
CS3203 #3

6/2/04
Janak J Parekh

Administrivia

• Textbooks should be in the
bookstore

• Office hours established?

Algorithms

• An algorithm is a finite set of precise instructions
for performing a computation or for solving a
problem.
– Term is a corruption of the name al-Khowarizmi,

whose book on Hindu numerals is the basis of
modern decimal notation.

– What’s a step? Good question! Depends on
context. Algebraic operations are a step, for
instance.

• Example: given a sequence of integers a1, …, an,
determine if they’re in increasing order
– Express using psuedocode.
– Roughly Pascal-like.

output := TRUE
i := 2
while (i <= n and output = TRUE)
begin

if ai < ai-1 then output := FALSE
i := i + 1

end

Fundamentals of most
algorithms

• Input, output
• Definiteness: the steps of an algorithm

must be defined precisely
• Correctness: An algorithm should

produce the correct output for each set of
input

• Finite
• Effective: It must be possible to perform

each step of an algorithm exactly and in a
finite amount of time

• Generality: Procedure should be
applicable for all problems of the desired
form, and not just for a particular set of
input values.

Common categories of
algorithms

• Code for these are in the book
• Searching algorithms

– How to find information inside a long list?
• Linear search: go through one item at a time

– What if it’s ordered?
• Binary search: start in the middle and divide the

search space by half each time.

• Sorting algorithms
– Bubble sort: perhaps the simplest

procedure bubblesort(a1, …, an)
for i := 1 to n – 1

for j := 1 to n – 1
if aj > aj+1 then interchange aj and aj+1

{a1, …, an is in increasing order}
– Insertion sort
– There are others, of course

Greedy algorithms

• Common way to solve optimization
problems, where the goal is to find a
solution that either minimizes or
maximizes the value of some parameter.

• The idea is to “choose the best choice at
each step”, i.e., optimize locally instead of
globally, and this works for a surprisingly
large number of problems (but not all!)

• Example: greedy change-making
algorithm is optimal if you have all
coins… but not necessarily if you’re
missing one type of coin.

• Book uses a proof by contradiction to
show that this works

• We’ll see a lot of greedy algorithms in the
graph theory portion of the course

Growth of functions

• Fundamental idea: we’re not concerned
with the precise number of steps an
algorithm takes
– Just buy a PC that’s X times as fast

• Rather, we’re more concerned with how
much work the algorithm does as the size
of the input increases.

• Big-O notation lets us focus on growth
and avoids any constants

• Fundamental algebraic definition: let f
and g be functions from the set of
integers or the set of real numbers to the
set of real numbers. We say that f(x) is
O(g(x)) if there exist constants C and k
such that

() () kxxgCxf >≤ whenever

How to use?

• Do a little algebra.
• Example: prove 5x4-37x3+13x-4=O(x4)
• Choosing C=59 and x=1 fulfills the

inequality.
• Note that this is not a “genuine equality”.
• If h(x) has larger (absolute) values than

g(x) for sufficiently large x, it also follows
that f(x) = O(h(x)).

• Example 2: Show that 7x2 is O(x3)
– But 7x3 is NOT O(x2)!

• Other important theorems:
– If f(x) = anxn + an-1xn-1 + … + a1x + a0, then f(x)

is O(xn) (similar to problem above; can use
triangle inequality to prove)

– Estimate the sum of the first n integers using
Big-Oh.

More Big-O

• Common big-O functions used in
estimates
– 1, log n, n, n log n, n2, 2n, n!

• If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), (f1
+ f2)(x) is O(max(|g1(x)|, |g2(x)|)).

• If f1(x) is O(g(x)) and f2(x) is O(g(x)), (f1 +
f2)(x) is O(g(x)).

• If f1(x) is O(g1(x)) and f2(x) is O(g2(x)),
(f1f2)(x) is O(g1(x)g2(x)).

• What’s a big-O estimate of
f(x)=(x+1)log(x2+1)+3x2?

Big-Omega and Big-Theta

• Big-O is only an upper bound
• Not always useful
• We say f(x) is Ω(g(x)) if there are positive

constants C and k s.t.

• We say f(x) is Θ(g(x)) if f(x) is O(g(x)) and
f(x) is Ω(g(x)).

• Big-Omega is a lower bound, and Big-
Theta provides both a lower and upper
bound (latter being “on the order of”).

• Example: Show that 7x2+1 is Θ(x).
• If f(x) = anxn + an-1xn-1 + … + a1x + a0,

then f(x) is Θ(xn).

() () kxxgCxf >≥ whenever

Complexity of
algorithms

• Now that we know how to express
upper/lower bounds, we’d like to
analyze our algorithms and
determine their time and space
complexity.
– Space complexity is not covered in

this class.
• Time complexity is described in

terms of the number of operations
required instead of actual computer
time.

• Largely informal discussion at this
point – take Analysis of Algorithms
if you want a more formalized
approach.

Examples

• Determine the time complexity of the
linear search algorithm in terms of the
number of comparisons.
– The book uses comparisons as the basic

operation. Counting is not considered,
although we could if we want.

– Two comparisons per step, plus two more (exit
condition, and outside comparison).
Therefore, Θ(n) comparisons.

• Binary search?
– For simplicity, assume there are n = 2k

elements in the list. At each step, we’re
reducing k by one (i.e., looking at half the list).
Therefore, 2k+2 comparisons, or 2 log n + 2
comparisons, which is Θ(log n).

• This kind of complexity is worst-case
analysis. There’s also average-case
analysis, which we’ll generally avoid as
it’s much more complicated.

Complexity cont’d.

• Complexity of bubble sort?
– First time, n-1 comparisons, then n-2, …, 1

comparison.
– Sum of this is n(n-1)/2, which is Θ(n2).

• Implications?
– O(1) is constant – fastest possible
– O(log n) is logarithmic – pretty fast
– O(n) relative to the size of input
– O(n log n) doesn’t have a name, but is common for

“fast” sorts.
– O(n2) is polynomial – grows, but not too fast
– O(bn) where b > 1 is exponential; this is the first

category of intractable; grows way too fast to be
useful; “NP” class of problems

– O(n!) is factorial
• Assumes O(n) as a “good” estimate
• Page 150 gives some practical implications in the

table (* means more than 10100 years)
• Then there are the unsolvable problems

– Halting problem

Integers and division

• Number theory!
• Why?

– Basis of important algorithms in computer science
• Especially divisibility of numbers

– Prime number – critical to cryptography
– Modular arithmetic (division and getting a

remainder)
• Divisibility

– If a and b are integers, a ≠ 0, a divides b if there is
an integer c such that b=ac. a is a factor of b, and
b is a multiple of a. a | b.

– Note we’re primarily interested in integers.
• Some basic proprerties:

– if a|b and a|c, then a|(b+c)
• Proof: use the definition and add them together.

– if a|b, then a|bc for all c
– if a|b and b|c, then a|c.
– if a|b and a|c, a|mb+nc whenever m and n are

integers (just apply the 2nd property to 1)

Primes

• A positive integer p greater than 1 is called prime
if the only positive factors of p are 1 and p.
– An integer greater than 1 that is divisible by others

is composite.
– Note greater than 1; 1 is neither prime nor

composite.
– First few primes?

• Leads to fundamental theorem of arithmetic
– Every positive integer greater than 1 can be

uniquely written as a prime or as the product of two
or more primes where the prime factors are written
in the order of nondecreasing size.

– “Prime factorization” of any number
• If n is a composite integer, then n has a prime

divisor less than or equal to the square root of n
– Useful in determining primality of reasonably small

numbers, e.g., show than 101 is prime.
• There are infinitely many primes.

– Use the fundamental theorem of arithmetic, and
generate a prime Q such that it’s the product of all
known primes, plus 1.

Primes (II)

• Quest to find larger and larger
primes. One such set is the
set of Mersenne primes,
which are integers of the form
2p-1. (Not all are!)

• The ratio of the number of
primes not exceeding x and
x/lnx approaches 1
– In other words, the odds that a

randomly selected positive
integer x is prime are
approximately 1/ln x.

Division revisited

• Division algorithm – given
integer a and positive integer
d, there exist unique integers q
and r, with 0 <= r < d, such that
a = dq + r.
– d is the divisor, a is the dividend,

q is the quotient and r is the
remainder.

– q = a div d, and r = a mod d
– Remainders cannot be negative!

GCD and LCM

• Greatest common divisor is the largest
integer d such that d|a and d|b. d =
gcd(a,b), where a and b both aren’t zero

• a and b are relatively prime if their gcd is
1.

• Can use prime factorization to find gcd
– Take as many factors as possible and multiply

them together.
• Least common multiple of positive

integers a and b is the smallest positive
integer that is divisible by both; lcm(a,b)
– Again, can use prime factorization; this time,

need each term, but only max of any common
ones

• For positive integers a, b, ab = gcd(a,b) *
lcm(a,b)

Modular arithmetic

• If a,b are integers and m is a
positive integer, we say a is
congruent to b modulo m if m
divides a – b. Notation is a ≡ b
(mod m)

• Another way of saying this is that
two numbers have the same
remainder.
– a ≡ b (mod m) if a mod m and b mod

m.
• a and b are congruent modulo m if

and only if there is an integer k
such that a = b+km.

• All integers congruent to an integer
a mod m lets you create
congruence classes

More modular
arithmetic

• If a ≡ b (mod m) and c ≡ d (mod m),
then a+c ≡ b+d (mod m) and ac ≡
bd (mod m)

• Why do we care?
– Hashing is a way of rapidly storing and

retrieving information
• h(k) = k mod m
• Congruences suggest a collision, which

needs to be dealt with.
– Generating random numbers
– Cryptology

• Caesar’s encryption method: f(p) = (p+3)
mod 26

• In other words, formalizing a very old
mechanism

• Of course, you can use more interesting
functions

• Inverse generates the decryption function

Representing integers

• We’ve been assuming base 10 all
along. However, computers don’t
necessarily use that.
– Computers also use base 2, base 8,

and base 16 commonly.
• Let b be a positive integer greater

than 1. Then if n is a positive
integer, it can be expressed in the
form
– Base b expansion of n
– n = akbk + ak-1bk-1 + … + a1b + a0

where k is nonnegative, a0,...,ak are
less than b but also nonnegative, and
ak ≠ 0.

– For example, binary expansion (pg
169)

Base conversion

• Divide repeatedly by the base.
• Keep the remainders, but use

them backwards.
• This is just a variation of the

previous base expansion.
• Algorithm written out on page

171.
• Can also use table lookups.

– Remember that hex uses
letters…

Integer algorithms with
respect to base

• Suppose the binary
expansions of a and b are3 a =
(an-1an-2…a1a0)2 and b = (bn-1bn-

2…b1b0)2.

• How to add?
• We add their rightmost bits and

carry over as necessary.
– Algorithm on page 173; O(n).
– Similar to base 10, just keep

track of base 2.
– Multiplication works similarly.

Computing div and mod

• Just subtract the divisor
repeatedly and increase the
quotient by 1 as long as you
can.

• The remainder and quotient
are the answer.
– If the dividend was negative, just

flip the quotient.

Euclidean algorithm

• Very fast way of determining
the greatest common divisor

• Repeatedly divide the larger by
the smaller, and keep the
smaller and remainder.

• Therefore, gcd(150,8) =
gcd(8,6) = gcd(6,2) = 2

• Based on the following result:
Let a = bq+r, where a, b, q,
rare integers. Then gcd(a,b) =
gcd(b, r).

• Algorithm on page 179.

Next time

• Reasoning, induction, recursion

