
CS3203 #4

6/7/04
Janak J Parekh

Administrivia

• HW#1 due, HW#2 will be out
right after class

• Still need to confirm Aaron’s
office hour; I’ll update the
website after I talk to him
tonight

Proof strategies

• Forward reasoning: either start
with hypotheses (direct) or
negation of conclusion
(indirect)
– We’ve done this several times

• Backward reasoning: To prove
a statement q, find a statement
p that we can prove with the
property that p q.
– Example: Prove that the square

of every odd integer has the form
8k+1, where k is an integer.

Example…

We begin by taking an odd integer , which must have the

form for some integer . Then

. We need to show that this has

the form . Reasoning backwards, this would follow if

we could show that can be written as .

But . Note that is the product of
two consecutive integers. Since every other integer is

even, either or is even. Therefore the product is

even, and hence can be written as for some integer .

Therefore

Since we can write , it follows that

Proofs continued

• A hint to use proof by cases is
when there’s “extra
information” in the problem
– Book example: show that there

are no solutions in integers x and
y of x2+3y2=8.

• Adapt existing proofs when you
can.

Conjecture and proof

• How do you come up with a
concept worth proving in the
first case?

• Conjectures are formed, and
are settled either by proof or
counterexample.
– Book gives an example of

Mersenne primes, where 2p-1;
can we conclude anything about
an-1 in general?

– Book proves that the integer an-1
is composite when a > 2 or when
a = 2 and n is composite.

Sometimes conjectures
are a little tricky…

• Euler conjectured that for every
integer n, n >= 3, the sum of n-
1 nth powers of positive
integers cannot be an nth
power itself.
– Relatively easy to find

counterexample for n=5.
– For n = 4, though,

958004+2175194+4145604 =
4224814.

– No one has found a
counterexample for n=6. It might
be true!

And there are open
problems…

• Fermat’s last theorem (from
17th century) was not solved
until the mid-90s.

• Goldbach’s conjecture: every
even integer n, n > 2, is the
sum of two primes. Never
been disproven or proven; has
been checked for all positive
integers up to 4(1014).

Halting problem

• Very simple proof by contradiction
• Given a procedure called H(P, I)

where P is program and I is input,
and returns “halt” if the program
halts and “loops forever” otherwise

• Construct a procedure K(P) which
calls H(P,P). If H(P,P) “halt”s, K
loops forever. If H(P,P) “loops
forever”, K halts.

• Now, what happens if we call K(K)?
• Need more precise definition of

input to make proof rigorous –
definition of a “Turing machine”
useful in this regard (beyond scope
of this class)

Sequences and
Summations

• We defined an ordered tuple two
weeks ago; sequences are a more
function-oriented concept

• A sequence is a function from the
subset of the set of integers
(usually either non-negative or
positive) to a set S. We use the
notation an to denote the image of
the integer n. We call an a term of
the sequence.
– Discrete structure used to represent

an ordered list.
• We use the notation {an} to

describe a sequence.
– If an = 5n, then what’s the result?

More definitions…

• A geometric progression is a
sequence of the form a, ar, ar2,
…, arn with initial term a and
common ratio r being real
numbers.
– {bn} with bn = (-1)n.

• An arithmetic progression is
a sequence of the form a, a+d,
a+2d, …, a+nd where initial
term a and the common
difference d are real numbers.

Strings and integers

• A string is a sequence of the
form a1a2…an. Length of the
string S is the number of terms
in the string. Empty string is
denoted by λ and has length
zero.

• Lots of special integer
sequences.

• Often, the goal is to find a
formula or general rule for
constructing the terms of a
sequence.
– Look for patterns.

Examples

• Find formulas for:
– 1, 2, 1, 2, 1, 2, …

• Either an = 1.5+0.5(-1)n or (a mod
2) + 1

– 0, 2, 6, 12, 20, 30, 42, …
• an = n2 – n

• Not always trivial to produce a
formula

• Some useful common
sequences on page 228

Summations

• Goal: add am, am+1, … , an
together.

• Both compact and regular
notation

• j is index of summation, lower
limit n, upper limit n.

Summations cont’d

• Sums of terms of geometric
progressions are called geometric
series. If a and r are real numbers
and r not 0, then

• Double summations are processed
inside-out (expand the inner
summation first).

• Set notation is also possible; just
state s ∈ S at the bottom of the
summation, and nothing at the top.

• Useful summation formulas on
page 232; what are they?

()
∑

=

+

⎪⎩

⎪
⎨
⎧

=+

≠
−

−
=

n

j

n

j

ran

r
r

aar
ar

0

1

1 if 1

1 if
1

Cardinality

• Generalize for non-finite sets.
• Sets A and B have the same

cardinality iff there is a 1-to-1
correspondence from A to B.

• A set that is either finite or has the
same cardinality as the set of
positive integers is considered
countable. Those that aren’t are
called uncountable.
– Show that the set of odd positive

integers is a countable set.
– Infinite sets are only countable if it is

possible to list the elements of the set
in a sequence – needed for 1-to-1
correspondence.

Cardinality (II)

• The set of positive rational
numbers are actually countable
– “diagonalization”.

• The set of real numbers is
notcountable.
– Basic idea: show there’s always

a real number that’s not “in the
list”.

Induction

• When you have sequences or
summations, induction is a useful
proof technique.
– For example, prove that the sum of the

first n positive odd integers is n2.
• Actually quite straightforward to do.

Note it’s not a tool for discovering
formulas or theorems.

• Principle: if the concept being
proven can be generically captured
as a single step in a long series,
and if it already happened for the
first n steps, showing it holds for
n+1 shows it to be sufficient for all
n.
– Dominoes?

Mechanics

• Used to show propositions of
the form ∀nP(n) where the
universe of discourse is the set
of positive integers.

• Basis: show proposition P to
be true for P(1).

• Inductive step: Show that the
implication P(k) P(k+1) to be
true.
– Therefore, the inductive

hypothesis P(k) is assumed to
be true.

• In other words,
() () ()()[] ()nnPkPkPkP ∀→+→∀∧ 11

Notes

• Need to show that P(k+1) cannot
be false when P(k) is true.

• Does not assume that P(k) is true
for all integers! “If it is assumed
P(k) is true, then P(k+1) is also
true.” Therefore, induction isn’t
circular reasoning.

• What we’re going to do is to take
the equation for the kth term, add
the k+1th term, substitute the
answer for the kth term for the
previous elements, and show the
entire result is the answer for the
k+1th term.

• Let’s do our first example now.

More examples,
inequalities

• Use induction to prove that

– Just change basis step!
• Use induction to prove that n <

2n for all positive integers n.
– Yes, inequalities work too – a bit

simpler, sometimes.
• Lots more examples in the

book.

0,
4

1555551
1

32 ≥
−

=+++++
+

n
n

nK

Strong induction

• This time, we assume that P(j) is true for j
= 1, …, k and show that P(k+1) must also
be true.
– That is, we can assume j = 1 is true, and j = 2

is true, and so on, and use intermediate
results.

– Actually, the two are equivalent (i.e., each can
be shown to be a valid proof technique
assuming the other.)

• Example 14 in book: if n is an integer
greater than 1, then n can be written as
the product of primes.
– Basis: 2 is prime.
– Inductive step: Assume P(j), and show P(k+1)

is true.
– If k+1 is prime, done.
– If k+1 composite, it’s the product of two

integers, a and b, which are both less than
k+1. Since a and b are assumed true under
strong induction, they must themselves be the
product of primes (i.e., factorization of a and
b).

Why does this work?

• Well-ordering property: Every
nonempty set of nonnegative
integers has a least element.

• If so, and we know P(1) is true, let’s
do a proof by contradiction.
– Let’s say there exists at least one

positive integer for which P(n) is false.
– Then, the set S of positive integers for

which P(n) is false is nonempty.
– Therefore, S must have a least

element, which we’ll call m, for which
P(m) is false.

– We know that m cannot be 1.
– Sinceu m is > 1, m-1 is a positive

integer not in S.
– But if P(m-1) P(m) has been shown

as part of the proof, then P(m) is true.
– Contradiction!

Recursive definitions
and structural induction

• Fundamental idea of recursion:
define something in terms of itself
(often a smaller version of itself).

• We can use this mechanism to
define sequences, functions, and
sets.
– For example, define the sequence of

powers of two as a0 = 1 and an = 2an.
– As it suggests, a version of induction

(called structural induction) can be
used to prove results.

Recursively defined
functions

• For a function whose domain is
the set of nonnegative
integers:
– Basis: specify the value of the

function at zero
– Recursive step: Give a rule for

finding its value at an integer
from values at smaller integers.

– Recursive or inductive definition
• Examples

– Give an inductive definition of
F(n) = n!.

– Recursive definition of an?

Common recursive
sequences, functions

• Fibonacci numbers
– f0 = 0, f1 = 1, fn = fn-1 + fn-2

– For n = 2, 3, 4…
• Euclidean algorithm, which we

saw before.
– Book now has proof showing

that Euclidean algorithm has a
running time that’s logarithmic in
of digits.

Recursively defined
sets and structures

• Again, a basis and recursive step
• Occasionally, an exclusion rule:

nothing else in the set other than
elements specified in basis or
recursions
– Generally assumed

• Examples
– 1.

• Basis: 3 ∈ S.
• Recursive step: If x ∈ S and y ∈ S, then

x+y ∈ S.
– 2. Give a recursive definition for S =

{4, 7, 10, 13, 16, 19, …}

String operations

• The set Σ* of strings over the alphabet Σ
can be defined recursively by
– Basis step: λ∈Σ* (λ is the empty string

containing no symbols)
– Recursive step: If w∈Σ* and x∈Σ then wx∈Σ*.
– Much like power set.
– Example: the set where Σ = {0,1}

• Concatenation
– Let Σ be a set of symbols and Σ* be the set of

strings formed from symbols in Σ. We define
the concatenation of two strings, denoted by a
., recursively as follows.

– Basis: If w∈Σ*, then w.λ=w
– Recursive step: if w1∈Σ* and w2∈Σ* and x∈Σ,

then w1
.(w2x) = (w1

.w2)x.
• Length

– Basis: l(λ)=0;
– Recursive step: l(wx) = l(w)+1 if w∈Σ* and

x∈Σ.
• A number of other examples in the book.

Trees

• Will be studied more
extensively later, but useful in
context of recursion.

• A tree is a special type of
graph with no cycles (a graph
is a data representation with
vertices and edges).

• The set of rooted trees is
defined recursively by having a
basis being a vertex r, the root,
and the recursive step is
having any existing tree and
creating a new root for it.

Binary trees

• For a binary tree:
– Basis step: The empty set is an

extended binary tree.
– Recursion: If T1 and T2 are extended

binary trees, denoted by T1
.T2,

consisting of a root r together with
edges connecting to the root to each
of the roots of the subtrees when
those trees are nonempty.

• The set of full binary trees can be
defined recursively by these steps
– Basis: There is a full binary tree

consisting only of a single vertex r.
– Recursion: If T1 and T2 are full binary

trees, T1
.T2 is the tree with a new root r

with edges leading to each subtree T1,
T2.

Structural induction

• Instead of using mathematical
induction directly to prove results
about recursively defined sets, we
use a more convenient form.
– Basis step: show that the result holds

for all elements specified in the basis
step of the recursive definition to be in
the set.

– Recursive step: show that if the
statement is true for each of the
elements used to construct new
elements in the recursive step of the
definition, the result holds for these
new elements.

Example of structural
induction

• Prove that l(xy), where l is the
length of the string.
– P(y) is l(xy) = l(x)+l(y) where x and y

belong to Σ*.
– Basis step: show that P(λ) is true.

Since l(xλ)=l(x)=l(x)+0=l(x)+l(λ) for
every string x, P(λ) is true.

– Recursive step: Assume P(y) is true,
show P(ya) whenever a∈Σ. By the
definition of l(w), l(xya) = l(xy)+1 and
l(ya) = l(y)+1. Since l(xy) = l(x)+l(y) by
the hypothesis, l(xya) = l(x)+l(y)+1 =
l(x)+l(ya).

• Generalized induction: use well-
ordered property on other sets than
integers – we’ll look at this later

Recursive algorithms

• An algorithm is called recursive
if it solves a problem by
reducing it to an instance of the
same problem with smaller
input.

• We implicitly did these in the
previous section

• How about an?
procedure power(a: nonzero real

number, n: nonnegative integer)
if n = 0 then power(a,n) := 1
else power(a,n) := a.power(a, n-1)

And more

• Linear search recursively?
procedure search(i,j,x)
if ai = x then

location := i
else if i = j then

location := 0
else

search(i+1,j,x)
• Recursive algorithm to find the

sum of the first n positive
integers?

Recursion vs. iteration

• I’ve hinted at this before.
• Recursion defines the problem in

terms of itself and “works down”,
whereas iteration “works up” to the
answer from 1.

• Generally, iteration requires less
computation than the recursive
equivalent

• Best illustrated by recursive vs.
iterative fibonacci (next page)
– In fact, recursive fibonacci is

exponential in complexity
– There are ways of making recursion

faster

Fibonacci algorithms

procedure recursivefib(n: nonnegative
integer)

if n = 0 then fibonacci(0) := 0
else if n = 1 then fibonacci(1) := 1
else fibonacci(n) := fibonacci(n-1) +

fibonacci(n-2)

procedure iterativefib(n: nonnegative
integer)

if n = 0 then y := 0
else begin

x := 0
y := 1
for i := 1 to n-1; begin

z := x+y
x := y
y := z

end
end

Mergesort

procedure mergesort(L = a1, …, an)
if n > 1 then

m := floor(n/2)
L1 := a1, …, am
L2 := am+1, am+2, …, an
L := merge(mergesort(L1, L2))

{L is now sorted into elements in nondecreasing
order}

procedure merge(L1, L2: lists)
L := empty list
while L1 and L2 are nonempty
begin

remove smaller of first of L1 and L2 and put it at the left
end of L

if this makes one list empty copy all elements of other
list and append them to L

end {L is the merged list with elements in increasing
order}

Cost of mergesort

• Merging two lists with m and n
elements, respectively, takes
m+n-1 comparisons.

• Since we split the lists, we’re
going to execute a logarithmic
number of merge calls.

• As a result, the number of
comparisons needed to merge
sort a list with n elements is
O(n log n).

• More precise proof in the book

Next time

• Counting

