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Administrivia

• Textbooks should be in the 
bookstore

• Office hours established?



Algorithms

• An algorithm is a finite set of precise instructions 
for performing a computation or for solving a 
problem.
– Term is a corruption of the name al-Khowarizmi, 

whose book on Hindu numerals is the basis of 
modern decimal notation.

– What’s a step?  Good question!  Depends on 
context.  Algebraic operations are a step, for 
instance.

• Example: given a sequence of integers a1, …, an, 
determine if they’re in increasing order
– Express using psuedocode.
– Roughly Pascal-like.

output := TRUE
i := 2
while (i <= n and output = TRUE)
begin

if ai < ai-1 then output := FALSE
i := i + 1

end



Fundamentals of most 
algorithms

• Input, output
• Definiteness: the steps of an algorithm 

must be defined precisely
• Correctness: An algorithm should 

produce the correct output for each set of 
input

• Finite
• Effective: It must be possible to perform 

each step of an algorithm exactly and in a 
finite amount of time

• Generality: Procedure should be 
applicable for all problems of the desired 
form, and not just for a particular set of 
input values.



Common categories of 
algorithms

• Code for these are in the book
• Searching algorithms

– How to find information inside a long list?
• Linear search: go through one item at a time

– What if it’s ordered?
• Binary search: start in the middle and divide the 

search space by half each time.

• Sorting algorithms
– Bubble sort: perhaps the simplest

procedure bubblesort(a1, …, an)
for i := 1 to n – 1

for j := 1 to n – 1
if aj > aj+1 then interchange aj and aj+1

{a1, …, an is in increasing order}
– Insertion sort
– There are others, of course



Greedy algorithms

• Common way to solve optimization 
problems, where the goal is to find a 
solution that either minimizes or 
maximizes the value of some parameter.

• The idea is to “choose the best choice at 
each step”, i.e., optimize locally instead of 
globally, and this works for a surprisingly 
large number of problems (but not all!)

• Example: greedy change-making 
algorithm is optimal if you have all 
coins… but not necessarily if you’re 
missing one type of coin.

• Book uses a proof by contradiction to 
show that this works

• We’ll see a lot of greedy algorithms in the 
graph theory portion of the course



Growth of functions

• Fundamental idea: we’re not concerned 
with the precise number of steps an 
algorithm takes
– Just buy a PC that’s X times as fast

• Rather, we’re more concerned with how 
much work the algorithm does as the size 
of the input increases.

• Big-O notation lets us focus on growth 
and avoids any constants

• Fundamental algebraic definition: let f
and g be functions from the set of 
integers or the set of real numbers to the 
set of real numbers.  We say that f(x) is 
O(g(x)) if there exist constants C and k
such that

( ) ( ) kxxgCxf >≤  whenever 



How to use?

• Do a little algebra.
• Example: prove 5x4-37x3+13x-4=O(x4)
• Choosing C=59 and x=1 fulfills the 

inequality.
• Note that this is not a “genuine equality”.
• If h(x) has larger (absolute) values than 

g(x) for sufficiently large x, it also follows 
that f(x) = O(h(x)).

• Example 2: Show that 7x2 is O(x3)
– But 7x3 is NOT O(x2)!

• Other important theorems:
– If f(x) = anxn + an-1xn-1 + … + a1x + a0, then f(x) 

is O(xn) (similar to problem above; can use 
triangle inequality to prove)

– Estimate the sum of the first n integers using 
Big-Oh.



More Big-O

• Common big-O functions used in 
estimates
– 1, log n, n, n log n, n2, 2n, n!

• If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), (f1
+ f2)(x) is O(max(|g1(x)|, |g2(x)|)).

• If f1(x) is O(g(x)) and f2(x) is O(g(x)), (f1 + 
f2)(x) is O(g(x)).

• If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), 
(f1f2)(x) is O(g1(x)g2(x)).

• What’s a big-O estimate of 
f(x)=(x+1)log(x2+1)+3x2?



Big-Omega and Big-Theta

• Big-O is only an upper bound
• Not always useful
• We say f(x) is Ω(g(x)) if there are positive 

constants C and k s.t.

• We say f(x) is Θ(g(x)) if f(x) is O(g(x)) and 
f(x) is Ω(g(x)).

• Big-Omega is a lower bound, and Big-
Theta provides both a lower and upper 
bound (latter being “on the order of”).

• Example: Show that 7x2+1 is Θ(x).
• If f(x) = anxn + an-1xn-1 + … + a1x + a0, 

then f(x) is Θ(xn).

( ) ( ) kxxgCxf >≥  whenever 



Complexity of 
algorithms

• Now that we know how to express 
upper/lower bounds, we’d like to 
analyze our algorithms and 
determine their time and space
complexity.
– Space complexity is not covered in 

this class.
• Time complexity is described in 

terms of the number of operations 
required instead of actual computer 
time.

• Largely informal discussion at this 
point – take Analysis of Algorithms 
if you want a more formalized 
approach.



Examples

• Determine the time complexity of the 
linear search algorithm in terms of the 
number of comparisons.
– The book uses comparisons as the basic 

operation.  Counting is not considered, 
although we could if we want.

– Two comparisons per step, plus two more (exit 
condition, and outside comparison).  
Therefore, Θ(n) comparisons.

• Binary search?
– For simplicity, assume there are n = 2k

elements in the list.  At each step, we’re 
reducing k by one (i.e., looking at half the list).  
Therefore, 2k+2 comparisons, or 2 log n + 2 
comparisons, which is Θ(log n).

• This kind of complexity is worst-case 
analysis.  There’s also average-case 
analysis, which we’ll generally avoid as 
it’s much more complicated.



Complexity cont’d.

• Complexity of bubble sort?
– First time, n-1 comparisons, then n-2, …, 1 

comparison.
– Sum of this is n(n-1)/2, which is Θ(n2).

• Implications?
– O(1) is constant – fastest possible
– O(log n) is logarithmic – pretty fast
– O(n) relative to the size of input
– O(n log n) doesn’t have a name, but is common for 

“fast” sorts.
– O(n2) is polynomial – grows, but not too fast
– O(bn) where b > 1 is exponential; this is the first 

category of intractable; grows way too fast to be 
useful; “NP” class of problems

– O(n!) is factorial
• Assumes O(n) as a “good” estimate
• Page 150 gives some practical implications in the 

table (* means more than 10100 years)
• Then there are the unsolvable problems

– Halting problem



Integers and division

• Number theory!
• Why?

– Basis of important algorithms in computer science
• Especially divisibility of numbers

– Prime number – critical to cryptography
– Modular arithmetic (division and getting a 

remainder)
• Divisibility

– If a and b are integers, a ≠ 0, a divides b if there is 
an integer c such that b=ac.  a is a factor of b, and 
b is a multiple of a.  a | b.

– Note we’re primarily interested in integers.
• Some basic proprerties:

– if a|b and a|c, then a|(b+c)
• Proof: use the definition and add them together.

– if a|b, then a|bc for all c
– if a|b and b|c, then a|c.
– if a|b and a|c, a|mb+nc whenever m and n are 

integers (just apply the 2nd property to 1)



Primes

• A positive integer p greater than 1 is called prime
if the only positive factors of p are 1 and p.  
– An integer greater than 1 that is divisible by others 

is composite.
– Note greater than 1; 1 is neither prime nor 

composite.
– First few primes?

• Leads to fundamental theorem of arithmetic
– Every positive integer greater than 1 can be 

uniquely written as a prime or as the product of two 
or more primes where the prime factors are written 
in the order of nondecreasing size.

– “Prime factorization” of any number
• If n is a composite integer, then n has a prime 

divisor less than or equal to the square root of n
– Useful in determining primality of reasonably small 

numbers, e.g., show than 101 is prime.
• There are infinitely many primes.

– Use the fundamental theorem of arithmetic, and 
generate a prime Q such that it’s the product of all 
known primes, plus 1.



Primes (II)

• Quest to find larger and larger 
primes.  One such set is the 
set of Mersenne primes, 
which are integers of the form 
2p-1.  (Not all are!)

• The ratio of the number of 
primes not exceeding x and 
x/lnx approaches 1
– In other words, the odds that a 

randomly selected positive 
integer x is prime are 
approximately 1/ln x.



Division revisited

• Division algorithm – given 
integer a and positive integer 
d, there exist unique integers q
and r, with 0 <= r < d, such that 
a = dq + r.
– d is the divisor, a is the dividend, 

q is the quotient and r is the 
remainder.

– q = a div d, and r = a mod d
– Remainders cannot be negative!



GCD and LCM

• Greatest common divisor is the largest 
integer d such that d|a and d|b.  d = 
gcd(a,b), where a and b both aren’t zero

• a and b are relatively prime if their gcd is 
1.

• Can use prime factorization to find gcd
– Take as many factors as possible and multiply 

them together.
• Least common multiple of positive 

integers a and b is the smallest positive 
integer that is divisible by both; lcm(a,b)
– Again, can use prime factorization; this time, 

need each term, but only max of any common 
ones

• For positive integers a, b, ab = gcd(a,b) * 
lcm(a,b)



Modular arithmetic

• If a,b are integers and m is a 
positive integer, we say a is 
congruent to b modulo m if m 
divides a – b.  Notation is a ≡ b 
(mod m)

• Another way of saying this is that 
two numbers have the same 
remainder.
– a ≡ b (mod m) if a mod m and b mod

m.
• a and b are congruent modulo m if 

and only if there is an integer k 
such that a = b+km.

• All integers congruent to an integer 
a mod m lets you create 
congruence classes



More modular 
arithmetic

• If a ≡ b (mod m) and c ≡ d (mod m), 
then a+c ≡ b+d (mod m) and ac ≡
bd (mod m)

• Why do we care?
– Hashing is a way of rapidly storing and 

retrieving information
• h(k) = k mod m
• Congruences suggest a collision, which 

needs to be dealt with.
– Generating random numbers
– Cryptology

• Caesar’s encryption method: f(p) = (p+3)
mod 26

• In other words, formalizing a very old 
mechanism

• Of course, you can use more interesting 
functions

• Inverse generates the decryption function



Representing integers

• We’ve been assuming base 10 all 
along.  However, computers don’t 
necessarily use that.
– Computers also use base 2, base 8, 

and base 16 commonly.
• Let b be a positive integer greater 

than 1.  Then if n is a positive 
integer, it can be expressed in the 
form
– Base b expansion of n
– n = akbk + ak-1bk-1 + … + a1b + a0

where k is nonnegative, a0,...,ak are 
less than b but also nonnegative, and 
ak ≠ 0.

– For example, binary expansion (pg 
169)



Base conversion

• Divide repeatedly by the base.
• Keep the remainders, but use 

them backwards.
• This is just a variation of the 

previous base expansion.
• Algorithm written out on page 

171.
• Can also use table lookups.

– Remember that hex uses 
letters…



Integer algorithms with 
respect to base

• Suppose the binary 
expansions of a and b are3 a = 
(an-1an-2…a1a0)2 and b = (bn-1bn-

2…b1b0)2.

• How to add?
• We add their rightmost bits and 

carry over as necessary.
– Algorithm on page 173; O(n).
– Similar to base 10, just keep 

track of base 2.
– Multiplication works similarly.



Computing div and mod

• Just subtract the divisor 
repeatedly and increase the 
quotient by 1 as long as you 
can.

• The remainder and quotient 
are the answer.
– If the dividend was negative, just 

flip the quotient.



Euclidean algorithm

• Very fast way of determining 
the greatest common divisor

• Repeatedly divide the larger by 
the smaller, and keep the 
smaller and remainder.

• Therefore, gcd(150,8) = 
gcd(8,6) = gcd(6,2) = 2

• Based on the following result: 
Let a = bq+r, where a, b, q, 
rare integers.  Then gcd(a,b) = 
gcd(b, r).

• Algorithm on page 179.



Next time

• Reasoning, induction, recursion


