show that can be written as . 

But . Note that is the product of 
two consecutive integers. Since every other integer is 

even, either or is even. Therefore the product is

even, and hence can be written as for some integer . 

Therefore 

Since we can write , it follows that  

 
 



Proofs continued

• A hint to use proof by cases is 
when there’s “extra 
information” in the problem
– Book example: show that there 

are no solutions in integers x and 
y of x2+3y2=8.

• Adapt existing proofs when you 
can.



Conjecture and proof

• How do you come up with a 
concept worth proving in the 
first case?

• Conjectures are formed, and 
are settled either by proof or 
counterexample.
– Book gives an example of 

Mersenne primes, where 2p-1; 
can we conclude anything about 
an-1 in general?

– Book proves that the integer an-1 
is composite when a > 2 or when 
a = 2 and n is composite.



Sometimes conjectures 
are a little tricky…

• Euler conjectured that for every 
integer n, n >= 3, the sum of n-
1 nth powers of positive 
integers cannot be an nth 
power itself.
– Relatively easy to find 

counterexample for n=5.
– For n = 4, though, 

958004+2175194+4145604 = 
4224814.

– No one has found a 
counterexample for n=6.  It might 
be true!



And there are open 
problems…

• Fermat’s last theorem (from 
17th century) was not solved 
until the mid-90s.

• Goldbach’s conjecture: every 
even integer n, n > 2, is the 
sum of two primes.  Never 
been disproven or proven; has 
been checked for all positive 
integers up to 4(1014).



Halting problem

• Very simple proof by contradiction
• Given a procedure called H(P, I) 

where P is program and I is input, 
and returns “halt” if the program 
halts and “loops forever” otherwise

• Construct a procedure K(P) which 
calls H(P,P).  If H(P,P) “halt”s, K 
loops forever.  If H(P,P) “loops 
forever”, K halts.

• Now, what happens if we call K(K)?
• Need more precise definition of 

input to make proof rigorous –
definition of a “Turing machine”
useful in this regard (beyond scope 
of this class)



Sequences and 
Summations

• We defined an ordered tuple two 
weeks ago; sequences are a more 
function-oriented concept

• A sequence is a function from the 
subset of the set of integers 
(usually either non-negative or 
positive) to a set S.  We use the 
notation an to denote the image of 
the integer n.  We call an a term of 
the sequence.
– Discrete structure used to represent 

an ordered list.
• We use the notation {an} to 

describe a sequence.
– If an = 5n, then what’s the result?



More definitions…

• A geometric progression is a 
sequence of the form a, ar, ar2, 
…, arn with initial term a and 
common ratio r being real 
numbers.
– {bn} with bn = (-1)n.

• An arithmetic progression is 
a sequence of the form a, a+d, 
a+2d, …, a+nd where initial 
term a and the common 
difference d are real numbers.



Strings and integers

• A string is a sequence of the 
form a1a2…an.  Length of the 
string S is the number of terms 
in the string.  Empty string is 
denoted by  λ and has length 
zero.

• Lots of special integer 
sequences.

• Often, the goal is to find a 
formula or general rule for 
constructing the terms of a 
sequence.
– Look for patterns.



Examples

• Find formulas for:
– 1, 2, 1, 2, 1, 2, …

• Either an = 1.5+0.5(-1)n or (a mod
2) + 1

– 0, 2, 6, 12, 20, 30, 42, …
• an = n2 – n

• Not always trivial to produce a 
formula

• Some useful common 
sequences on page 228



Summations

• Goal: add am, am+1, … , an
together.

• Both compact and regular 
notation

• j is index of summation, lower 
limit n, upper limit n.



Summations cont’d

• Sums of terms of geometric 
progressions are called geometric 
series.  If a and r are real numbers 
and r not 0, then

• Double summations are processed 
inside-out (expand the inner 
summation first).

• Set notation is also possible; just 
state s ∈ S at the bottom of the 
summation, and nothing at the top.

• Useful summation formulas on 
page 232; what are they?
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Cardinality

• Generalize for non-finite sets.
• Sets A and B have the same 

cardinality iff there is a 1-to-1 
correspondence from A to B.

• A set that is either finite or has the 
same cardinality as the set of 
positive integers is considered 
countable.  Those that aren’t are 
called uncountable.
– Show that the set of odd positive 

integers is a countable set.
– Infinite sets are only countable if it is 

possible to list the elements of the set 
in a sequence – needed for 1-to-1 
correspondence.



Cardinality (II)

• The set of positive rational 
numbers are actually countable 
– “diagonalization”.

• The set of real numbers is 
notcountable.
– Basic idea: show there’s always 

a real number that’s not “in the 
list”.



Induction

• When you have sequences or 
summations, induction is a useful 
proof technique.
– For example, prove that the sum of the 

first n positive odd integers is n2.
• Actually quite straightforward to do.  

Note it’s not a tool for discovering 
formulas or theorems.

• Principle: if the concept being 
proven can be generically captured 
as a single step in a long series, 
and if it already happened for the 
first n steps, showing it holds for 
n+1 shows it to be sufficient for all 
n.
– Dominoes?



Mechanics

• Used to show propositions of 
the form ∀nP(n) where the 
universe of discourse is the set 
of positive integers.

• Basis: show proposition P to 
be true for P(1).

• Inductive step: Show that the 
implication P(k) P(k+1) to be 
true.
– Therefore, the inductive 

hypothesis P(k) is assumed to 
be true.

• In other words,
( ) ( ) ( )( )[ ] ( )nnPkPkPkP ∀→+→∀∧ 11



Notes

• Need to show that P(k+1) cannot 
be false when P(k) is true.

• Does not assume that P(k) is true 
for all integers!  “If it is assumed 
P(k) is true, then P(k+1) is also 
true.” Therefore, induction isn’t 
circular reasoning.

• What we’re going to do is to take 
the equation for the kth term, add 
the k+1th term, substitute the 
answer for the kth term for the 
previous elements, and show the 
entire result is the answer for the 
k+1th term.

• Let’s do our first example now.



More examples, 
inequalities

• Use induction to prove that

– Just change basis step!
• Use induction to prove that n < 

2n for all positive integers n.
– Yes, inequalities work too – a bit 

simpler, sometimes.
• Lots more examples in the 

book.
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Strong induction

• This time, we assume that P(j) is true for j 
= 1, …, k and show that P(k+1) must also 
be true.
– That is, we can assume j = 1 is true, and j = 2 

is true, and so on, and use intermediate 
results.

– Actually, the two are equivalent (i.e., each can 
be shown to be a valid proof technique 
assuming the other.)

• Example 14 in book: if n is an integer 
greater than 1, then n can be written as 
the product of primes.
– Basis: 2 is prime.
– Inductive step: Assume P(j), and show P(k+1) 

is true.
– If k+1 is prime, done.
– If k+1 composite, it’s the product of two 

integers, a and b, which are both less than 
k+1.  Since a and b are assumed true under 
strong induction, they must themselves be the 
product of primes (i.e., factorization of a and 
b).



Why does this work?

• Well-ordering property: Every 
nonempty set of nonnegative 
integers has a least element.

• If so, and we know P(1) is true, let’s 
do a proof by contradiction.
– Let’s say there exists at least one 

positive integer for which P(n) is false.
– Then, the set S of positive integers for 

which P(n) is false is nonempty.
– Therefore, S must have a least 

element, which we’ll call m, for which 
P(m) is false.

– We know that m cannot be 1.
– Sinceu m is > 1, m-1 is a positive 

integer not in S.
– But if P(m-1) P(m) has been shown 

as part of the proof, then P(m) is true.
– Contradiction!



Recursive definitions 
and structural induction

• Fundamental idea of recursion: 
define something in terms of itself 
(often a smaller version of itself).

• We can use this mechanism to 
define sequences, functions, and 
sets.
– For example, define the sequence of 

powers of two as a0 = 1 and an = 2an.
– As it suggests, a version of induction 

(called structural induction) can be 
used to prove results.



Recursively defined 
functions

• For a function whose domain is 
the set of nonnegative 
integers:
– Basis: specify the value of the 

function at zero
– Recursive step: Give a rule for 

finding its value at an integer 
from values at smaller integers.

– Recursive or inductive definition
• Examples

– Give an inductive definition of 
F(n) = n!.

– Recursive definition of an?



Common recursive 
sequences, functions

• Fibonacci numbers
– f0 = 0, f1 = 1, fn = fn-1 + fn-2

– For n = 2, 3, 4…
• Euclidean algorithm, which we 

saw before.
– Book now has proof showing 

that Euclidean algorithm has a 
running time that’s logarithmic in 
# of digits.



Recursively defined 
sets and structures

• Again, a basis and recursive step
• Occasionally, an exclusion rule: 

nothing else in the set other than 
elements specified in basis or 
recursions
– Generally assumed

• Examples
– 1.

• Basis: 3 ∈ S.
• Recursive step: If x ∈ S and y ∈ S, then 

x+y ∈ S.
– 2. Give a recursive definition for S = 

{4, 7, 10, 13, 16, 19, …}



String operations

• The set Σ* of strings over the alphabet Σ
can be defined recursively by
– Basis step: λ∈Σ* (λ is the empty string 

containing no symbols)
– Recursive step: If w∈Σ* and x∈Σ then wx∈Σ*.
– Much like power set.
– Example: the set where Σ = {0,1}

• Concatenation
– Let Σ be a set of symbols and Σ* be the set of 

strings formed from symbols in Σ.  We define 
the concatenation of two strings, denoted by a 
., recursively as follows.

– Basis: If w∈Σ*, then w.λ=w
– Recursive step: if w1∈Σ* and w2∈Σ* and x∈Σ, 

then w1
.(w2x) = (w1

.w2)x.
• Length

– Basis: l(λ)=0;
– Recursive step: l(wx) = l(w)+1 if w∈Σ* and 

x∈Σ.
• A number of other examples in the book.



Trees

• Will be studied more 
extensively later, but useful in 
context of recursion.

• A tree is a special type of 
graph with no cycles (a graph 
is a data representation with 
vertices and edges).

• The set of rooted trees is 
defined recursively by having a 
basis being a vertex r, the root, 
and the recursive step is 
having any existing tree and 
creating a new root for it.



Binary trees

• For a binary tree:
– Basis step: The empty set is an 

extended binary tree.
– Recursion: If T1 and T2 are extended 

binary trees, denoted by T1
.T2, 

consisting of a root r together with 
edges connecting to the root to each 
of the roots of the subtrees when 
those trees are nonempty.

• The set of full binary trees can be 
defined recursively by these steps
– Basis: There is a full binary tree 

consisting only of a single vertex r.
– Recursion: If T1 and T2 are full binary 

trees, T1
.T2 is the tree with a new root r 

with edges leading to each subtree T1, 
T2.



Structural induction

• Instead of using mathematical 
induction directly to prove results 
about recursively defined sets, we 
use a more convenient form.
– Basis step: show that the result holds 

for all elements specified in the basis 
step of the recursive definition to be in 
the set.

– Recursive step: show that if the 
statement is true for each of the 
elements used to construct new 
elements in the recursive step of the 
definition, the result holds for these 
new elements.



Example of structural 
induction

• Prove that l(xy), where l is the 
length of the string.
– P(y) is l(xy) = l(x)+l(y) where x and y 

belong to Σ*.
– Basis step: show that P(λ) is true.  

Since l(xλ)=l(x)=l(x)+0=l(x)+l(λ) for 
every string x, P(λ) is true.

– Recursive step: Assume P(y) is true, 
show P(ya) whenever a∈Σ.  By the 
definition of l(w), l(xya) = l(xy)+1 and 
l(ya) = l(y)+1.  Since l(xy) = l(x)+l(y) by 
the hypothesis, l(xya) = l(x)+l(y)+1 = 
l(x)+l(ya).

• Generalized induction: use well-
ordered property on other sets than 
integers – we’ll look at this later



Recursive algorithms

• An algorithm is called recursive
if it solves a problem by 
reducing it to an instance of the 
same problem with smaller 
input.

• We implicitly did these in the 
previous section

• How about an?
procedure power(a: nonzero real 

number, n: nonnegative integer)
if n = 0 then power(a,n) := 1
else power(a,n) := a.power(a, n-1)



And more

• Linear search recursively?
procedure search(i,j,x)
if ai = x then

location := i
else if i = j then

location := 0
else

search(i+1,j,x)
• Recursive algorithm to find the 

sum of the first n positive 
integers?



Recursion vs. iteration

• I’ve hinted at this before.
• Recursion defines the problem in 

terms of itself and “works down”, 
whereas iteration “works up” to the 
answer from 1.

• Generally, iteration requires less 
computation than the recursive 
equivalent

• Best illustrated by recursive vs. 
iterative fibonacci (next page)
– In fact, recursive fibonacci is 

exponential in complexity
– There are ways of making recursion 

faster



Fibonacci algorithms

procedure recursivefib(n: nonnegative 
integer)

if n = 0 then fibonacci(0) := 0
else if n = 1 then fibonacci(1) := 1
else fibonacci(n) := fibonacci(n-1) + 

fibonacci(n-2)

procedure iterativefib(n: nonnegative 
integer)

if n = 0 then y := 0
else begin

x := 0
y := 1
for i := 1 to n-1; begin

z := x+y
x := y
y := z

end
end



Mergesort

procedure mergesort(L = a1, …, an)
if n > 1 then

m := floor(n/2)
L1 := a1, …, am
L2 := am+1, am+2, …, an
L := merge(mergesort(L1, L2))

{L is now sorted into elements in nondecreasing
order}

procedure merge(L1, L2: lists)
L := empty list
while L1 and L2 are nonempty
begin

remove smaller of first of L1 and L2 and put it at the left 
end of L

if this makes one list empty copy all elements of other 
list and append them to L

end {L is the merged list with elements in increasing 
order}



Cost of mergesort

• Merging two lists with m and n 
elements, respectively, takes 
m+n-1 comparisons.

• Since we split the lists, we’re 
going to execute a logarithmic 
number of merge calls.

• As a result, the number of 
comparisons needed to merge 
sort a list with n elements is 
O(n log n).

• More precise proof in the book



Next time

• Counting


