CS3203 #3

6/2/04
Janak J Parekh

Administrivia

 Textbooks should be in the
bookstore

o Office hours established?

Algorithms

« An algorithm is a finite set of precise instructions
for performing a computation or for solving a
problem.

— Term is a corruption of the name al-Khowarizmi,

whose book on Hindu numerals is the basis of
modern decimal notation.

— What's a step? Good question! Depends on
context. Algebraic operations are a step, for
instance.

« Example: given a sequence of integers a,, ..., a,,
determine if they’re in increasing order

— Express using psuedocode.

— Roughly Pascal-like.
output := TRUE

=2
while (i <= n and output = TRUE)
begin

if a, < a,_4 then output := FALSE

=i+ 1
end

Fundamentals of most
algorithms

Input, output

Definiteness: the steps of an algorithm
must be defined precisely

Correctness: An algorithm should
produce the correct output for each set of
Input

Finite

Effective: It must be possible to perform

each step of an algorithm exactly and in a
finite amount of time

Generality: Procedure should be
applicable for all problems of the desired
form, and not just for a particular set of
iInput values.

Common categories of
algorithms

« Code for these are in the book

« Searching algorithms
— How to find information inside a long list?
 Linear search: go through one item at a time
— What if it's ordered?
« Binary search: start in the middle and divide the
search space by half each time.

« Sorting algorithms

— Bubble sort: perhaps the simplest
procedure bubblesort(a,, ..., a,)
fori:=1ton-1

forj:=1ton-1
If 8, > a,, then interchange a; and a;,,
{a,, ..., a, is in increasing order}
— Insertion sort
— There are others, of course

Greedy algorithms

Common way to solve optimization
problems, where the goal is to find a
solution that either minimizes or
maximizes the value of some parameter.

The idea is to “choose the best choice at
each step’, i.e., optimize locally instead of
globally, and this works for a surprisingly
large number of problems (but not all!)

Example: greedy change-making
algorithm is optimal if you have all
coins... but not necessarily if you're
missing one type of coin.

Book uses a proof by contradiction to
show that this works

We'll see a lot of greedy algorithms in the
graph theory portion of the course

Growth of functions

Fundamental idea: we're not concerned
with the precise number of steps an
algorithm takes

— Just buy a PC that's X times as fast

Rather, we’re more concerned with how
much work the algorithm does as the size
of the input increases.

Big-O notation lets us focus on growth
and avoids any constants

Fundamental algebraic definition: let f
and g be functions from the set of
integers or the set of real numbers to the
set of real numbers. We say that f(x) is
O(g(x)) if there exist constants C and k
such that

|f(x) < C|g(x) whenever x > k

How to use?

Do a little algebra.

Example: prove 5x*-37x3+13x-4=0(x*)
Choosing C=59 and x=1 fulfills the
iInequality.

Note that this is not a “genuine equality”.
If h(x) has larger (absolute) values than
g(x) for sufficiently large x, it also follows
that f(x) = O(h(x)).

Example 2: Show that 7x? is O(x?3)

— But 7x3 is NOT O(x?)!

Other important theorems:

— Iff(x)=ax"+a,x""+ ... +a,x + a,, then f(x)
is O(x") (similar to problem above; can use
triangle inequality to prove)

— Estimate the sum of the first n integers using
Big-Oh.

More Big-O

« Common big-O functions used in

estimates
— 1,logn, n,nlogn, n?, 2", n!

* 1T 14(x) is O(g4(x)) and f5(x) is O(gy(x)), (f;

« Iff,(x) is O(g(x)) and f,(x) is O(g(x)), (f,

+ 12)(x) 1s O(max(|g4(x)], [92(x)]))-

+

f2)(x) is O(g(x)).

+ Iff4(x) is O(g4(x)) and f,(x) is O(g,(x)),

(ff5)(x) is O(g4(x)g(X)).

« What's a big-O estimate of

f(x)=(x+1)log(x?+1)+3x2?

Big-Omega and Big-Theta

Big-O is only an upper bound

Not always useful

We say f(x) is Q(g(x)) if there are positive
constants C and k s.t.

f(x) > C|g(x) whenever x > k

We say f(x) is ©(g(x)) if f(x) is O(g(x)) and
f(x) is €2(g(x)).

Big-Omega is a lower bound, and Big-
Theta provides both a lower and upper
bound (latter being “on the order of”).

Example: Show that 7x2+1 is ©(x).

If f(x) =ax"+a _x""+ .. +a,x+a,,
then f(x) is ©(x").

Complexity of
algorithms

* Now that we know how to express
upper/lower bounds, we’'d like to
analyze our algorithms and
determine their time and space
complexity.

— Space complexity is not covered in
this class.

* Time complexity is described in
terms of the number of operations
required instead of actual computer
time.

» Largely informal discussion at this
point — take Analysis of Algorithms
if you want a more formalized
approach.

Examples

« Determine the time complexity of the
linear search algorithm in terms of the
number of comparisons.

— The book uses comparisons as the basic
operation. Counting is not considered,
although we could if we want.

— Two comparisons per step, plus two more (exit
condition, and outside comparison).
Therefore, ®(n) comparisons.

« Binary search?

— For simplicity, assume there are n = 2k
elements in the list. At each step, we're
reducing k by one (i.e., looking at half the list).
Therefore, 2k+2 comparisons, or 2logn + 2
comparisons, which is ®(log n).

« This kind of complexity is worst-case
analysis. There’s also average-case
analysis, which we’ll generally avoid as
It's much more complicated.

Complexity cont'd.

Complexity of bubble sort?

First time, n-1 comparisons, then n-2, ..., 1
comparison.

Sum of this is n(n-1)/2, which is ®(n2).

Implications?

O(1) is constant — fastest possible
O(log n) is logarithmic — pretty fast
O(n) relative to the size of input

O(n log n) doesn’t have a name, but is common for
“fast” sorts.

O(n?) is polynomial — grows, but not too fast

O(b") where b > 1 is exponential; this is the first
category of intractable; grows way too fast to be
useful; “NP” class of problems

O(n!) is factorial

Assumes O(n) as a “good” estimate

Page 150 gives some practical implications in the
table (* means more than 10'%° years)

Then there are the unsolvable problems

Halting problem

Integers and division

Number theory!
Why?

— Basis of important algorithms in computer science
Especially divisibility of numbers

— Prime number — critical to cryptography

— Modular arithmetic (division and getting a
remainder)

Divisibility
— Ifaand b are integers, a # 0, a divides b if there is

an integer ¢ such that b=ac. ais a factor of b, and
b is a multiple of a. a | b.

— Note we're primarily interested in integers.

Some basic proprerties:
— if alb and a|c, then a|(b+c)
* Proof: use the definition and add them together.
— if a|b, then albc for all c
— if alb and b|c, then ajc.

— if a]b and a|c, ajmb+nc whenever m and n are
integers (just apply the 2" property to 1)

Primes

A positive integer p greater than 1 is called prime
if the only positive factors of p are 1 and p.

— An integer greater than 1 that is divisible by others
is composite.

— Note greater than 1; 1 is neither prime nor
composite.

— First few primes?
Leads to fundamental theorem of arithmetic

— Every positive integer greater than 1 can be
uniquely written as a prime or as the product of two
or more primes where the prime factors are written
in the order of nondecreasing size.

— “Prime factorization” of any number
If n is a composite integer, then n has a prime
divisor less than or equal to the square root of n

— Useful in determining primality of reasonably small
numbers, e.g., show than 101 is prime.

There are infinitely many primes.

— Use the fundamental theorem of arithmetic, and
generate a prime Q such that it's the product of all
known primes, plus 1.

Primes (ll)

* Quest to find larger and larger
primes. One such set is the
set of Mersenne primes,
which are integers of the form
2P-1. (Not all are!)

* The ratio of the number of
primes not exceeding x and
x/Inx approaches 1

— In other words, the odds that a
randomly selected positive
iInteger x is prime are
approximately 1/In x.

Division revisited

* Division algorithm — given
integer a and positive integer
d, there exist unique integers q
and r, with 0 <=r < d, such that
a=dqg+r.

— d Is the divisor, a is the dividend,

g is the quotient and r is the
remainder.

—g=adivd,andr=amodd
— Remainders cannot be negative!

GCD and LCM

Greatest common divisor is the largest
integer d such that dlaand d|b. d =
gcd(a,b), where a and b both aren'’t zero

a and b are relatively prime if their gcd is
1.

Can use prime factorization to find gcd

— Take as many factors as possible and multiply
them together.

Least common multiple of positive

integers a and b is the smallest positive

integer that is divisible by both; lcm(a,b)

— Again, can use prime factorization; this time,
need each term, but only max of any common
ones

For positive integers a, b, ab = gcd(a,b) *

lcm(a,b)

Modular arithmetic

If a,b are integers and mis a
positive integer, we say a is
congruent to b modulo m if m
divides a—b. Notationisa=b
(mod m)

Another way of saying this is that
two numbers have the same
remainder.

—a=b (mod m)ifamod mand b mod
m

a and b are congruent modulo m if

and only if there is an integer k
such that a = b+km.

All integers congruent to an integer
a mod m lets you create
congruence classes

More modular
arithmetic

 Ifa=b (modm)andc=d(mod m),
then a+c = b+d (mod m) and ac =
bd (mod m)

 Why do we care?

— Hashing is a way of rapidly storing and
retrieving information
* h(k) =k mod m
« Congruences suggest a collision, which
needs to be dealt with.
— Generating random numbers

— Cryptology

« Caesar’s encryption method: f(p) = (p+3)
mod 26

 |In other words, formalizing a very old
mechanism

« Of course, you can use more interesting
functions

 Inverse generates the decryption function

Representing integers

 We've been assuming base 10 all
along. However, computers don't
necessarily use that.

— Computers also use base 2, base 8,
and base 16 commonly.

» Let b be a positive integer greater
than 1. Then if n is a positive
integer, it can be expressed in the
form

— Base b expansion of n

—n=abk+a b+ ... +ab+a,
where k is nonnegative, a,,...,a, are
less than b but also nonnegative, and
a, 7 0.

— For example, binary expansion (pg
169)

Base conversion

Divide repeatedly by the base.

Keep the remainders, but use
them backwards.

This is just a variation of the
previous base expansion.

Algorithm written out on page
171.
Can also use table lookups.

— Remember that hex uses
letters...

Integer algorithms with
respect to base

* Suppose the binary
expansions of aand b are3 a =
(8h-1852---848p); and b = (b_1b,.
2"'b1b0)2.

 How to add?

* We add their rightmost bits and
carry over as necessary.

— Algorithm on page 173; O(n).

— Similar to base 10, just keep
track of base 2.

— Multiplication works similarly.

Computing div and mod

» Just subtract the divisor
repeatedly and increase the
qguotient by 1 as long as you
can.

* The remainder and quotient
are the answer.

— If the dividend was negative, just
flip the quotient.

Euclidean algorithm

Very fast way of determining
the greatest common divisor

Repeatedly divide the larger by
the smaller, and keep the
smaller and remainder.

Therefore, gcd(150,8) =
gcd(8,6) = gcd(6,2) = 2

Based on the following result:
Let a = bg+r, where a, b, q,
rare integers. Then gcd(a,b) =
gcd(b, r).

Algorithm on page 179.

Next time

* Reasoning, induction, recursion

