
1

1 CS3203 #1
5/24/04
Janak J Parekh

2 Intro
• Website location
• Instructor, TA contact info, OH time and location
• Textbook
• Course structure (HW: 6*24 + Q = 90 + F = 90 + class participation)
• Homework structure, submission, lateness
• Exams open-book (midterm 6/14, final 6/30)
• Prerequisite (algebra, basic CS concepts)
• Reasonable Person Principle, lecture material, sleeping
• Cheating, feedback

3 Motivation
• “Discrete mathematics is the part of mathematics devoted to the study of discrete objects.”
• Used when objects are counted, when relationships between finite/countable sets are studied, and processes involving a finite

number of steps are analyzed.
– Examples at the beginning of Rosen

• Serves as a basic mathematics course for many computer science topics
• After all, computers expose a “discrete interface”, right?
• It’s the algebra you probably never learned in high-school when you moved up to calculus

– Some duplicates…
• Future classes include set theory, number theory, linear algebra, abstract algebra, combinatorics, graph theory, probability theory

4 Challenge
• Involves not just simple math, but problem-solving and reasoning skills
• Learning problem solving is a lifelong experience

– Maybe you’ll stump me in this class…
• Goes hand-in-hand with becoming not just a good hacker, but a good programmer or a good

Computer Scientist

5 Logic
• First topic, needed to understand the definitions we will use in the rest of the course
• A proposition is a declarative sentence that is either true or false, not both

– 1+1 = 2
– Toronto is the capital of Canada

– What time is it?
– The sky is blue.
– x+1 = 2

• We define the truth value of a proposition to be true (represented as a T) or false (represented as a F)
• Leads to propositional calculus or propositional logic
• Given a proposition, how can we transform it?

– Given variables, how do we work with them?

6 Compound propositions and operators
• Formed from simple propositional statements, using logic operators
• First operator: negation – ¬p suggests “not p” or “It is not the case that p”.
• Negate previous examples?
• We can succintly express this operator using a truth table.
• ¬p is a proposition unto itself – negation “produces” a new proposition

– Unary operator (monadic connective)
– How many possible unary operators?
– Example of “counting”

• Binary (dyadic connective) operators

2

– How many possible such operators?
– We will formally define a few that we find useful

7 Conjunction and disjunction
• “p and q” = p ∧ q = conjunction of p and q

– What’s the truth table for this?
– Example: If p is “Today is Friday” and q is “It is raining today”, p ∧ q would produce what?

• “p or q” is a problem
– What if p and q are both true?
– If the result is true, then disjunction, or p ∨ q

• “Students who have taken algebra or computer science can take this class.”
– Otherwise, exclusive or, i.e., p ⊕ q

• “Soup or salad comes with an entrée.”

• What about the example from conjunction?
• Let’s draw the truth tables…

8 Implication
• Only false if p is true and q is false
• Represented by p q; sometimes called a conditional statement

– “if p, then q”
– “p implies q”
– Not “p causes q”

• Turns out to be extremely useful
– “If I am elected, then I will lower taxes.”
– “If you get a 100% on the final, then you will get an A.”
– “If it is sunny today, then we will go to the beach.”

• Some more interesting examples…
– “If today is Friday, then 2+3 = 5.”
– “If today is Friday, then 2+3 = 6.”
– “If 2+2 = 5, then you are the Pope.”

• Not equivalent to the if-then constructs in programming languages – programming languages short-circuit
the concept.

9 Related implications
• Converse: p q q p
• Inverse: p q ¬q ¬p
• These generally are not equivalent to the original statement.

– Equivalent suggests both compound propositions have the same truth value.
– Let’s draw the tables…
– Use previous examples

• However, the contrapositive is equivalent to the original implication.
– Contrapositive: p q ¬q ¬p
– “If I don’t lower taxes, then I am not elected.”
– “If you are not the Pope, then 2+2 ≠ 5.”

• You can use these concepts with other binary operators
– How about disjunction, conjunction, and XOR?

10 Biconditional
• p ↔ q only holds true if both p and q hold the same truth values
• In other words, “p if and only if q”
• Short abbreviation: “p iff q”
• Problem: in English, we don’t distinguish between implications and biconditionals, and have to use context

and guessing.
– “If you finish your meal, then you can have dessert” generally means biconditional, that is,

• “If you finish your meal, then you can have dessert” and
• “You can have dessert only if you finish your meal.”

– You could say “If and only if you finish your meal, then you can have dessert”, but people generally don’t say that
• Note that converse, inverse, and contrapositive of a biconditional hold true

11 Operator precedence
• Negation comes first

3

• Technically, conjunction takes precedence over disjunction
– Too difficult to remember, so we use parentheses every time

• Conditional (implication) and biconditional operators have lower precedence
• See table 7, page 10
• Example: (p ∨ ¬q) q

– Easiest way to resolve this is to draw a truth table
– You might be able to do this in your head, eventually, but be careful!

12 English Logic
• Often, need to fill in English ambiguities.

– “Summers in New York are hot.”
– “If you are in this course, you are not partying tonight, unless you decide to cut out of the second half.”
– “Janak is older than 20 years and younger than 30 years of age.”
– Fortunately, I’m not trying to take advantage of you in this class…

• Specifications
– “The automated reply cannot be sent when the file system is full.”
– Propositional logic useful for specification
– Consistent: avoid conflicting requirements – must be able to assign truth values to the variables that makes all the expressions true

• Mind games
– “On an island, there are two kinds of inhabitants – knights, who always tell the truth, and the opposte, knaves, who always lie. You

encounter two people A and B. What are they if A says “B is a knight” and B says “the two of us are opposite types”?
– p = “A is a knight” and q = “B is a knight” fails

13 Logic and bit operators
• Bits (binary digits) are base-two decimals, used to represent an entity of information in a

computer.
• Custom: 1 represents T, 0 represents F

– Easily translate truth tables to bits
• A variable is a Boolean variable if it stores either true or false; we can use a bit as a

Boolean variable
• Bit strings are a sequence of zero or more bits.
• On a 32-bit machine, 8 bits = 1 byte = 1 character
• We can do AND (conjunction), OR, XOR in a bitwise fashion.

14 Propositional equivalences
• A tautology is a compound proposition that’s always true; one that’s always false is a

contradiction, and all others are contingencies.
– The third term is never used.

• Can you come up with a tautology or a contradiction?
• Another definition of logical equivalence: p and q are logically equivalent if p ↔ q is a

tautology. We call this p ≡ q.
• Example: show ¬(p ∨ q) ≡ ¬p ∧ ¬q

– DeMorgan’s law

15 Well-known equivalences
• See table 5 on page 24
• Identity
• Domination
• Idempotent
• Double negation
• Commutative laws
• Associative laws
• Distributive laws
• DeMorgan’s laws
• Absorption laws
• Negation laws
• p q ≡ ¬p ∨ q

4

• Implications – contrapositive
• And others…

16 Why use these laws?
• Don’t need to generate truth tables for everything
• Instead, simplify as much as possible before actually computing a truth table
• Example: show ¬(p∨(¬p∧q)) ≡

¬p∧¬q without using a truth table

17 Predicates
• Nice to have these propositions, but sometimes we need unspecified (free) variables

– For example, “x > 3”
• Predicate is a declarative statement that becomes a proposition if every free variable is replaced by a

constant.
– “Is greater than 3”

• We define the propositional function P(x).
– For example, P(x): x > 3 holds for P(4), but ¬P(2).
– “Binding” constants to the free variables

• Can also have multivariable propositional functions.
– Q(x,y): x = y + 3

18 Quantifiers
• What if we want to generalize for multiple possible values of a variable?

– We want to quantify.
• Two common quantifiers: universal and existential quantifications: leads to predicate calculus

– The universal quantification of P(x) is the proposition “P(x) is true for all values of x in the universe of discourse”
– ∀xP(x)
– Note “universe of discourse”: very important
– Existential quantification: “There exists an element x in the universe of discourse such that P(x) is true”
– ∃xP(x)

• Example 1
– P(x): x+1 > x for all real numbers x
– ∀xP(x) holds true
– So does ∃xP(x), by definition

• Example 2
– P(x): x2 < 10 for all positive integers x
– ∀xP(x) holds false, but ∃xP(x) holds true (1, 2 or 3)

19 Quantifiers, cont’d.
• How to show true or false?

– For universal, show one counterexample x
– For existential, must show for all possible counterexamples x

• Binding
– As we talked before, can bind a specific value, but quantifiers are also a binding
– Scope of binding: depends on parentheses
– More complex example: ∀x(P(x)) ∧ ∃x(Q(x))

• If x was the set of integers, give me a P and Q that would produce “true” for this proposition

20 Negation and English
• Much like DeMorgan, we switch quantifiers when negating

– ∀x¬P(x) ≡ ¬∃x(Q(x)), and vice versa
– The English equivalent makes sense

• Negation of “There is an honest politician”?
• Need to practice the English equivalents

– Will be on homework
• Other examples?

– “Every student in this class has studied calculus.”
– “All lions are carnivorous.”
– Depends on the way you define the universe of discourse.

5

21 Nested quantifiers
• Don’t need just one quantifier before each expression

– ∀x∀y(x+y=y+x) for all real numbers x and y?
– ∀x∃y(x+y=0) for all real numbers x and y?
– Note compact representation of predicate

• Interchanging quantifiers
– Be careful of interchanging quantifiers of different kinds
– See table 1, page 50

• Key: understanding what the expression is trying to say
– Given M(x,y): x is the mother of y where x,y are humans,
– ∃x∀yM(x,y): “Someone is a mother to everyone, including herself.”
– ∀x∃yM(x,y): “Everyone is a mother to someone.”
– ∀y∃xM(x,y): “Everyone has a mother.”
– ∃y∀xM(x,y): “Someone has everyone, including herself, as her mother.”

22 Negation with nested quantifiers
• The negation can “propagate through”, and switches each quantifier accordingly
• Example: negate ∀x∃yP(x,y) such that there is no negation symbol before a quantifier

23 More complicated examples
• Everyone has exactly one best friend.

– B(x,y): “y is the best friend of x”
– ∀x∃y(B(x,y) ∧ ∀z((y≠z) ¬B(x,z)))

• Every real number, except zero, has a multiplicative inverse.
– ∀x((x ≠ 0) ∃y(xy = 1))
– Same as ∀x∃y((x ≠ 0) (xy = 1))?

• If they evaluate to the same result, then yes
• Readability

– Why don’t we have to check for y = 0?

24 Next time
• Proofs, Sets, Functions

