Intro

- Website location
- Instructor, TA contact info, OH time and location
- Textbook
- Course structure (HW: $6 * 24+Q=90+F=90+$ class participation)
- Homework structure, submission, lateness
- Exams open-book (midterm 6/14, final 6/30)
- Prerequisite (algebra, basic CS concepts)
- Reasonable Person Principle, lecture material, sleeping
- Cheating, feedback

Motivation

- "Discrete mathematics is the part of mathematics devoted to the study of discrete objects."
- Used when objects are counted, when relationships between finite/countable sets are studied, and processes involving a finite number of steps are analyzed.
- Examples at the beginning of Rosen
- Serves as a basic mathematics course for many computer science topics
- After all, computers expose a "discrete interface", right?
- It's the algebra you probably never learned in high-school when you moved up to calculus - Some duplicates...
- Future classes include set theory, number theory, linear algebra, abstract algebra, combinatorics, graph theory, probability theory

Challenge

- Involves not just simple math, but problem-solving and reasoning skills
- Learning problem solving is a lifelong experience - Maybe you'll stump me in this class...
- Goes hand-in-hand with becoming not just a good hacker, but a good programmer or a good Computer Scientist

5

Logic

- First topic, needed to understand the definitions we will use in the rest of the course
- A proposition is a declarative sentence that is either true or false, not both
$-1+1=2$
- Toronto is the capital of Canada
- What time is it?
- The sky is blue.
$-x+1=2$
- We define the truth value of a proposition to be true (represented as a T) or false (represented as a F)
- Leads to propositional calculus or propositional logic
- Given a proposition, how can we transform it?
- Given variables, how do we work with them?

$6 \square$ Compound propositions and operators

- Formed from simple propositional statements, using logic operators
- First operator: negation $-\neg p$ suggests "not p " or "It is not the case that p ".
- Negate previous examples?
- We can succintly express this operator using a truth table.
- $\neg p$ is a proposition unto itself - negation "produces" a new proposition
- Unary operator (monadic connective)
- How many possible unary operators?
- Example of "counting"
- Binary (dyadic connective) operators
- How many possible such operators?
- We will formally define a few that we find useful

7
 Conjunction and disjunction

- " p and q " $=p \wedge q=$ conjunction of p and q
- What's the truth table for this?
- Example: If p is "Today is Friday" and q is "It is raining today", $p \wedge q$ would produce what?
- " p or q " is a problem
- What if p and q are both true?
- If the result is true, then disjunction, or $p \vee q$
- "Students who have taken algebra or computer science can take this class."
- Otherwise, exclusive or, i.e., $p \oplus q$
- "Soup or salad comes with an entrée."
- What about the example from conjunction?
- Let's draw the truth tables...

Implication

- Only false if p is true and q is false
- Represented by $p \rightarrow q$; sometimes called a conditional statement
- "if p, then q "
- "p implies q "
- Not " p causes q "
- Turns out to be extremely useful
- "If I am elected, then I will lower taxes."
- "If you get a 100% on the final, then you will get an A."
- "If it is sunny today, then we will go to the beach."
- Some more interesting examples...
- "If today is Friday, then $2+3=5$."
- "If today is Friday, then $2+3=6$."
- "If $2+2=5$, then you are the Pope."
- Not equivalent to the if-then constructs in programming languages - programming languages short-circuit the concept.

Related implications

- Converse: $p \rightarrow q \rightarrow q \rightarrow p$
- Inverse: $p \rightarrow q \rightarrow \neg q \rightarrow \neg p$
- These generally are not equivalent to the original statement.
- Equivalent suggests both compound propositions have the same truth value.
- Let's draw the tables...
- Use previous examples
- However, the contrapositive is equivalent to the original implication.
- Contrapositive: $p \rightarrow q \rightarrow \neg q \rightarrow \neg p$
- "If I don't lower taxes, then I am not elected."
- "If you are not the Pope, then $2+2 \neq 5$."
- You can use these concepts with other binary operators
- How about disjunction, conjunction, and XOR?
- $p \leftrightarrow q$ only holds true if both p and q hold the same truth values
- In other words, "p if and only if q"
- Short abbreviation: "p iff q"
- Problem: in English, we don't distinguish between implications and biconditionals, and have to use context and guessing.
- "If you finish your meal, then you can have dessert" generally means biconditional, that is,
- "If you finish your meal, then you can have dessert" and
- "You can have dessert only if you finish your meal."
- You could say "If and only if you finish your meal, then you can have dessert", but people generally don't say that
- Note that converse, inverse, and contrapositive of a biconditional hold true

11
\square Operator precedence

- Negation comes first
- Technically, conjunction takes precedence over disjunction
- Too difficult to remember, so we use parentheses every time
- Conditional (implication) and biconditional operators have lower precedence
- See table 7, page 10
- Example: $(p \vee \neg q) \rightarrow q$
- Easiest way to resolve this is to draw a truth table
- You might be able to do this in your head, eventually, but be careful!
- Often, need to fill in English ambiguities.
- "Summers in New York are hot."
- "If you are in this course, you are not partying tonight, unless you decide to cut out of the second half."
- "Janak is older than 20 years and younger than 30 years of age."
- Fortunately, I'm not trying to take advantage of you in this class...
- Specifications
- "The automated reply cannot be sent when the file system is full."
- Propositional logic useful for specification
- Consistent: avoid conflicting requirements - must be able to assign truth values to the variables that makes all the expressions true
- Mind games
- "On an island, there are two kinds of inhabitants - knights, who always tell the truth, and the opposte, knaves, who always lie. You encounter two people A and B. What are they if A says " B is a knight" and B says "the two of us are opposite types"?
- $p=$ " A is a knight" and $q=$ " B is a knight" fails

Logic and bit operators

- Bits (binary digits) are base-two decimals, used to represent an entity of information in a computer.
- Custom: 1 represents T, 0 represents F
- Easily translate truth tables to bits
- A variable is a Boolean variable if it stores either true or false; we can use a bit as a Boolean variable
- Bit strings are a sequence of zero or more bits.
- On a 32-bit machine, 8 bits = 1 byte $=1$ character
- We can do AND (conjunction), OR, XOR in a bitwise fashion.

Propositional equivalences

- A tautology is a compound proposition that's always true; one that's always false is a contradiction, and all others are contingencies.
- The third term is never used.
- Can you come up with a tautology or a contradiction?
- Another definition of logical equivalence: p and q are logically equivalent if $p \leftrightarrow q$ is a tautology. We call this $\mathrm{p} \equiv \mathrm{q}$.
- Example: show $\neg(p \vee q) \equiv \neg p \wedge \neg q$ - DeMorgan's law

15 \square Well-known equivalences

- See table 5 on page 24
- Identity
- Domination
- Idempotent
- Double negation
- Commutative laws
- Associative laws
- Distributive laws
- DeMorgan's laws
- Absorption laws
- Negation laws
- $p \rightarrow q \equiv \neg p \vee q$
- Implications - contrapositive
- And others...

Why use these laws?

- Don't need to generate truth tables for everything
- Instead, simplify as much as possible before actually computing a truth table
- Example: show $\neg(p \vee(\neg p \wedge q)) \equiv$
$\neg p \wedge \neg q$ without using a truth table
17

Predicates

- Nice to have these propositions, but sometimes we need unspecified (free) variables - For example, "x > 3 "
- Predicate is a declarative statement that becomes a proposition if every free variable is replaced by a constant.
- "Is greater than 3"
- We define the propositional function $\mathrm{P}(\mathrm{x})$.
- For example, $\mathrm{P}(\mathrm{x}): \mathrm{x}>3$ holds for $\mathrm{P}(4)$, but $\rightarrow \mathrm{P}(2)$.
- "Binding" constants to the free variables
- Can also have multivariable propositional functions.
$-Q(x, y): x=y+3$

Quantifiers

- What if we want to generalize for multiple possible values of a variable? - We want to quantify.
- Two common quantifiers: universal and existential quantifications: leads to predicate calculus
- The universal quantification of $\mathrm{P}(\mathrm{x})$ is the proposition " $\mathrm{P}(\mathrm{x})$ is true for all values of x in the universe of discourse"
- $\forall x \mathrm{P}(x)$
- Note "universe of discourse": very important
- Existential quantification: "There exists an element x in the universe of discourse such that $P(x)$ is true" - $\exists x \mathrm{P}(x)$
- Example 1
- $P(x): x+1>x$ for all real numbers x
- $\forall x \mathrm{P}(x)$ holds true
- So does $\exists x P(x)$, by definition
- Example 2
- $P(x): x^{2}<10$ for all positive integers x
- $\forall x \mathrm{P}(x)$ holds false, but $\exists \mathrm{xP}(\mathrm{x})$ holds true (1, 2 or 3)
$19 \square$ Quantifiers, cont'd.
- How to show true or false?
- For universal, show one counterexample x
- For existential, must show for all possible counterexamples x
- Binding
- As we talked before, can bind a specific value, but quantifiers are also a binding
- Scope of binding: depends on parentheses
- More complex example: $\forall x(\mathrm{P}(x)) \wedge \exists x(\mathrm{Q}(x))$
- If x was the set of integers, give me a P and Q that would produce "true" for this proposition
$20 \square$ Negation and English
- Much like DeMorgan, we switch quantifiers when negating
$-\forall x \neg \mathrm{P}(x) \equiv \neg \exists x(\mathrm{Q}(x))$, and vice versa
- The English equivalent makes sense
- Negation of "There is an honest politician"?
- Need to practice the English equivalents
- Will be on homework
- Other examples?
- "Every student in this class has studied calculus."
- "All lions are carnivorous."
- Depends on the way you define the universe of discourse.

Nested quantifiers

- Don't need just one quantifier before each expression
- $\forall x \forall y(x+y=y+x)$ for all real numbers x and y ?
- $\forall x \exists y(x+y=0)$ for all real numbers x and y ?
- Note compact representation of predicate
- Interchanging quantifiers
- Be careful of interchanging quantifiers of different kinds
- See table 1, page 50
- Key: understanding what the expression is trying to say
- Given $M(x, y)$: x is the mother of y where x, y are humans,
$-\exists x \forall y M(x, y)$: "Someone is a mother to everyone, including herself."
- $\forall x \exists y M(x, y)$: "Everyone is a mother to someone."
- $\forall y \exists x M(x, y)$: "Everyone has a mother."
- $\exists y \forall x M(x, y)$: "Someone has everyone, including herself, as her mother."

Negation with nested quantifiers

- The negation can "propagate through", and switches each quantifier accordingly
- Example: negate $\forall x \exists y P(x, y)$ such that there is no negation symbol before a quantifierMore complicated examples
- Everyone has exactly one best friend.
- $\mathrm{B}(\mathrm{x}, \mathrm{y})$: " y is the best friend of x "
$-\forall x \exists y(B(x, y) \wedge \forall z((y \neq z) \rightarrow \neg B(x, z)))$
- Every real number, except zero, has a multiplicative inverse.
$-\forall x((x \neq 0) \rightarrow \exists y(x y=1))$
- Same as $\forall x \exists y((x \neq 0) \rightarrow(x y=1))$?
- If they evaluate to the same result, then yes
- Readability
- Why don't we have to check for $\mathrm{y}=0$?

24 \square Next time

- Proofs, Sets, Functions

