Administrivia

- Textbooks delayed. ©
- Should I delay the homework?
- No class next Monday - Memorial Day

Proofs

- Theorem: Statement that can be shown true via a proof.
- Conjecture is a statement whose truth value is unknown; turns into a theorem given a proof
- Asiom/postulate are underlying assumptions about mathematical structures, hypothesis, and previously proved theorems
- Rules of inference tie steps together
- Need to avoid fallacies
- Lemma: mini-proof used in other proofs; a corollary is a "side-effect" of a proof.
$4 \square$ Rules of inference
- Need these for proofs
- Modus ponens, or law of detachment
- Example: consider the tautology $(p \wedge(p \rightarrow q)) \rightarrow q$
- Either p is true, in which case $p \rightarrow q$ depends on q, or p is false, in which case $p \rightarrow q$ is always true
- Therefore, this is equivalent to q
- Other rules - see page 58 and 60
- Multiple ways of writing tautologies...

5
\square Valid argument

- An argument is valid if all the hypotheses are true.
- Valid doesn't mean true!
- All the propositions must be true
- Scenario:
- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming, then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.
- Conclusion: we will be home by sunset.
$6 \square$ Fallacy
- An invalid argument
- Fallacy of affirming the conclusion: $[(p \rightarrow q) \wedge q] \rightarrow p$
- Just because q is true, doesn't mean p is
- "If you do homework, then you are smart"; "you are smart"; "therefore you did homework" doesn't fly, i.e., homework isn't the only criterion for becoming smart.
- Fallacy of denying the hypothesis: $[(p \rightarrow q) \wedge \neg p] \rightarrow \neg p$

7

Rules of inference with quantifiers

- Universal instantiation: given $\forall x P(x)$, we can conclude $P(c)$.
- Universal generalization: given $P(c)$ true for all c, we can say $\forall x P(x)$ by selecting a truly arbitrary c.
- Existential instantiation: If $\exists x P(x)$, select an appropriate c for which $P(c)$. We bind " c " to it and use it through the argument.
- Existential generalization: If $P(c)$ is known for a c, we can state $\exists x P(x)$ is true.
- Example:
- "Everyone in this discrete mathematics class has taken a course in Computer Science
- "John is a student in this class"
- implies "John has taken a course in Computer Science."
- Mathematical theorems often omit the universal quantifier (i.e., for all real numbers, etc.) - it's all done implicitly

Methods of proving theorems

- Direct proof: what we've been doing so far
- Assume p is true and use rules of inference to show that q must be true
- Example: If n is an odd integer, then n^{2} is an odd integer
- Definition 1 : n is even if k such that $n=2 k$ and odd if k such that $n=2 k+1$
- Indirect proof: use contrapositive
- Show that if q is false, p must be false
- Example: If $3 n+2$ is odd, then n is odd \rightarrow assume n is even
- Vacuous proof: if the hypothesis p is false, then $p \rightarrow q$ is automatically true
- Example: $P(0)$ where $P(n)$ "If $n>1, n+1>1$."
$9 \square$ Proving theorems (II)
- Proof by contradiction: show that $\neg p \rightarrow q$ is true, i.e., $\neg p \rightarrow F$ or $q=F$. Therefore, $\neg p$ must be false and p must be true.
- Example: Show at least 4 of any 22 days must fall on the same day of the week => assume this is false
- Proof by cases: decouple $\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q$ into $\left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge\left(p_{n} \rightarrow q\right)$.
- Proofs of equivalence: decouple $p \leftrightarrow q$ into $(p \rightarrow q) \wedge(q \rightarrow p)$

Mistakes in proofs, techniques

- Theorem: If n^{2} is positive, then n is positive.
- "Proof:" Suppose n^{2} is positive. If n is positive, n^{2} is positive. Therefore n is positive.
- Why: Let $P(n)$ be " n is positive" and $Q(n)$ be " n^{2} is positive". $\forall n(P(n) \rightarrow Q(n)), Q(n)$ doesn't mean $P(n)$
- How to choose right method?
- Black magic...
- Just a beginning
- We'll keep things simple in the course - I'll allow lots of leeway.

Sets

- A set is an unordered collection of objects.
- Useful way of grouping discrete structures together.
- Everything builds on top of this abstract concept.
- The objects in a set are also called the elements or members of a set.
- Notation \in
- Duplicates make no difference, i.e., $\{1,3,5\}=\{1,1,3,3,5,5\}$
- How to describe?
- List all members $\mathrm{V}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
- Set of integers less than $100=\{1,2,3, \ldots, 99\}$

12
\square Common sets

- $\mathbf{N}=$ natural numbers $=\{0,1,2,3, \ldots\}-$ sometimes not zero
- $\mathbf{Z}=$ integers $=\{\ldots,-2,-1,0,1,2, \ldots\}$
- $\mathbf{Z}^{+}=$positive integers $=\{1,2, \ldots\}$
- $\mathbf{Q}=$ rational numbers $=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0\}$
- $\mathbf{R}=$ real numbers (incl. irrationsal)

Other notations

- Set builder: State the property they must have to be members

$$
-\mathrm{O}=\{\mathrm{x} \mid \mathrm{x} \text { is an odd positive integer less than } 10\}
$$

- Venn diagram
- Remember Universal Set U is the contents of the box
- Venn diagram showing vowels?
- Empty set: $\}$ or \varnothing
- Equal: Two sets are equal iff they have the same elements.
- Subset: $A \subseteq B-A$ is a subset of B if and only if every element of A is also an element of B. - For any set $\mathrm{S}, \varnothing \subseteq \mathrm{S}$ and $\mathrm{S} \subseteq \mathrm{S}$

More set notation

- Proper subset, \subset
- Show equality by showing each set is a subset of the other (can't be proper)
- Can nest sets within sets
- Cardinality of a set is $|\mathrm{S}|$, number of distinct elements in a set, assuming S is finite.
- Power set of S is the set of all subsets of S, or $P(S)$.
$-P(\{0,1,2\})=\{\varnothing,\{0\},\{1\}, \ldots,\{0,1,2\}\}$
$-P(\varnothing)=\{\varnothing\}$
- Power set of a set has 2^{n} elements.
$15 \square$ Tuples and Cartesian Product
- Generally ordered, as opposed to sets
- Ordered n-tuple (a_{1}, \ldots, a_{n})
- Cartesian product of set A and set $B, A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$, i.e.,
$-A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$
- Example: A is the set of students, and B the set of courses at a university - Cartesian product is the set of all possible enrollments of students in courses.
- N-way Cartesian product generates n-tuples (not nested tuples!)
$16 \square$ Set notation with quantifiers
- As I showed last time...
- $\forall x \in \mathbf{R}\left(x^{2} \geq 0\right)$
- Can also use set builder notation
$17 \square$ Set operations
- Union (\cup) is the set that contains those elements that are in A, B, or both. - Generally don't include duplicates
- Intersection (\cap) is the set containing elements in both A and B
- Illustrate using Venn diagrams
- Disjoint if intersection is the empty set.
- Difference, or $A-B$, is the set containing elements in A but not in B.
- Complement, or A with a bar on top, is the complement of A with respect to U (the universal set). - Difference is the intersection of A and the complement of U

Set identities

- Page 89, similar to logical equivalences
- Can use direct proof or membership table to demonstrate
- Example: prove that $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$

Generalized union/intersection, computer representation

- Concept remains same; notation is slightly different - Page 92/93
- How to represent in a computer?
- If finite, use bitstrings, assuming ordered.
- Can use NOT, AND, OR to do complement, intersection, and union.

Functions

- A function f from (set) A to (set) B is an assignment of exactly one element of B to each element of A.
- $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A.
- b is the image of A and a is a preimage of b.
- range of f is the set of all images of elements of A.
- If f is a function from A to B, we can write $f: A \rightarrow B$.
- A is the domain of f and B is the codomain of f.
- f "maps" A to B.
- Examples
- Page 97 for a visual representation
- $f: \mathbf{Z} \rightarrow \mathbf{Z}$ assigns the square of an integer to this integer. Then, $f(x)=x^{2}$.
- Note range and codomain may not be the same.

21

Function Operations

- Real-valued functions can be added and/or multiplied - just "combine" the individual functions

$$
\text { - If } f_{1}(x)=x^{2} \text { and } f_{2}(x)=x-x^{2},\left(f_{1}+f_{2}\right)(x)=x \text { and }\left(f_{1} f_{2}\right)(x)=x^{3}-x^{4} \text {. }
$$

- If a subset of a domain is defined, you can define its image as well. $-f(S)=\{f(s) \mid s \in S\}$.

One-to-one vs. onto

- Functions always map each preimage to a unique value.
- One-to-one suggests that every mapping maps to a unique image, i.e., $f(x)=f(y)$ implies that $x=y$.
- "Injection"
- $f(x)=x^{2}$ is not one-to-one, because of negative values.
- $f(x)=x+1$ is one-to-one.
- Onto suggests that each element of the codomain has a preimage.
- $f(x)=x^{2}$ is not onto, because of negative or skipped integers
- $f(x)=x+1$ is onto (infinite trick)
- "Surjection"
- One-to-one correspondence/bijection if it's both.
- See diagram on page 101.

Inverse and composition

- The inverse of a function, f^{-1}, assigns to an element b in B the unique element a in A such that $f(a)=b$.
- Must be one-to-one correspondence (i.e, one-to-one and onto).
- The composition (f o g$)(\mathrm{a})=\mathrm{f}(\mathrm{g}(\mathrm{a}))$
- Not the same as ($\mathrm{g} \circ \mathrm{f}$)(a).
$24 \square$ Graphs, miscellaneous functions
- Exactly what you'd expect...
- Although not necessarily continuous
- Floor (or greatest integer) function $(\lfloor x\rfloor)$ returns the largest integer that is less than or equal to a real number x.
- Ceiling function $(\lceil x\rceil)$ returns the smallest integer that is greater than or equal to a real number x.
- Graphs of both on page 106
- Note open circles mean open intervals, e.g., floor has same value from $[\mathrm{n}, \mathrm{n}+1$) and ceiling has the same value from ($n, n+1$)
- Various useful properties on page 107
- Is $\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$?

Next time

- Algorithms, growth
- Integers and integer algorithms

