CS3203 \#3

6/2/04
 Janak J Parekh

Administrivia

- Textbooks should be in the bookstore - Office hours established?

Algorithms

- An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.
- Term is a corruption of the name al-Khowarizmi, whose book on Hindu numerals is the basis of modern decimal notation.
- What's a step? Good question! Depends on context. Algebraic operations are a step, for instance.
- Example: given a sequence of integers a_{1}, \ldots, a_{n}, determine if they're in increasing order
- Express using psuedocode.
- Roughly Pascal-like.
output := TRUE
i := 2
while ($\mathrm{i}<=\mathrm{n}$ and output = TRUE)
begin
if $a_{i}<a_{i-1}$ then output:= FALSE
$i:=i+1$
end

Fundamentals of most algorithms

- Input, output
- Definiteness: the steps of an algorithm must be defined precisely
- Correctness: An algorithm should produce the correct output for each set of input
- Finite
- Effective: It must be possible to perform each step of an algorithm exactly and in a finite amount of time
- Generality: Procedure should be applicable for all problems of the desired form, and not just for a particular set of input values.

Common categories of algorithms

- Code for these are in the book
- Searching algorithms
- How to find information inside a long list?
- Linear search: go through one item at a time
- What if it's ordered?
- Binary search: start in the middle and divide the search space by half each time.
- Sorting algorithms
- Bubble sort: perhaps the simplest procedure bubblesort $\left(a_{1}, \ldots, a_{n}\right)$ for $i:=1$ to $n-1$ for $j:=1$ to $n-1$
if $a_{j}>a_{j+1}$ then interchange a_{j} and a_{j+1}
$\left\{a_{1}, \ldots, a_{n}\right.$ is in increasing order $\}$
- Insertion sort
- There are others, of course

Greedy algorithms

- Common way to solve optimization problems, where the goal is to find a solution that either minimizes or maximizes the value of some parameter.
- The idea is to "choose the best choice at each step", i.e., optimize locally instead of globally, and this works for a surprisingly large number of problems (but not all!)
- Example: greedy change-making algorithm is optimal if you have all coins... but not necessarily if you're missing one type of coin.
- Book uses a proof by contradiction to show that this works
- We'll see a lot of greedy algorithms in the graph theory portion of the course

Growth of functions

- Fundamental idea: we're not concerned with the precise number of steps an algorithm takes
- Just buy a PC that's X times as fast
- Rather, we're more concerned with how much work the algorithm does as the size of the input increases.
- Big-O notation lets us focus on growth and avoids any constants
- Fundamental algebraic definition: let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $O(g(x))$ if there exist constants C and k such that

$$
|f(x)| \leq C|g(x)| \text { whenever } x>k
$$

How to use?

- Do a little algebra.
- Example: prove $5 x^{4}-37 x^{3}+13 x-4=O\left(x^{4}\right)$
- Choosing $\mathrm{C}=59$ and $x=1$ fulfills the inequality.
- Note that this is not a "genuine equality".
- If $h(x)$ has larger (absolute) values than $g(x)$ for sufficiently large x, it also follows that $f(x)=O(h(x))$.
- Example 2: Show that $7 x^{2}$ is $O\left(x^{3}\right)$
- But $7 \mathrm{x}^{3}$ is NOT $\mathrm{O}\left(\mathrm{x}^{2}\right)$!
- Other important theorems:
- If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, then $f(x)$ is $O\left(x^{n}\right)$ (similar to problem above; can use triangle inequality to prove)
- Estimate the sum of the first n integers using Big-Oh.

More Big-O

- Common big-O functions used in estimates
$-1, \log n, n, n \log n, n^{2}, 2^{n}, n!$
- If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$, $\left(f_{1}\right.$ $\left.+f_{2}\right)(x)$ is $O\left(\max \left(\left|g_{1}(x)\right|,\left|g_{2}(x)\right|\right)\right)$.
- If $f_{1}(x)$ is $O(g(x))$ and $f_{2}(x)$ is $O(g(x))$, $\left(f_{1}+\right.$ $\left.f_{2}\right)(x)$ is $O(g(x))$.
- If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$, $\left(f_{1} f_{2}\right)(x)$ is $O\left(g_{1}(x) g_{2}(x)\right)$.
- What's a big-O estimate of $f(x)=(x+1) \log \left(x^{2}+1\right)+3 x^{2}$?

Big-Omega and Big-Theta

- Big-O is only an upper bound
- Not always useful
- We say $f(x)$ is $\Omega(g(x))$ if there are positive constants C and k s.t.

$$
|f(x)| \geq C|g(x)| \text { whenever } x>k
$$

- We say $f(x)$ is $\Theta(g(x))$ if $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$.
- Big-Omega is a lower bound, and BigTheta provides both a lower and upper bound (latter being "on the order of").
- Example: Show that $7 x^{2}+1$ is $\Theta(x)$.
- If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, then $f(x)$ is $\Theta\left(x^{n}\right)$.

Complexity of algorithms

- Now that we know how to express upper/lower bounds, we'd like to analyze our algorithms and determine their time and space complexity.
- Space complexity is not covered in this class.
- Time complexity is described in terms of the number of operations required instead of actual computer time.
- Largely informal discussion at this point - take Analysis of Algorithms if you want a more formalized approach.

Examples

- Determine the time complexity of the linear search algorithm in terms of the number of comparisons.
- The book uses comparisons as the basic operation. Counting is not considered, although we could if we want.
- Two comparisons per step, plus two more (exit condition, and outside comparison). Therefore, $\Theta(n)$ comparisons.
- Binary search?
- For simplicity, assume there are $\mathrm{n}=2^{\mathrm{k}}$ elements in the list. At each step, we're reducing k by one (i.e., looking at half the list). Therefore, $2 \mathrm{k}+2$ comparisons, or $2 \log \mathrm{n}+2$ comparisons, which is $\Theta(\log n)$.
- This kind of complexity is worst-case analysis. There's also average-case analysis, which we'll generally avoid as it's much more complicated.

Complexity cont'd.

- Complexity of bubble sort?
- First time, n - 1 comparisons, then $n-2, \ldots, 1$ comparison.
- Sum of this is $n(n-1) / 2$, which is $\Theta\left(n^{2}\right)$.
- Implications?
- $\mathrm{O}(1)$ is constant - fastest possible
- $O(\log n)$ is logarithmic - pretty fast
- O(n) relative to the size of input
- O(n log n) doesn't have a name, but is common for "fast" sorts.
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ is polynomial - grows, but not too fast
- $O\left(b^{n}\right)$ where $b>1$ is exponential; this is the first category of intractable; grows way too fast to be useful; "NP" class of problems
- $\mathrm{O}(\mathrm{n}!)$ is factorial
- Assumes $O(n)$ as a "good" estimate
- Page 150 gives some practical implications in the table (* means more than 10^{100} years)
- Then there are the unsolvable problems
- Halting problem

Integers and division

- Number theory!
- Why?
- Basis of important algorithms in computer science
- Especially divisibility of numbers
- Prime number - critical to cryptography
- Modular arithmetic (division and getting a remainder)
- Divisibility
- If a and b are integers, $a \neq 0$, a divides b if there is an integer c such that $b=a c$. a is a factor of b, and b is a multiple of a . $\mathrm{a} \mid \mathrm{b}$.
- Note we're primarily interested in integers.
- Some basic proprerties:
- if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$
- Proof: use the definition and add them together.
- if $a \mid b$, then $a \mid b c$ for all c
- if $a \mid b$ and $b \mid c$, then $a \mid c$.
- if a|b and a|c, a|mb+nc whenever m and n are integers (just apply the $2^{\text {nd }}$ property to 1)

Primes

- A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and p.
- An integer greater than 1 that is divisible by others is composite.
- Note greater than $1 ; 1$ is neither prime nor composite.
- First few primes?
- Leads to fundamental theorem of arithmetic
- Every positive integer greater than 1 can be uniquely written as a prime or as the product of two or more primes where the prime factors are written in the order of nondecreasing size.
- "Prime factorization" of any number
- If n is a composite integer, then n has a prime divisor less than or equal to the square root of n
- Useful in determining primality of reasonably small numbers, e.g., show than 101 is prime.
- There are infinitely many primes.
- Use the fundamental theorem of arithmetic, and generate a prime Q such that it's the product of all known primes, plus 1.

Primes (II)

- Quest to find larger and larger primes. One such set is the set of Mersenne primes, which are integers of the form $2^{\mathrm{p}}-1$. (Not all are!)
- The ratio of the number of primes not exceeding x and x/lnx approaches 1
- In other words, the odds that a randomly selected positive integer x is prime are approximately $1 / \mathrm{ln} \mathrm{x}$.

Division revisited

- Division algorithm - given integer a and positive integer d, there exist unique integers q and r, with $0<=r<d$, such that $a=d q+r$.
$-d$ is the divisor, a is the dividend, q is the quotient and r is the remainder.
$-q=a \operatorname{div} d, a n d r=a \bmod d$
- Remainders cannot be negative!

GCD and LCM

- Greatest common divisor is the largest integer d such that d|a and d|b. d = $\operatorname{gcd}(a, b)$, where a and b both aren't zero
- a and b are relatively prime if their gcd is 1.
- Can use prime factorization to find gcd
- Take as many factors as possible and multiply them together.
- Least common multiple of positive integers a and b is the smallest positive integer that is divisible by both; $\operatorname{lcm}(a, b)$
- Again, can use prime factorization; this time, need each term, but only max of any common ones
- For positive integers $a, b, a b=\operatorname{gcd}(a, b)$ * $\operatorname{lcm}(a, b)$

Modular arithmetic

- If a, b are integers and m is a positive integer, we say a is congruent to b modulo m if m divides $\mathrm{a}-\mathrm{b}$. Notation is $\mathrm{a} \equiv \mathrm{b}$ $(\bmod m)$
- Another way of saying this is that two numbers have the same remainder.
$-\mathrm{a} \equiv \mathrm{b}(\bmod m)$ if $\mathrm{a} \bmod \mathrm{m}$ and $\mathrm{b} \bmod$ m.
- a and b are congruent modulo m if and only if there is an integer k such that $\mathrm{a}=\mathrm{b}+\mathrm{km}$.
- All integers congruent to an integer a mod m lets you create congruence classes

More modular arithmetic

- If $\mathrm{a} \equiv \mathrm{b}(\bmod m)$ and $\mathrm{c} \equiv \mathrm{d}(\bmod m)$, then $\mathrm{a}+\mathrm{c} \equiv \mathrm{b}+\mathrm{d}(\bmod m)$ and $\mathrm{ac} \equiv$ bd (mod m)
- Why do we care?
- Hashing is a way of rapidly storing and retrieving information
- $h(k)=k \bmod m$
- Congruences suggest a collision, which needs to be dealt with.
- Generating random numbers
- Cryptology
- Caesar's encryption method: $f(p)=(p+3)$ $\bmod 26$
- In other words, formalizing a very old mechanism
- Of course, you can use more interesting functions
- Inverse generates the decryption function

Representing integers

- We've been assuming base 10 all along. However, computers don't necessarily use that.
- Computers also use base 2, base 8, and base 16 commonly.
- Let b be a positive integer greater than 1. Then if n is a positive integer, it can be expressed in the form
- Base b expansion of n
$-n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}$ where k is nonnegative, a_{0}, \ldots, a_{k} are less than b but also nonnegative, and $a_{k} \neq 0$.
- For example, binary expansion (pg 169)

Base conversion

- Divide repeatedly by the base.
- Keep the remainders, but use them backwards.
- This is just a variation of the previous base expansion.
- Algorithm written out on page 171.
- Can also use table lookups.
- Remember that hex uses letters...

Integer algorithms with respect to base

- Suppose the binary expansions of a and b are $3 \mathrm{a}=$ $\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right)_{2}$ and $b=\left(b_{n-1} b_{n-}\right.$ $\left.2 \ldots b_{1} b_{0}\right)_{2}$
- How to add?
- We add their rightmost bits and carry over as necessary.
- Algorithm on page 173; O(n).
- Similar to base 10, just keep track of base 2 .
- Multiplication works similarly.

Computing div and mod

- Just subtract the divisor repeatedly and increase the quotient by 1 as long as you can.
- The remainder and quotient are the answer.
- If the dividend was negative, just flip the quotient.

Euclidean algorithm

- Very fast way of determining the greatest common divisor
- Repeatedly divide the larger by the smaller, and keep the smaller and remainder.
- Therefore, $\operatorname{gcd}(150,8)=$ $\operatorname{gcd}(8,6)=\operatorname{gcd}(6,2)=2$
- Based on the following result: Let $a=b q+r$, where a, b, q, rare integers. Then $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}(b, r)$.
- Algorithm on page 179.

Next time

- Reasoning, induction, recursion

