
Privacy-Preserving Distributed Event Corroboration

Janak J. Parekh

Submitted in partial fulfillment of the
Requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2007

c© 2007
Janak J. Parekh

All Rights Reserved

ABSTRACT

Privacy-Preserving Distributed Event Correlation

Janak J. Parekh

Event correlation is a widely-used data processing methodology, and is useful for

the distributed monitoring of software faults and vulnerabilities. Most existing

solutions have focused on “intra-organizational” correlation; organizations typically

employ privacy policies that prohibit the exchange of information outside of the

organization. However, “inter-organizational” Internet-scale correlation holds

promise given its potential role in both software fault maintenance and vulnerability

detection.

In this thesis, I reconcile these opposing forces via the use of privacy preservation

integrated into an event processing framework. I introduce the notion of event

corroboration, a reduced yet flexible form of correlation, enabling collaborative ver-

ification without revealing sensitive information. The framework supports both

source anonymity and data privacy, yet allows for temporal corroboration of a broad

variety of data. It is designed as a lightweight collection of components to enable

integration with existing COTS platforms and distributed systems. I also present an

implementation: Worminator, a Collaborative Intrusion Detection System (CIDS);

it is based on an earlier platform, XUES (XML Universal Event Service), an event

processor used as part of an autonomic software monitoring, reconfiguration and

repair platform.

XUES collected and correlated information from sensors installed in legacy

systems; while it was not privacy-preserving, it laid the groundwork for Worminator

by supporting event typing, the use of publish-subscribe and extensibility support

via pluggable modules. In turn, Worminator is a rewrite of XUES to support

privacy-preserving event types and algorithms, enabling intrusion detection alerts

to be corroborated without revealing sensitive information about a contributor’s

identity, network or services. Worminator is implemented as a corroboration

framework on top of existing IDS sensors, and can detect not only worms but also

“stealthy” scans; traditional single-network sensors overlook or miss them entirely.

Worminator corroborates packet metadata, packet content, and even aggregate

models of network traffic.

The contributions of this thesis include the development of an event processing

framework with native privacy-preserving types, the use of privacy-preserving

corroboration, and the establishment of a practical deployed collaborative security

system. The thesis also quantifies Worminator’s effectiveness at attack detection

and its privacy preservation techniques.

Contents

List of Figures vi

List of Tables xii

1 Introduction 1

1.1 Definitions . 3

1.2 Problem Statement . 7

1.3 Requirements . 8

1.4 Hypotheses . 10

1.5 Thesis Outline . 11

2 Middleware Event Monitoring 13

2.1 Background . 13

2.2 Architecture . 17

2.3 Event Packager: Adapting Events from Sensors to Gauges 21

2.4 Event Distiller: Recognizing Event Sequences 24

2.5 Example Applications . 28

2.5.1 Service Failures . 28

2.5.2 Load Balancing . 30

2.5.3 Quality of Service . 31

2.5.4 Spam Detecting and Blocking 33

i

2.6 Summary . 35

2.7 Privacy Preservation . 35

3 Model 39

3.1 Event Model . 40

3.2 Corroboration . 44

3.3 Pluggable, Event Type-Driven Middleware 46

3.4 Publish/Subscribe Event Infrastructure 48

3.4.1 Distribution and Timestamping 50

4 Related Work 52

4.1 Event Correlation . 52

4.2 Event Distribution . 53

4.3 Software Monitoring Middleware and Autonomic Computing 57

4.4 Distributed Intrusion Detection . 59

4.5 Signature Generation and Exchange 62

4.6 Privacy-Preserving Sanitization and Collaboration 64

4.7 Other Privacy-Preserving Computation 67

4.7.1 Privacy-Preserving Databases and Data Mining 68

4.8 Other Privacy-Preserving Techniques 70

5 Privacy Preservation 72

5.1 Data Privacy . 72

5.1.1 Techniques and Privacy Gain 73

5.1.2 Aggregate Matching . 74

5.1.3 Incremental/N-gram Analysis 75

5.1.4 Temporal Corroboration with Models 78

5.1.5 Model Combination and Comparison 82

5.1.6 Varying Privacy Considerations 82

ii

5.2 Privacy-Preservation Techniques and Transforms 83

5.2.1 Hashing . 83

5.2.2 Bloom Filters . 85

5.2.3 Frequency Transforms . 92

5.2.4 Z-Strings . 95

5.3 Anonymity and Publish-Subscribe Distribution 97

5.3.1 Event Model . 100

5.3.2 Authentication . 101

5.3.3 Malicious TTPs . 101

5.3.4 Anonymity-Supporting Distribution Architectures 102

5.3.5 Routing Options: Channel, Content-Based, Destination-Based 104

5.4 Retrofitting Privacy onto Legacy Event Systems 105

5.4.1 Rewriting Events . 106

5.4.2 Retrofitting Event Distribution Systems 109

5.4.3 Retrofitting Event Correlators 110

5.5 Potential Attacks . 111

5.5.1 Pollution . 111

5.5.2 Watermarking . 112

5.5.3 Collusion . 113

5.5.4 Mimicry . 114

5.6 Summary . 115

6 Privacy and Intrusion Detection 116

6.1 Collaborative Intrusion Detection . 117

6.1.1 Hypotheses . 119

6.1.2 Requirements . 120

6.2 Worminator Overview . 121

6.2.1 Architecture . 123

iii

6.2.2 Implementation and Deployment 124

6.3 Sensors . 125

6.3.1 Misuse Detection . 125

6.3.2 Anomaly Detection . 126

6.4 IP-Based Collaboration and Scan Detection 129

6.4.1 Corroboration Methodology 130

6.4.2 Evaluation and Test Data . 133

6.4.3 Performance and Scalability . 135

6.4.4 Space and Transmission Requirements 142

6.4.5 Corroboration Accuracy . 143

6.4.6 Temporal Corroboration . 147

6.4.7 Privacy Gain . 152

6.4.8 Longitudinal Study of Scan Behavior 163

6.4.9 Conclusion . 185

6.5 Payload-Based Collaboration and Signature Generation 186

6.5.1 Corroboration Methodology 188

6.5.2 Evaluating Corroboration . 190

6.5.3 Performance and Scalability . 195

6.5.4 Corroboration Accuracy . 205

6.5.5 Temporal Corroboration: Z-String Clustering 212

6.5.6 Privacy Gain . 219

6.5.7 Conclusion . 221

6.6 Model-Driven Collaboration . 222

6.6.1 Corroboration Model . 224

6.6.2 Practical Model Distribution 225

6.6.3 Case study: PAYL models . 227

6.6.4 Experimental results . 228

iv

6.6.5 Privacy Gain . 231

6.6.6 Conclusion . 232

6.7 Summary . 232

7 Contributions, Future Work and Conclusion 234

7.1 Thesis Contributions . 234

7.2 Research Accomplishments . 235

7.3 Future Work . 236

7.3.1 Immediate Future Applications 236

7.3.2 Future Directions . 239

7.4 Conclusion . 240

8 Bibliography 242

A Event Packager and Event Distiller Rulesets 252

A.1 Event Packager . 252

A.1.1 Event Packager Rule Language 252

A.1.2 Event Packager Example . 252

A.2 Event Distiller . 253

A.2.1 Event Distiller Rule Language 253

A.2.2 Event Distiller Example . 257

B Well-Known Ports 260

v

List of Figures

2.1 KX Architectural Overview. 18

2.2 Event Packager Internal Architecture. 22

2.3 Event Distiller Internal Architecture. 26

2.4 Failure Detection Pattern. 29

2.5 Sample Pattern to Detect Repeated Emails. 34

3.1 High-level view of model. 40

3.2 Base event type hierarchy. The shaded class represents an abstract

type, while the dashed-border classes represent privacy-preserving

types that may be exchanged in corroboration. 41

5.1 5-grams computed over opaque data. 77

5.2 Temporal Tree Index of Privacy-Preserving Models. 80

5.3 Bloom filter. 86

5.4 Timestamp Bloom filter. 90

6.1 DShield monthly alert record contributions. The graph is not

cumulative, but rather shows the rapid increase in contributed alert

information per month as DShield grew in popularity. 119

6.2 Alert rates, 2-way corroboration. 137

6.3 Alert rates, 3-way corroboration. 137

6.4 Alert rates, 4-way corroboration. 137

vi

6.5 Alert rates, relative scale. 137

6.6 Performance Comparison of Hash Functions for IP/Port Values. . . 139

6.7 Performance Comparison of Hash Functions for IP/Port Values per

Alert. 140

6.8 Performance Comparison of Bloom Filters and Hash Functions for

IP/Port Values. 141

6.9 Hash function false positive rate, 2-way corroboration. 145

6.10 Hash function false positive rate, 3-way corroboration. 145

6.11 Hash function false positive rate, 4-way corroboration. 145

6.12 Bloom filter false positive rate, 2-way corroboration. 146

6.13 Bloom filter false positive rate, 3-way corroboration. 146

6.14 Bloom filter false positive rate, 4-way corroboration. 146

6.15 Merge performance, 16-bit BFs. 149

6.16 Merge performance, 20-bit BFs. 149

6.17 Merge performance, 24-bit BFs. 149

6.18 Merge performance scale. 149

6.19 TSBF average depth, 16-bit. 151

6.20 TSBF average depth, 20-bit. 151

6.21 TSBF average depth, 24-bit. 151

6.22 TSBF average depth scale. 151

6.23 Expiry performance, 16-bit BFs. 152

6.24 Expiry performance, 20-bit BFs. 152

6.25 Expiry performance, 24-bit BFs. 152

6.26 Expiry performance scale. 152

6.27 Space overhead, 16-bit BFs. 153

6.28 Space overhead, 20-bit BFs. 153

6.29 Space overhead, 24-bit BFs. 153

vii

6.30 Space overhead scale. 153

6.31 Space overhead, compressed 16-bit BFs. 154

6.32 Space overhead, compressed 20-bit BFs. 154

6.33 Space overhead, compressed 24-bit BFs. 154

6.34 Space overhead, compressed scale. 154

6.35 Hash set brute-force results. 155

6.36 Bloom filter brute-force results. 155

6.37 Sparse hash set false positive rate, 2-way corroboration. 156

6.38 Sparse hash set false positive rate, 3-way corroboration. 156

6.39 Sparse BF false positive rate, 2-way corroboration. 156

6.40 Sparse BF false positive rate, 3-way corroboration; all score at 0%. . 156

6.41 Sparse hash set brute-force results. 157

6.42 Sparse BF brute-force results. (The y-axis is extended slightly for

visibility at 0% and 100%.) . 157

6.43 Sparse BF (5% noise) false positive rate, 2-way corroboration. 158

6.44 Sparse BF (5% noise) false positive rate, 3-way corroboration. 158

6.45 Sparse BF (5% noise) false positive rate, 4-way corroboration. 158

6.46 Sparse BF (5% noise) brute-force results. 158

6.47 Sparse BF (10% noise) false positive rate, 2-way corroboration. . . . 159

6.48 Sparse BF (10% noise) false positive rate, 3-way corroboration. . . . 159

6.49 Sparse BF (10% noise) false positive rate, 4-way corroboration. . . . 159

6.50 Sparse BF (10% noise) brute-force results. (No matter how many

hash functions are used, all yield ∼ 100% FPs.) 159

6.51 Sparse BF (50% noise) false positive rate, 2-way corroboration. . . . 161

6.52 Sparse BF (50% noise) false positive rate, 3-way corroboration. . . . 161

6.53 Sparse hash set (50% noise) false positive rate, 4-way corroboration. 161

6.54 Sparse hash set (50% noise) brute force results. 161

viii

6.55 Sparse BF (100% noise) false positive rate, 2-way corroboration. . . 162

6.56 Sparse BF (100% noise) false positive rate, 3-way corroboration. . . 162

6.57 Sparse hash set (100% noise) false positive rate, 4-way corroboration.162

6.58 Sparse hash set (100% noise) brute force results. 162

6.59 Sparse BF (100% “new” noise) false positive rate, 2-way corroboration.163

6.60 Sparse BF (100% “new” noise) false positive rate, 3-way corroboration.163

6.61 Sparse hash set (100% “new” noise) false positive rate, 4-way

corroboration. 163

6.62 Sparse hash set (100% “new” noise) brute force results. 163

6.63 Scan length distribution, 5-site scanners. 166

6.64 Geographic distribution of 1-site scanners, by # of alerts and # of IPs.170

6.65 Geographic distribution of 2-site scanners, by # of alerts and # of IPs.171

6.66 Geographic distribution of 3-site scanners, by # of alerts and # of IPs.171

6.67 Geographic distribution of 4-site scanners, by # of alerts and # of IPs.172

6.68 Geographic distribution of 5-site scanners, by # of alerts and # of IPs.172

6.69 Distribution of scanning subnet sizes by varying # min sites. The

top line is 1 site, and the bottom/leftmost line is 5 sites. 174

6.70 Worminator vs. DShield, 2-way through 5-way corroboration. . . . 182

6.71 Worminator vs. DShield, academic vs. commercially-targeted sites. 184

6.72 Performance Comparison of Hash Functions for Packet Payloads. . 196

6.73 Performance Comparison of Frequency Transforms for Packet Pay-

loads. 198

6.74 Performance Comparison of Hash Functions for N-grams. 199

6.75 Cache performance, 3-grams. 200

6.76 Cache performance, 5-grams. 200

6.77 Cache performance, 8-grams. 200

6.78 Cache performance, 10-grams. 200

ix

6.79 Performance Comparison of Hash Functions for N-grams. 202

6.80 HTTP cache performance, 3-grams. 203

6.81 HTTP cache performance, 10-grams. 203

6.82 Performance Comparison of Hash Functions for N-grams given

HTTP traffic. 204

6.83 Performance Comparison of Bloom Filters and Hash Functions for

N-grams given HTTP traffic. 205

6.84 Similarity score comparison of 80 random pairs of “good-vs-good”

alerts. 207

6.85 Corroboration methods comparison. 210

6.86 Raw packet of CRII; only the first 301 bytes are shown for brevity. . 211

6.87 Frequency distribution for the CRII packet 211

6.88 First 20 bytes of the Z-String computed from the CRII packet. 212

6.89 Generated 5-gram signature from the CRII packet; only the first 172

bytes are shown for brevity. 212

6.90 Z-String clustering on www, threshold 1. 215

6.91 Z-String clustering on www, threshold 4. 215

6.92 Z-String clustering for CRII, threshold 1. 215

6.93 Z-String clustering for CRII, threshold 4. 215

6.94 Z-String clustering via Cluster on www. 216

6.95 Z-String clustering via Cluster Delta on www. 216

6.96 Z-String clustering via Cluster for CRII. 216

6.97 Z-String clustering via Cluster Delta for CRII. 216

6.98 Z-String Cluster Delta lengths on www. 217

6.99 Z-String Cluster Delta lengths for CRII. 217

6.100 Z-String Cluster Delta, Manhattan distance results. 217

6.101 Z-String CRII prevalence, 25,000 packets. 218

x

6.102 Z-String CRII prevalence, 100,000 packets. 218

6.103 First centroid for port 80, length 1058 for model1 (top) and model4

(bottom). 229

A.1 Event Packager example. 258

A.2 Event Distiller example. 259

xi

List of Tables

6.1 Statistics on Collected IP-based data. 134

6.2 Alert Rates of Participating Worminator Sites. 135

6.3 Bloom filter sizes; all sizes are in bytes. 143

6.4 Maximum and average scan lengths for 1–5 sites, by source IP/site,

in days. 165

6.5 Top 10 stealthy scanners detected at 4 sites. 167

6.6 Top 10 stealthy scanners detected at 5 sites. 167

6.7 Subnet search results for 207.218.223.0/24. 168

6.8 Top 10 noisy scanners by stealthiness, 4 sites. 169

6.9 Top 10 noisy scanners by stealthiness, 5 sites. 169

6.10 Top 10 noisy scanners by # alerts, 4 sites. 170

6.11 Top 10 noisy scanners by # alerts, 5 sites. 170

6.12 Statistics on scanning subnets. 173

6.13 Academic-only scanners, top 10 by # alerts. 175

6.14 Academic-only scanners, top 10 by stealthiness. 176

6.15 Commercial-only scanners, top 10 by # alerts. 176

6.16 Commercial-only scanners, top 10 by stealthiness. 176

6.17 Top ports by frequency, 1+ site scans. 178

6.18 Top ports by frequency, 2+ site scans. 178

6.19 Top ports by frequency, 3+ site scans. 178

xii

6.20 Top ports by frequency, 4+ site scans. 178

6.21 Top ports by frequency, 5+ site scans. 178

6.22 Top ports by # IPs, 1+ site scans. 179

6.23 Top ports by # IPs, 2+ site scans. 179

6.24 Top ports by # IPs, 3+ site scans. 179

6.25 Top ports by # IPs, 4+ site scans. 179

6.26 Top ports by # IPs, 5+ site scans. 179

6.27 Most popular (IP, port) tuples by source IP seen at 4 sites. 180

6.28 Most popular (IP, port) tuples by source IP seen at 5 sites. 181

6.29 Top 10 stealthy scanners detected at 5 Worminator sites as well as

DShield. 183

6.30 Top ports by # IPs, 4+ site scans not in DShield. 185

6.31 Top ports by # IPs, 5+ site scans not in DShield. 185

6.32 Manhattan distance from Raw-LCSeq; lower is better. 208

6.33 Manhattan distances between models by three metrics. 230

6.34 Testing PAYL using model1 and model2, and their aggregate. 231

6.35 Testing PAYL using model1 and model3, and their aggregate. 231

xiii

I dedicate this thesis to Sal Stolfo, whose mix of tireless

encouragement and constant pressure was the main reason I ever

finished this research. He thought nothing but of his students and

gave selflessly of himself, to the point of illness shortly after my

defense. Sal, may you have a speedy recovery and get back to what

you do best: encouraging and supporting students to succeed in

their research. Thank you so much for everything.

xiv

Acknowledgements

I would first like to thank Gail Kaiser, my advisor; she was instrumental in helping

me start my research and guided me through the veritable Ph.D. minefield with

aplomb. I would also like to thank my co-advisor, Sal Stolfo, and the rest of my

committee (Al Aho, Wenke Lee, and Dan Rubenstein) for their involvement and

useful feedback. I would also like to acknowledge my colleagues in this work,

including Gabriela Cretu, Ke Wang, Vanessa Frias-Martinez, Weijen Li, Michael

Locasto, Angelos Stavrou, and Angelos Keromytis for their help on Worminator;

and Phil Gross, Suhit Gupta, Gaurav Kc, Peppo Valetto, and Enrico Buonnano for

their work on KX. I also thank the other members of PSL, IDS, and NSL for putting

up with me.

I would also like to thank Panagiotis Manolios and Peter Dillinger for their

suggestions in Bloom filter design, and David Garlan, Bradley Schmerl, and

George Heineman for their timely participation and assistance in developing and

successfully demonstrating KX. Thanks also go to David Dagon and Philip Chan

for their assistance in the deployment and testing of Worminator.

Finally, I would like to thank my family, including my mom and my dad for

their infinite patience; my sister, for going through a program as long as mine, to

demonstrate I’m not the only insane one in the family; and, last but not least, my

dear friend (and now Professor) Katherine Compton for her tireless encouragement.

xv

http://www.cs.columbia.edu/~janak/me/kati-tp-gift.jpg

1

Chapter 1

Introduction

Event correlation is becoming increasingly useful in the context of distributed

monitoring for software faults and vulnerabilities, as software continues to grow in

size, configurations become more complex, and event/alert logs become increasingly

difficult to understand. This thesis primarily concerns distributed event correlation,

where application-specific data may be exchanged by any number of Internet peers.

The semantics (i.e., types) of this event data can differ greatly based on the

application: it may contain information about method calls in an instrumented

software program, database transactions being executed, or intrusion-detection

alerts triggered by a pattern of suspicious behavior (which in turn can itself be

viewed as correlation). Such events may contain significant amounts of data as it is

transmitted and processed, or may contain metadata about system behavior. As a

result, event streams are generally confined to an individual organization, much

like other strategic organizational data—and correlation systems remain within

the organization’s network as well. However, application semantics are no longer

local area network-based; instead, the pervasiveness of Internet communication

dictates that applications be robust to a broader variety of errors and vulnerabilities.

Additionally, Internet-scale correlation gives any individual node far richer correla-

2

tion data, as a wider range of nodes and their diversity enable a broader variety of

correlation and debugging scenarios ([89], etc.).

To date, however, “inter-organizational” correlation has been limited at best

to organizations that forge business and legal relationships with each other, in

order to avoid releasing sensitive information, such as trade secrets or information

restricted by compliance requirements (e.g., HIPAA [108]). This is at odds with

most current event correlation techniques, which focus on the expressiveness of

correlation capability, as the fundamental working assumption is that almost any

organizational data can be encapsulated into an event. These approaches do not

work with anonymized, limited data exchanges between nodes. Instead, a solution

has to accommodate the notion of an organization’s privacy policy, such as the

disclaimer provided on websites disclosing appropriate practices with collected

customer data.1

Therefore, any solution that forms Internet-scale collaborations must be able

to comply with privacy and information disclosure policies, yet still meaningfully

correlate event data. I directly address this tradeoff via the idea of event corroboration.

Corroboration is a form of collaborative verification, e.g. “organization X corrobo-

rates organization Y’s observation of event e”, implying both X and Y observed an

event of interest. As I describe in detail in this thesis, while corroboration is a subset

of general correlation, it is still surprisingly flexible. It is not limited to simple event

matching, and can cover a large number of useful scenarios, while offering privacy

guarantees for sensitive information. Here, effective cross-site corroboration is

accomplished via the design and implementation of a type-driven event processing

framework adaptable to organizational privacy requirements.

I begin with definitions and a formal problem statement addressed by this thesis,

1My practical experience in dealing with a broad variety of organizations, including academic,
governmental, and business entities, demonstrates that such entities are either ignorant of the
possibilities of collaboration or are actively against it due to the information disclosure problem.

3

and briefly mention the thesis’s contributions to this problem before discussing the

model in chapter 3.

1.1 Definitions

In this section, I formalize some of the terms used in this thesis.

• Events are discrete, structured data objects generated at a specific point in

time [111]. It is important to note that the structure of events are left to be

defined as part of the problem domain. The data that is stored as part of an

application method call, for example, may differ significantly from that of an

intrusion detection alert. Most of the techniques in this thesis can be applied

to almost any event semantics/event structure, although I focus on three:

1. An “opaque” event is one whose contents appear unstructured to an

event subsystem; for example, a network packet’s payload does not have

an a priori structure unless protocol-aware parsing and processing is first

done. Such events can be treated as a fixed blob of data, or may undergo

aggregate analysis, e.g., a frequency distribution over the contents of the

packet.

2. A “flat” event contains a collection of attribute-value pairs. This structure

is common in event distribution systems [19, 135], and allows for fast

processing and routing.

3. A “hierarchical” event may contain collections of attribute-value pairs

arranged into a tree hierarchy. A classic example of a standardized

hierarchical wire format is XML, which has both elements, which can be

nested, and attributes, which are flat and are associated with an element.

4

In addition to the overall structure of an event, I take note of two additional

pieces of metadata:

1. The type of an event is a description specifying both the structural and

semantic aspects of the data contained in that event. By typing events,

we can build standardized mechanisms to process and transform such

data. A type hierarchy relevant to this thesis is described in greater detail

in chapter 3. Note that untyped events can be treated as opaque, which

may reduce the expressiveness of the event to a subsystem, but allows for

a general approach to all events instead of those for which information is

known ahead of time.

2. The timestamp of an event is a global clock value associated with the

generation time of an event. One can also store other timestamps with

an event, such as the “detection” time(s) that triggered this event or

the “publication” time when the event is pushed through a distribution

infrastructure; for the purposes of this thesis, these are considered

specialized timestamps but can substitute, if necessary, for the generation

time. The key attribute a timestamp provides is an ordering on a sequence

of events to accommodate applications that attach a semantic meaning to

such ordering. A timestamp can also provide an expiration mechanism to

ameliorate memory and processing overhead.

Such timestamps can be explicit or implicit; if a timestamp is not associated

with an event on its generation, one can be created during publication

of the event or upon receipt of the event. This may have ramifications

on the precision of event ordering, but the techniques in this these are

orthogonal to timestamping precision.

• Distributed refers to Internet-scale communication and information sharing.

5

The work in this thesis may also apply to large private networks, but the

focus is on the most general Internet-based distribution mechanisms. Peers or

sites may form collaboration groups via a variety of different communication

protocols and topologies. It is important to note, however, that this thesis

does not focus on the communication substrate itself—rather, it is a framework

that supports, and plugs into, a broad variety of publish-subscribe mechanisms.

I discuss publish-subscribe and desiderata for such substrates in chapter 3;

the implementations discussed in chapters 2 and 6 use well-known publish-

subscribe event systems.

• Event Corroboration is precisely defined in section 3.2. Briefly stated, a

corroboration by a participant is a set intersection with its local set of events

against set(s) of events received from another party or parties. Much of corrob-

oration’s flexibility, and equivalence to the aforementioned event correlation,

comes from careful definition of a “set” of events and appropriate comparison

operations during set intersections.

• Privacy also takes many different forms [43]. Some of the more relevant ones

to event correlation include:

1. Data privacy refers to the semantics of the data in the event and whether

they contain information that may be deemed sensitive by the producer

of the event. A privacy transform can be employed to translate a non-

privacy-preserving event to one that enforces data privacy.

2. Source anonymity guarantees the privacy of an event producer’s identity.

A source that is anonymous cannot be traced by recipients of the event:

there is no explicit identifier linking the event to a known producer, the

data in the event cannot reliably be linked to the producer, and the source

cannot be traced from the receipt of the event (e.g., source of a network

6

connection).

3. Physical privacy refers to the access of sensitive information or resources

via direct access to the repositories or interference with servers of data.

This includes intruders, malicious insiders, and resource starvation (e.g.,

denial-of-service) mechanisms.

4. Time privacy corresponds to the fact that the distribution of event arrival

times could yield some aggregate information; more interestingly, the

correlation of curious or insidious activities with event arrival times could

potentially violate the source anonymity stated above.

This thesis focuses on the first two forms of privacy. It is possible to maintain

data privacy without maintaining source anonymity (e.g., an event came from

source X but it is free of what X deems sensitive), as well as vice-versa (e.g.,

it is unknown exactly who the event came from, but it contains classified

information privy to only a small number of organizations). Of course, both

can exist in tandem. With both, I argue that recipients cannot trace the source

or information for relevant applications (i.e., those that are fulfilled by the

requirements in section 1.3). In this thesis, I develop novel concepts in data

privacy and combine them with several well-known anonymity techniques to

accomplish a complete synthesis of the two.

As for the latter two forms, physical privacy poses a unique set of challenges on

its own—most systems secure from remote access have physical backdoors—

and is considered outside the scope of this thesis. Meanwhile, the definition

of events and event correlation assume an ordering amongst events. Some of

the data privacy approaches in the thesis do indirectly provide time privacy,

but full time privacy poses its own unique correlation challenges; a complete

discussion is outside the scope of this work.

7

• A privacy-preserving transformation is a data transformation, d′ = p(d)

for some arbitrary datum d, where the inverse function p−1(d′) cannot be

algorithmically derived and for which brute-force guessing d given a d′ is

not tractable. A classic example of a privacy-preserving transform are one-

way functions, such as the hash function SHA-1 [105]. This thesis uses

several different privacy-preserving transforms, including hashing (§5.2.1)

and frequency transforms (§5.2.3)—some of them well-established but are

used here in novel contexts, while others are novel concepts.

• Finally, a privacy policy is both a promise by an organization to originators of

data contained within the organization, as well as a compliance statement to

consumers of data produced by the organization. It may contain one or both

of the first two privacy requirements, as well as other additional requirements.

Such a policy may be expressed as a legal/paper contract or as a machine-

encoded representation, such as P3P [167]. Chapter 5 briefly discusses the

relevance of privacy policies to this thesis, and chapter 7 discusses future work

possibilities with respect to encoding such privacy policies into our framework

to direct the corroboration done in this thesis.

1.2 Problem Statement

As implied, the problem explored in this thesis is to

8

Design an event processing methodology, appropriate event transfor-
mation techniques, and a distribution and corroboration architecture to
process transformed events that:

• Supports Internet-scale collaboration;

• Approximates generalized event correlation for software reliabil-
ity and network security;

• Enables information sharing between organizations whose pri-
vacy requirements would ordinarily forbid such event-driven
information exchange.

1.3 Requirements

Based on our definitions and initial problem statement, I now establish a set of

requirements necessary for an effective solution to the problem. Ideally, these

requirements should be established as a minimum, but not imposed on the target

application, as certain collaboration groups may choose to share more information

where appropriate.

1. Support data privacy. First and foremost, data in a published event must

correspond to the producer’s privacy requirements. At the simplest level,

this may refer to data sanitization, where rules are established to determine

what part of an event is kept, and what part of an event is removed prior to

publication [110]. However, the applications cited in this thesis are interested

in correlating the sensitive data itself; scrubbing the data from the event

eliminates this possibility, and so a more general approach to transforming

event data is required that enables correlation without revealing content.

2. Support event source anonymity. As described in section 1.1, an event source

must, if it prefers, be able to contribute anonymously. While data privacy

helps in this regard, consideration at the event distribution level must be taken

9

into account. Note that this does not imply that a given event source cannot be

differentiated from other sources, but rather that any one event source cannot

be traced back to its origin. As discussed in section 5.3, differentiation is an

extremely useful technique for enriching correlation. In certain situations,

one may also want to support classification in addition to differentiation, e.g.,

classify source identifiers into aggregate groups without revealing individual

identities.

3. Support event corroboration. Clearly, it is impossible to support every

correlation scenario when the original data is not present. Instead of requiring

completely generalized correlation, which is the research focus of many existing

approaches, I relax this definition to require corroboration as a minimum,

i.e., collaborative verification of observed application behavior. While the

correlator should, if possible, support richer event correlation when shared

data allows it, corroboration is the baseline operation. The techniques and

applications described in this thesis validate that corroboration is effective for

a broad variety of applications.

4. Support privacy-preserving authentication. While the correlator may be

source-agnostic, the producers of events should ideally be authenticated as

a means of providing simple trust management (e.g., to differentiate benign

and malicious entities). However, any such authentication should not require

a producer to reveal their identity to collaborating peers unless they volunteer

that information. Approaches that provide an authentication-free trust model

do exist, but pose their own problems, as described in section 5.3.3. It is

important to note that this requirement does not require that peers actually

transmit event streams through the authenticator.

5. Support heterogeneous privacy requirements. As already indicated, an

10

organization may volunteer to contribute more information than necessary as

per the above requirements. Others may employ a finer-grained differentiation;

for example, internal identities may be prohibited from being exchanged,

while externally-originating identities may be communicable. The framework

must be able to support these heterogeneous requests and support correlation

between them.

6. Heterogeneous application support. Not only should the framework support

different privacy policies, it should support different datatypes for different

applications. The notion of privacy-preservation is broadly applicable to more

than just one specific problem, and this thesis puts forward the notion of

separating the privacy-preservation requirement from the application at hand.

7. Near real-time performance. While the framework does not need to support

hard real-time requirements, it should support the ability to keep up with

event streams during runtime. This is especially significant for applications

that generate large numbers of events.

Other requirements have been previously implied, so we simply list them here:

The framework must be Internet-scale, supporting cross-site and cross-organization

collaboration, and it must support temporal correlation, enabling the creation of

corroboration rules with temporal constraints.

I now state the two hypotheses of this research: privacy-preserving mechanisms

and event typing.

1.4 Hypotheses

1. The addition of privacy-preserving mechanisms (source anonymity, data privacy) will

enable effective correlation despite organizational privacy-preserving requirements.

11

More precisely, the implementation in section 5 will demonstrate that temporal

event corroboration remains practical even after the addition of both source

anonymity and data privacy-preserving transforms.

2. A typed event-driven framework provides a solution for matching heterogeneous

organizational information-sharing policies with different privacy mechanisms. The

model presented in chapter 3, using privacy-preserving event structures and

a type-enabled event processing infrastructure, maps to Worminator’s use of

Bloom filters, frequency models, Z-Strings, etc., as discussed in chapter 6.

1.5 Thesis Outline

The rest of this thesis is organized as follows.

• First, chapter 2 introduces the decentralized correlation model and motivates

the development of privacy-preserving mechanisms. It details the architec-

ture and implementation of XUES (XML Universal Event Service), an event

processor used as part of an autonomic software monitoring, control and

effector platform called KX (Kinesthetics eXtreme), which originally was not

privacy-preserving. At the end of this chapter, several example applications

are discussed that need privacy-preserving mechanisms to be feasible.

• Next, given the definitions and problems introduced by the introduction

and the middleware monitoring chapters, chapter 3 introduces the core

corroboration model—later used in, but not limited to, the applications

described in chapter 6. Chapter 4 discusses work related to this model in

several fields, including software engineering and intrusion detection.

• Chapter 5 then abstracts the problem and discusses, at an abstract theoretical

level, techniques that can be used to make such frameworks privacy-preserving

12

and requirements in general to attain a desirable level of privacy. It addresses

both the creation of new frameworks and the concept of retrofitting privacy

onto existing architectures, such as XUES.

• Chapter 6 finally details Worminator—an architecture and implementation

that, from the ground up, contains the necessary privacy-preserving and

event typing features necessary for the area of collaborative intrusion detec-

tion. A significant evaluation is conducted for three main applications—

IP-based intrusion alert dissemination, privacy-preserving payload-based

anomaly exchange/signature generation, and traffic model-based intrusion

detection/profiling.

• Finally, the thesis concludes with chapter 7 and discusses possible venues of

future work.

13

Chapter 2

Middleware Event Monitoring

This chapter describes XUES, or XML Universal Event Service, the initial event-

processing middleware developed in this thesis, and in particular the Event Packager

and Event Distiller components, used as part of a larger framework called KX, or

Kinesthetics eXtreme.

In this chapter, I1 briefly describe the background and motivation for developing

this middleware. After the overview, KX’s architecture and implementation are

detailed; several example applications of the framework are also described. Finally,

I then conclude with a discussion of how privacy becomes an issue once such a

system is deployed in a distributed environment. The later chapters in this thesis

tie the middleware motivated here to privacy mechanisms, including an abstracted

model (ch. 3), via retrofitting (§5.4), and via a new ground-up design (ch. 6).

2.1 Background

KX was originally designed and implemented as part of an attempt to provide

self-management and self-healing facilities to increasingly complex networked

computer systems and applications that lack such solutions. A surprising number

1KX is joint work with other members of the Programming Systems Lab.

14

of applications today have minimal or nonexistent self-management capabilities;

the result has led to a tremendous interest in what some have termed autonomic

computing [125, 48]. However, most approaches described in the literature for

developing autonomic software systems (e.g., see [66]) ignore legacy software and

the increasingly common assembly of large scale systems from components supplied

by multiple sources, instead assuming the customer or user will be willing and able

to migrate to this new generation of systems. In fact, even when not mandated

by archaic hardware, legacy software may persist indefinitely, even though it was

implemented in “unsafe” languages like C, or in languages no longer in common

use where many expert maintainers are now past retirement age [36], making the

need for autonomic diagnosis, and possibly repair, even greater [123].

Note that by specifying a legacy system here, we mean any system, no matter how

recent, that does not include its own built-in self-management capabilities. Further,

some subsystems of the “systems of systems” of interest may indeed include their

own autonomic or analogous previous-generation fault-tolerance, dependability,

reliability, survivability, etc. facilities, but these alone will not necessarily provide

an “end-to-end” self-management capability for the composite system as a whole;

this issue is argued in greater detail in [159].

A few general-purpose facilities have been developed to automate problem

detection and/or problem correction for pre-existing software. For example, some

new operating systems include engines to automate the collection of crash data [11];

other tools help detect anomalous behavior by monitoring system and application

logs [133]; and a few tools provide administrative control over application behavior

[84]. However, these tools generally leave analysis of what the system is doing (or

not doing), how and why, to a human administrator, who must then determine,

plan and carry out the reconfiguration or repair.

In an attempt to do better, we have developed a generic framework for not just

15

collecting but also interpreting application-specific behavioral and performance

data at runtime. We tailor this interpretation to the application and/or domain by

the introduction of system models that can describe expected correct behaviors

and possibly anticipate error situations (that can automatically be recognized as

having occurred, or not occurred). The models may be relatively simple as well as

incremental in the sense that new rules for system behavior (or misbehavior) can

easily be added as they are gleaned; deep analysis and formal representation of

the target system is not required, but of course would increase value if available.

Further, the framework can support a (software) feedback control loop [62] to

automatically decide when corrections are required, select and instantiate repair

plans, and coordinate the execution (and handle contingencies) of the possibly many

interdependent elements required for target system reconfiguration. Ideally, this

is done with no downtime, while the system continues operation (possibly at a

temporarily reduced level of service).

Our autonomic computing framework consists of four main kinds of compo-

nents: sensors, gauges, controllers, and effectors—as one rendition of a reference

architecture we developed together with a consortium of researchers, as explained

in [68].2 The gauges and controllers are informed by models of the target system,

and thus may be themselves rather generic, with the same components usable over

a range of target systems, whereas the sensors and effectors are typically more

tightly coupled to the target system and/or its operating environment.3

Sensors4 watch the target system to collect primitive data, while separate gauges

aggregate, filter and interpret the sensor data according to system models. This

2The consortium included BBN, CMU, OBJS, Teknowledge and WPI as well as Columbia.
3It is important to note that controllers, which actively adapt software, is outside the scope of this

thesis, but is described briefly in this chapter to provide a “holistic” view of the architecture and
possible applications in which it can be deployed.

4In earlier research, we used the term “probe” instead of “sensor”, but this terminology became
confusing when considering network security, where a “probe” refers to an attacker scan of open
ports.

16

monitoring framework can be used with or without a feedback loop that automat-

ically performs dynamic adaptations. Without the feedback loop, gauges would

typically generate alerts and/or be visualized on a human systems management

console—but providing deeper understanding and more of a “big picture” of the

target system’s activities than earlier human-oriented systems management.

An adaptation framework, like one implemented by our research group in

[160], can supplement the monitoring framework with decision, coordination and

actuation capabilities. Based on the coalesced and interpreted sensor data relayed

by gauges and on modeled information about the target system, a controller makes

decisions on what adaptations (if any) need to be done. This triggers a controller

facility to orchestrate the work of one or more effectors—which interact with the

target system to carry out the low-level tweaks and tuning, and/or coarser subsystem

restarts and reconfigurations, as directed by the adaptation plan.

Our implementation of the monitoring framework is called the XML Universal

Event Service, or XUES; it, along with the Workflakes adaptation framework described

in [160], served as an integral component in our larger Kinesthetics eXtreme framework

(KX, pronounced “kicks”, for short). KX, and XUES in particular, run as a lightweight,

decentralized, easily integrable collection of active middleware components, loosely

coupled via a publish-subscribe event notification facility. We show how XUES

can be used to monitor and analyze, and direct Workflakes to repair, a variety

of target applications employing models of application-level semantics, protocols

and performance requirements, thus effectively achieving the self-configuring,

self-healing, self-managing goals of autonomic computing—but for legacy systems

and/or systems of systems, rather than applying only to new systems with autonomic

properties explicitly designed-in.

Of course, our approach does not necessarily work for all legacy systems; it

is limited by the degree to which the target system enables placement of sensors

17

and effectors and by the availability of application-specific models that can support

analysis of sensor data and definition of repair plans using the effectors. Further,

the configuration of XUES itself as opposed to the (distributed) target system can

become rather complicated under some circumstances, and may require manual

configuration. We briefly describe integration work with the ACME architectural

model [50, 16] to facilitate automatic configuration and deployment; a commercial

implementation could extend our model to make the monitoring system itself

(partially) autonomic.

2.2 Architecture

Our Kinesthetics eXtreme (KX) architecture, shown in figure 2.1, is based on a

common “reference platform”, developed together with other participants in the

DARPA Dynamic Assembly for Systems Adaptability, Dependability, and Assurance

(DASADA) program [32]. As an externalized platform, KX is not intertwined and

tries to avoid interfering with the target system’s conventional functional and extra-

functional communications and computations. Since the gauges and controllers

typically run on separate hosts, the only direct points of possible impact are sensors

and effectors; this can be ameliorated with careful placement and use of these

components. The only a priori knowledge of the specific target system comes

from behavioral models, e.g., architectural models describing the system, as in [49];

system-specific models must necessarily be supplied to a given KX instance in order

for it to monitor and/or dynamically adapt in accordance with those models. Most

runtime knowledge is collected by sensors, although it is sometimes possible for

effectors to perform the equivalent of (limited) sensing duties when their repair

tasks involve localized checks.

In KX, we chose to communicate among sensors, gauges and controllers solely via

18

Legacy system

Component Component Component

Event bus

Event packager
(preprocessing)

Event distiller
(recognition)

DB

Workflakes
(reconfiguration)

Sensors Effectors

Figure 2.1: KX Architectural Overview.

publish/subscribe event notification, using content-based asynchronous messaging

middleware. By leveraging event notification middleware, KX components can be

easily rearranged on-the-fly, with multiple instances of KX gauges and controllers

introduced as needed to address scalability requirements. Any of several available

event notification systems could be used (see related work, §4.2); we chose Siena

(Scalable Internet Event Notification Architecture) from U. Colorado at Boulder [20],

as among the most advanced distributed event propagation systems where both

source code and support were readily available. Although we have experimented

with publish/subscribe communication between controllers and effectors, point-to-

point communication is normally employed because the controller usually invokes

19

specific effectors, who must report back unambiguously to that controller to achieve

coordination (although this communication may sometimes be asynchronous, as

explained in [159]).

No particular sensor or effector technology is formally part of the KX infras-

tructure, as the best selection among potential technologies must consider the

implementation details of the target system and can vary widely. We have to date

used mainly our own Worklets mobile agent technology for effectors [161]. Our

development of the Worklets platform was originally intended for other purposes

[70] and preceded the rest of KX, but it applied nicely to the reconfiguration and

repair requirements of our case studies. Other techniques we have experimented

with for effectors include JMX management beans [149] and SOAP-based interfaces

for synchronous remote calls.

We have employed a number of different sensor solutions developed by others.

Some of these inject callbacks into source code (when source code is available and

recompilation is feasible), such as WPI’s AIDE [61, 51]. Others modify bytecode

or binaries, such as OBJS’ ProbeMeister [119]; replace DLLs or other dynamic

libraries, such as Teknowledge’s mediator connectors [8]; operate in the surrounding

environment, e.g., to inspect network traffic, such as [128] (and chapter 6); or monitor

operating system resource usage. We have also experimented with using Worklet

mobile agents to deploy and modify sensors, dubbed “Probelets”. Many other

instrumentation technologies are described in the literature, with some commercially

available.

Since the various sensor technologies do not necessarily output the event format

presumed by our gauges, we introduced the Event Packager component as a

preprocessor event translation service to transform into a common format. The

Event Packager also removes duplicates, timestamps sensor events according to

a globally synchronized clock (using NTP [98]) and acts as a “flight recorder” to

20

persistently log the event streams, for later replay or data mining.

The Event Distiller is our main gauge component. It performs sophisticated,

possibly cross-stream temporal event pattern analysis and correlation across con-

tinuous data streams from multiple sensors, to monitor desirable and undesirable

behaviors. When undesirable behaviors occur (or desired behaviors do not occur

within the requisite time-bound), the Event Distiller generates meta-level events

indicating this interpretation; these higher-level notification events also carry in-

formation about the lower-level sensor data that contributed to the analysis. The

Event Distiller is dynamically configured with the rules defining complex event

patterns of interest—that is, the behavioral models regarding what to monitor—so

new models can be added and previous models replaced or removed on the fly.

KX fulfills the controller role by employing our workflow technology called

Workflakes [160, 159]. Workflakes is a decentralized process enactment engine,

specialized towards automated coordination of software entities as previously

suggested in [175], as opposed to the more conventional use of workflow to organize

human activities (e.g., [156]). Workflakes is triggered by gauge outputs to select

and tailor a dynamic adaptation plan to the problem at hand, then instantiates and

superintends a collection of effectors to enact the tasks specified in the workflow.

It is important to note that all of the KX components are separately usable.

Depending on the problem domain, one or more of these components may be used.

For example, if only a few very well-defined repair scenarios are to be performed, or

if KX is being used only to do high-level monitoring and report to a human systems

management console, one may choose to omit the Workflakes controller component,

etc. The Event Packager and Event Distiller components, which together comprise

XUES, are discussed in greater detail in the next few sections, which together with

the experiments presented in section 2.5 constitute the main contributions of this

chapter.

21

2.3 Event Packager: Adapting Events from Sensors to

Gauges

The Event Packager (EP) component is architected to support a number of event

input services, such as duplicate removal and persistent spooling. It utilizes a

plug-in architecture to support a broad variety of incoming event formats (inputs);

a variety of transformations, including timestamping; and a variety of output event

formats and other options (outputs). New plugins can easily be synthesized5; for

example, Instant Messaging (IM) messages can be represented as a form of event

input.

The various plugins are coordinated via a user-definable metabase (metadata

database) that dictates what should be done to the data (transforms) and where

the data should be sent. Transforms can include single-event processing tasks,

such as event clock/timestamp synchronization, static event reformatting/rewriting,

augmentation, and selective or complete event persistence. Typically, the goal is

to have a number of different input formats streamlined, spooled, and aggregated

onto one event stream for the other KX components.

The Event Packager implementation (figure 2.2) was designed from the ground

up to be easy to extend. Developing a new input, output, transform or store

only requires that one Java class be extended, and some simple methods filled in.

This enables the quick and easy creation of wrappers around existing sensors and

middleware. The Event Packager uses its own opaque event format container to

allow future support for new event formats without breaking compatibility with

existing plugins (although for optimal performance, certain plugins might support

introspection into event formats for specialized processing). By using opaque

event containers, minimal per-event decision-making is needed, which enables the

5This includes, but is not limited to, privacy transforms, e.g., Worminator.

22

creation of fast pseudo-pipelined datapaths. If more complex processing is needed,

a transform can be applied, although this may affect event processing speed.

We have developed input plugins that support and standardize Siena and Elvin

messaging, TCP socket streams (transporting both serialized Java objects and XML

messages), console input, email (via sendmail), and AOL Instant Messaging (AIM)

messaging as event sources. A broad array of output formats closely mirrors

these inputs. Transforms include event conversion (from Siena and flat ASCII

formats) and event timestamp synchronization (to compensate for distributed clock

environments).

Event
Packager

OBJS
ProbeMeister

WPI
AIDE

PSL
Probelets

Legacy
probe

Administrator/
Programmer/

Debugger

Event transformsEvent inputs

Siena input

MEET input

Socket input

Console input
(administrative)

Event store mechanism

JDBC event
store

RAM event
store

Serialized event
object store

SQL
database

Siena XML
SmartEvents

ASCII XML
SmartEvents

Simple event
rewriting

Event timestamp
synchronization

FleXML
processing

Event outputs

Siena output

MEET output

Socket output

ELVIN output

Console output
(for debugging)

Store support

ELVIN input

Figure 2.2: Event Packager Internal Architecture.

EP also supports in-memory, JDBC-backed SQL, and flat-file (serialized object)

23

stores. Persistent logging enables the Event Packager to support the reanalysis

of previously-received event streams, particularly as new Event Distiller gauges

are deployed. Multiple persistence techniques may be simultaneously employed

via the plug-in model, so that rules can specify persistence to one or more data

repositories, such as an SQL database, enabling the use of efficient offline analysis

and data mining.

The above components are arranged on-the-fly. Upon startup, the Event Packager

reads its configuration file and instantiates the necessary plugins and begins routing

events. However, plugins can be added (via Java late-binding reflection mechanisms)

and removed during runtime.

EP consists of about 9,000 lines of Java code; the core engine that coordinates

inputs, transforms, outputs and stores is about 2,000 lines, while the bundled

plugins to deal with input, output, transform and store comprise the rest. Some C

glue code handles legacy integration. A typical rulebase is usually a few hundred

lines of XML; a small example is given in the Appendix.

Flexible XML (FleXML) is an XML-based technology used by the Event Packager

as an optional plugin, to intelligently convert from XML-formatted sensor output to

the XML or non-XML event vocabulary expected by the Event Distiller, which uses

Siena-style events consisting of unordered sequences of typed attribute/value pairs.

Siena supports a naı̈ve translation from XML data into its flat event namespace, but

cannot handle hierarchical formats [44]. FleXML supports intelligent tag semantic

discovery via a Metaparser, Tag Processors that can intelligently interpret and convert

a XML tag, and an Oracle that acts as a semantic backend for the metaparser. FleXML

itself is outside the scope of this thesis; see [114] for more detail. FleXML’s primary

use in KX was to support intelligent conversion from XML-formatted sensor output

(such as generated by the Java AIDE probe generation tool [51]) to the vocabulary

expected by the Event Distiller.

24

2.4 Event Distiller: Recognizing Event Sequences

The Event Distiller (ED) is responsible for detecting problematic or anomalous

system activities by matching (gauging) sequences of events emitted by one or more

sensors. An event sequence is defined here as being a nondeterministic ordering of

events ultimately indicating correct vs. incorrect behavior. Such event sequences’

transitions (i.e., between subsequent events) will almost always have timebounds

so as to emphasize the real-time nature of the application domain and to act as a

check on the state overhead needed to support nondeterministic matching.

ED rules define the event patterns of interest as derived from behavioral models,

in an XML vocabulary; the full notation is given in the Appendix. Note that

Event Distiller rules are not related to the Event Packager rulebase specifying

plugin configuration. Each ED rule is partitioned into “states” and “actions”,

where matches amongst the former are mapped to (meta-)events that are emitted

corresponding to the latter. This state/transition representation closely corresponds

to a nondeterministic finite automaton; the idea is that one event may lead to many

different possible subsidiary events and one wants to match whichever ones are

appropriate. Transitions are inherently timebound, enabling temporal validation

as well as a control on the size of the nondeterministic matching problem—an

expiration implies that a transition is no longer possible, and ED can then garbage

collect from the pool of potential matches for incoming events, to reduce the amount

of system state required during execution. An alternative approach would be to

provide backtracking, but this is impractical given the runtime requirements of such

a system and the potentially huge number of events it may witness at any given

time.

The Event Distiller internal architecture (figure 2.3) supports several additional

first-level constructs as defined in the rule language:

25

• Rule chaining is accomplished by allowing published actions from one rule to

match other rules’ states. This late-binding approach enables dynamic rules

to be created and to immediately support chaining.

• Looping provides Kleene star-like functionality, but can also match a specific

number of times.

• Success and failure actions can be made at any matched state. A success action

is published immediately upon reaching the state. A failure action is one

where all the transitions from that state to another state are eliminated and no

further transitions can be done, and is sent upon successful garbage collection

of the current rule instance. Multiple success and failure states can be specified

at each state if desired. Such actions may trigger a rule chaining within the

Event Distiller architecture, may be used by other interested components

(such as controllers that begin applying a repair or reconfiguration workflow),

or may even trigger human notification via some immediate communication

channel, such as a pager.

• Absorption enables a given state match to be exclusive, e.g., if a particular state

of a particular rule enables absorption, all subsequent rules will not match

that state, even if they specify the exact same criteria as the first matched rule.

Note that this implies a partial ordering upon the rulebase—rules at the top

have absorption capability over all other rules in the rulebase, whereas rules

at the bottom can declare absorption but such a declaration has no effect.

• Variable binding enables conditional matching—a value can be bound by the

first match, and further states in a rule may require that value to appear in

subsequent events. This is useful for any sequence of events that refer to a

common shared value, such as the name or unique identifier of a service being

monitored.

26

Event Distiller

Event Packager Other event sources

Internal Event Distiller busGauge output

State
Manager

State data store

Currently
running

(matching)
gauges

Example
gauge
(state

machine)

a

b c

t=20 t=20

fail
state

d
t=5

e
t=10

success
state

t=12 t=inf

Gauge templates

instantiates
& controls

CMU Gauge
Infrastructure

Figure 2.3: Event Distiller Internal Architecture.

Internally, the Event Distiller uses a collection of nondeterministic state engines

for temporal complex event pattern matching. The rulebase is loaded into memory,

and forms a series of “state machine templates”; once an event matches the first

state of one of these templates, an instance of the template is automatically created

to keep progress of the matching through the state machine. While this is memory-

intensive, it allows a richer representation of event sequences: logic constructs are

supported, as are loops, rule chaining, and variable binding as required by the

architecture. Memory usage is mitigated by supporting timeouts and automatic

garbage collection. Timestamped event reordering is also supported, so if events

27

arrive out-of-order within a certain window (1 second by default), the Event Distiller

will rearrange them appropriately so that sequences, and causality, can still be

recognized correctly. Note that such reordering, if done with many sources, requires

some authoritative time declaration as close as possible to the sources themselves,

as network latencies may be unpredictable. If the generator of the events being

matched doesn’t support timestamping, Event Packagers may be placed at the

generation point or at its immediate network peer to create timestamps to enable

reordering.

ED’s repertoire of event patterns may be populated in one of several ways: First,

an XML-format rulebase is supported, where event sequence patterns are specified,

along with timebound parameters among sequence elements as well as success and

failure notifications. There is also a GUI to assist a KX integrator; it also works as a

systems management console for human engineers, although a major goal of the

effort was to automate many repairs within a KX feedback loop (via notifications

to Workflakes). Second, the Event Distiller supports dynamic rule generation—

messages can be sent to the Event Distiller with XML snippets specifying a rule

or a segment of a rule (e.g., to construct new rules on the fly or modify existing

rules). Such rule modifications are received through the publish-subscribe channel,

potentially containing an XML snippet that contains a full rule (e.g., states and

actions) to be matched for all subsequent incoming events. Such rule changes affect

templates for future matches and not currently-matching rules. Third, as with the

Event Packager, other sources can be easily integrated: For instance, support for

CMU’s Acme architectural description language constraints [49] has been integrated:

the Event Distiller can act as a “reporting gauge” onto the Acme Gauge Bus [18],

thereby providing feedback to the corresponding architecturally-oriented repair

tools.

The Event Distiller implementation is about 7,000 lines of Java code. The event

28

pattern rulebase may vary in length depending on the complexity of the behavioral

model, but in experiments were typically a few hundred lines of XML.

2.5 Example Applications

In order to validate our approach to introducing autonomic properties into legacy

systems, we developed several scenarios and corresponding experiments with real,

deployed complex distributed software. We describe three such scenarios in this

section, dealing with service failures, load balancing, and quality of service across

two different legacy systems; additional applications are discussed in [160] and

[120]. Because the authors were not involved in the prior development, deployment

and systems management of these real-world systems, it is not possible to offer full

“before” and “after” comparisons with detailed quantitative data. However, these

case studies demonstrate that it is possible and advantageous to apply our approach

to real-world legacy systems. To show the diversity of plausible application domains,

we also discuss a simple “toy” example that detects and blocks email spam. Finally,

several of these applications and their privacy concerns are reexamined in section

2.7.

2.5.1 Service Failures

We integrated KX with a complex GIS (Geographical Information System) intelli-

gence analysis tool developed at the USC Information Sciences Institute (ISI) and

used experimentally at the US PACOM (Pacific Command), known as GeoWorlds

[27]. GeoWorlds uses a distributed set of services glued together by Jini [150]. While

the system generally works well, services sometimes stop running, with no recourse

except to wait for the request to time out and to manually restart the appropriate

backend subsystem. For example, GeoWorlds’ reliance on harvesting external

29

websites (e.g., www.bbc.co.uk)—for news items that it then maps to locations in the

GIS system—is subject to frequent glitches (DDoS, server failure, etc.), requiring

restart of the GeoWorlds service that is trying to access the external website, possibly

substituting an alternative news site.

Using WPI’s AIDE (Active Interface Development Environment) sensor technol-

ogy [61], we were able to automatically instrument the GeoWorlds Java source code,

and in particular the mechanism that dealt with request-to-service dispatch, with

sensors that would monitor the start and end of method calls that were relevant

to contacting external services. The Event Distiller incorporated rules to monitor

a variety of method calls, making sure that a “termination” call matched up with

each “initiation” call within an appropriate timebound (ranging from seconds to

a minute). AIDE reports method calls in an XML format; these calls were then

translated to a simple attribute/value set via the FleXML Metaparser and fed into

the Event Distiller.

1 <state name="Start" timebound="-1" children="End" actions=""

2 fail_actions="">

3 <attribute name="Service" value="*service"/>

4 <attribute name="Status" value="Started"/>

5 <attribute name="ipAddr" value="*ipaddr"/>

6 <attribute name="ipPort" value="*ipport"/>

7 <attribute name="time" value="*time"/>

8 </state>

9

10 <state name="End" timebound="15000" children="" actions="Debug"

11 fail_actions="Crash">

12 <attribute name="Service" value="*service"/>

13 <attribute name="State" value="FINISHED_STATE"/>

14 <attribute name="ipAddr" value="*ipaddr"/>

15 <attribute name="ipPort" value="*ipport"/>

16 <attribute name="time" value="*time2"/>

17 </state>

Figure 2.4: Failure Detection Pattern.

Figure 2.4 shows an example of a simple event pattern used to perform such

30

failure detection. The incoming sensors reporting Status and State values track

method completion. If for some reason a “FINISHED STATE” is not received within

15 seconds after a method had initiated, the system sends out the “Crash” event;

otherwise, the “Debug” notification is emitted, signifying a “success” and acting as

a record of the operation for future debugging purposes if desired. Note that the

strings prefixed with an asterisk (“*”) designate a variable binding, e.g., the Event

Distiller substitutes all instances of “*service” by the first source that it sees for

this instance of the rule. Thus, this one rule can match a large number of different

sources and subjects.

When the repair system (Workflakes) received a “Crash” event, the repair

involved a simple restart of the service as specified in the message generated by the

Event Distiller. A more sophisticated repair (which was not implemented) would

have coordinated multiple services to prevent having to restart a long transaction

from scratch, instead using partial results leading up to the individual service failure.

Even with the simple repair, however, we were able to automate a process that

previously had been done manually.

2.5.2 Load Balancing

Several GeoWorlds execution scripts rely on computationally-intensive backend

services hosted at ISI, such as a noun phraser that would analyze incoming news

articles and extract nouns for mapping to GIS attributes; crash avoidance and

performance maximization through request relocation was clearly desirable. To

accomplish this, the relocatability of Jini services was exploited to build a load-

balancing solution for GeoWorlds. A system monitor sensor was built in C# to

measure the overall load on the backend system(s) running the noun phraser, and

results were piped into a custom plugin for the Event Packager.

CMU’s Acme architectural description language [16] was used to specify Ge-

31

oWorlds’ architectural composition and system load constraints on the various

services. The Acme Gauge Extractor then generated Event Distiller rules based on

these constraints. During the execution of various services, if this load exceeded a

predetermined threshold for an extended period of time, the Event Distiller detected

and reported it as a violation of the architectural constraints. The triggered repair

caused the service to move to a different Jini-enabled host. We were able to visualize

the load and service state using AcmeStudio’s architectural diagram visualization

tools [17], so one could watch the feedback loop in action, in concert with the

architectural model.

Additional logic was programmed into the Event Distiller rulebase to detect

oscillation, utilizing the feature whereby ED can listen to itself (more generally, a

hierarchy of EDs could be constructed to analyze meta-level events). In particular, if

many (outgoing) Event Distiller messages requesting a load-balance were detected

within a short timespan, one of two strategies could be selected: either eliminate load

balancing between the two oscillating hosts for future repair plans (by notifying the

Workflakes controller), or increase the load threshold in the architectural constraints

(either by patching ED’s own rulebase or by manipulating the Acme constraints

used to generate the rulebase). We implemented only the former, but the latter

approach can also be implemented given appropriate API exposure on the part of

AcmeStudio.

2.5.3 Quality of Service

We had the opportunity to experiment with a commercial J2EE-based multi-channel

Instant Messaging (IM) service used daily by thousands of real-world end-users.

First, on-demand scalability was added: by monitoring user sign-on events and

server request queues, KX was able to determine the load of each member of the

IM server farm and take appropriate actions whenever needed. Repairs, selected

32

on the basis of inferences carried out using Event Distiller rules, encompassed

modifications to the threading model of active servers, or even on-the-fly deployment

and activation of additional server instances and corresponding reconfiguration

of the commercial load-balancer of the IM server farm to redirect client traffic to

these new servers. Failure detection was also supported from a load-balancing

standpoint: information on server failures and interconnections between servers

and backend DBMS entities was similarly captured to facilitate load balancer

reconfiguration to direct client traffic to still-functional servers. The same set of

sensors and effectors, coupled with slightly different Event Distiller gauge rules and

Workflakes repairs, were also used to support controlled and graceful staging of the

service infrastructure; this enabled automated software release deployment without

necessitating a complete shutdown (and service interruption) during transitions.

A set of quantitative results were derived from running and observing the

adapted IM system in lab conditions, with both manual and automated traffic

simulation that reproduced in-the-field demands on the IM service. These results

focus on the improvement via automation in the support, maintenance and man-

agement activities typically carried out on the IM service under field conditions.

Also, some measurements about the development and integration effort necessary

to implement the case study were taken. The most significant results are:

• Substantial reduction in effort for deployment and configuration of an IM

service in the field, originally approximately person-days, with locally present

experts. With KX, that was reduced to 1-2 minutes from a remote location.

• Reduced monitoring and maintenance effort necessary to ensure the health of

the running service. KX completely automated the 24/7/365 monitoring of a

set of major service parameters, as well as the counter-measures to be taken

for a set of well-known critical conditions.

33

• Reduced reaction times and improved reliability: for example, KX recognized

the overload of an IM server in 1-2 seconds and deployed an additional

server replica in approximately 40 seconds. Overload detection was originally

manual, starting with accumulated application logs—a clearly error-prone

approach, potentially endangering service availability.

• Manageable coding complexity: KX sensors, gauges and effectors were derived

from generic code instrumentation templates that were then customized with

situational logic. This resulted in rather compact code: 15 lines of Java code

on average for sensors, and usually less than 100 lines for effectors. The total

code written for this specific case experiment on top of the generic monitoring

and dynamic adaptation facilities provided by the KX infrastructure was

approximately 2,000 lines of Java and XML.

This study demonstrated the utility of a KX end-to-end feedback loop for

service management and application-level QoS in an industrial context. Traditional

application management practices report warnings, alarms and other information

to some knowledgeable human operator who can recognize situations as they occur

and take actions as needed—with very limited automation in the management

platform. Instead, our approach offers a high level of guidance, coordination and

automation to enforce what is a complex but often repeatable and codifiable process.

2.5.4 Spam Detecting and Blocking

In order to demonstrate KX’s flexibility beyond the more conventional system

management cases above, we instrumented Sendmail [137], a popular email Message

Transfer Agent (MTA), to capture messages being received in a target network. More

precisely, a Sendmail milter [136] was created and installed to capture incoming

traffic. Specific attributes about each message (such as source address, subject,

34

and Message-ID) were captured by sensors, encapsulated into events by the Event

Packager, and sent to the Event Distiller. The Event Distiller rules (figure 2.5) would

trigger if multiple (3+) messages containing the same source and Message-ID were

received, by one or more recipients in the administrative domain, within a very

short timespan (less than 10 seconds). Once detection occurred, a mobile agent

effector was dispatched to reconfigure the Sendmail MTA in the target network to

block all further messages from that source address by rewriting the configuration

file and sending a hangup signal (SIGHUP) to Sendmail to reload its configuration.

1 <state name="a" timebound="-1" children="b">

2 <attribute name="from" value="*1"/>

3 <attribute name="messageID" value="*2"/>

4 </state>

5 <state name="b" timebound="100" count="1" children="" actions="A,B"

6 fail_actions="F" absorb="true">

7 <attribute name="from" value="*1"/>

8 <attribute name="messageID" value="*2"/>

9 </state>

Figure 2.5: Sample Pattern to Detect Repeated Emails.

This solution worked for simple spam—i.e., one message sent by a spammer to

sufficient people in the same organization would verifiably get caught and future

communication from that spammer would be blocked. Of course, the organizational

newsletter might also be blocked. While this technique is superseded by better

spam-specific technologies, such as SpamAssassin [7], which uses dynamic rules and

Bayesian learning to distinguish more “stealthy” spam, this example demonstrates

the broad utility of our Event Distiller’s timebound-based pattern matching, in

this case with email-specific semantics. In essence, we were able to add (limited)

autonomic behavior to Sendmail.

35

2.6 Summary

We have presented a general approach to software monitoring via event processing,

enabling the retrofitting of autonomic capabilities onto pre-existing systems designed

and developed without monitoring and dynamic adaptation in mind. Our KX

architecture provides sample components for gauges (Event Distiller) and controllers

(Workflakes), as well as additional components (Event Packager and FleXML) that

act as adaptors for diverse sensor technologies developed by others. KX, and XUES

in particular, has been used to add self-management and self-healing functionality

to several legacy systems and systems of systems, spanning service failures, load

balancing, quality of service and an experiment in spam detection and blocking.

Further, most of the behavioral models employed to date have been relatively

ad-hoc, based on the authors’ understanding of the external behaviors of each system

as opposed to formal models—which are difficult to obtain for many real-world

legacy systems. However, preliminary work with a posteori architectural models

of GeoWorlds, defined in an architectural description language, shows long-term

promise; this concept is discussed further in section 7.3.

2.7 Privacy Preservation

The implementation and applications described in sections 2.2 and 2.5, respectively,

did not use privacy-preserving mechanisms; they were limited-scale or closed-

network deployments, and maximum event expressiveness was desired. We can

envision a number of extensions, however, that demand privacy:

• A broader service failure detection system than that described in section 2.5.1

may collect information on the same process from many different organizations,

either for the benefit of the software developer or for decentralized debugging

36

and response strategies. For example, server crash reports could be correlated

between different organizations’ networks to see if there is a pattern triggering

them. Some research has already been conducted in this regard; application

communities [90] can be viewed as a large-scale application trace corroboration

problem. More precisely, an application community is a decentralized network

of nodes who all run the same application; this homogeneity is leveraged

to distribute instrumentation, minimizing overhead for any one node, while

providing the potential for aggressive response mechanisms for all participants

if one node experiences anomalous behavior.

However, such information may be subject to privacy policies, as they may

contain instance/organization-specific information. Transmitting a privacy-

transformed version may be more palatable. A potential future extension of

this work to support application communities is discussed in section 7.3.

• If a quality-of-service problem was extended to the P2P domain, different

administrative domains would be required to exchange information on login

patterns and server availability. Transmitting such information without any

security could enable any curious participant to glean significant amounts

of information about service deployment, and more seriously, weaknesses

in the system, which could then be exploited via a denial-of-service or other

form of attack. Instead, sharing privacy-transformed representations of the

system may enable response and rebalancing strategies without having to

reveal specific entities and/or their limitations and vulnerabilities.

• Distributed spam detection is an increasingly common application as a means

to combat the fact that spam networks distribute near-identical spam to many

different domains. Tools such as Vipul’s Razor [163] already implement a

simple form of privacy-preserving distributed spam detection; they exchange

37

message hashes, and suspicious hashes may be reported, which essentially

populates a blacklist to combat spam. Spam has evolved, however, to introduce

randomness in the message to defeat these techniques. More advanced privacy-

preservation transforms may be implementable to encourage collaboration

and gain a better global picture of the spam problem—both at the message

and the spammer’s network level.

Adding such privacy mechanisms also enables the development of new applica-

tions for XUES.

• Intrusion detection can be viewed as a software monitoring problem, specif-

ically for malicious behavior. This application is a core privacy-enabled

correlation scenario in this thesis, and is discussed in great detail in chapter 6.

In fact, the Worminator architecture is derived from the Event Packager, and

leverages its pluggable mechanisms to add privacy-enabled event types, with

conversion facilities from “raw” intrusion detection alerts. In addition, the

use of publish/subscribe as a fundamental communications model enabled

interest-based collaboration and eliminated dependence on source identity in

event distribution.

• Document flow analysis is interested in enabling the distributed detection of

“documents of interest”; this can include both documents which contain

malcode (and whose spreading may suggest a worm or a malware attack) or

documents which contain confidential information (and thereby suggesting a

content leak). This application, and an extension of Worminator to support it,

is also discussed briefly in section 7.3.

The key idea here is that all three applications may transmit events amongst

a broad array of interested subscribers but whose content may not be disclosable.

For instance, a “confidential document” may contain ideas which may not be

38

disclosed, even in the documents’ filters. While we would like to use the correlation

capabilities outlined in this chapter, they cannot be directly applied—instead, a

privacy-preserving version must be used. I discuss specific privacy transformations

to support such applications in chapter 5, and as previously mentioned, the realized

architecture in chapter 6. Of course, not all existing event correlation tools may be

trivially migratable to such a privacy-enabled version, and so I also discuss the

notion of retrofitting privacy preservation onto existing event correlation systems in

section 5.4.

39

Chapter 3

Model

In this chapter, I discuss the basic corroboration model and the abstract architecture

necessary to realize it. The model features three main components: a typed event

model, type-driven event processing and correlation middleware, and a publish-

subscribe event infrastructure. This thesis focuses on building solutions for the

first two components, and supports integration with existing publish-subscribe

architectures. Figure 3.1 shows a high-level overview.

As the diagram illustrates, the system runs on top of and connects to an event pro-

ducer; see figure 3.1. These events are read, converted to a standardized type (§3.1),

and a privacy-preserving transform of the data is applied (§5.1) before it is anony-

mously published (§5.3) via event middleware1. Meanwhile, anonymized events

are received from other sources and are corroborated, with temporal constraints

(§5.1.4), against existing local event data by applying the same privacy-preserving

transforms. Finally, corroborated events may optionally be transmitted back to

peers in raw form to enhance their source data set for further corroboration (§5.1.6).

1The model supports anonymity even if the event middleware is not designed for it, as described
in section 5.3

40

Site X

data1=A
data2=B

Site Z

Event source

data1=A
data2=B

...

0101010010
0110111010
1010011010

0101010010
0110111010
1010011010

?

Site Y

Event source

data1=A
data2=B

...

0101010010
0110111010
1010011010

0101010010
0110111010
1010011010

?

Event source

data1=A
data2=B

...

Events generated by X

0101010010
0110111010
1010011010

Obfuscated events

Pr
iva

cy
 la

ye
r

Event distribution
middleware

(pub-sub, P2P, etc.)

0101010010
0110111010
1010011010

Anonymized,
 obfuscated eventsCorrelator

data1=A
data2=B ?

Correlated alerts
(optional)

data1=A
data2=B

data1=A
data2=B

data1=A
data2=B

data1=A
data2=B

Figure 3.1: High-level view of model.

3.1 Event Model

Type-driven event models are not new; [92] suggests that anything from XML to

Java objects can be used for typing. Sun’s Java Message Specification (JMS; see

[151]) is a event message broker that supports the transport of arbitrary Java types.

In fact, the model specified here builds on top of standard OO type structures.

However, a distinction is made as the type hierarchy in this approach, as shown in

figure 3.2, directly contains privacy-preserving mechanisms; additionally, metadata

associated with such events supports heterogeneous correlation. I describe each of

the types in greater detail below.

• Abstract event. The abstract event type at the top of the hierarchy represents

a common underlying event type, and is characterized by metadata that apply

to all event types in the model. The more important among these include the

following:

41

Globally-unique ID
Base event type
Event source
Creation time
Preferred encoding
Event generator
Version number

Abstract Event

Single Event Event ModelEarliest event time
Latest event time

Event Set

Bloom filter

Timestamp
Bloom filter

MRU Bloom
filter

Frequency
Distribution

* 1 *1

Hash Set

Z-String

Figure 3.2: Base event type hierarchy. The shaded class represents an abstract type,
while the dashed-border classes represent privacy-preserving types that may be

exchanged in corroboration.

– A globally unique identifier. Psuedorandom uniform ID (UID) generators

may be used here, such as [60], or the event distribution infrastructure

may itself introduce semantics for identifiers. It is critical that such

identifiers not be tied to the data or the source of the data.

– The base type of the event(s). This is needed to help the correlator

determine if it can support the heterogeneous corroboration of a privacy-

typed event against a given raw event. (For a non-privacy-typed event,

this will describe the type of data contained in the event; non-privacy-

typed lists and sets typically leave this blank and let the constituent

events report their own base type.

42

– The source of the event. As discussed in section 5.3, this is typically a

single identifier, but may contain different information based on disclosure

restrictions.

– The timestamp(s) of the event. As a minimum, this refers to the generation

time of the event itself. As implied in the introduction, there can be

more, e.g., the creation time of the event, the timestamp of the earliest

embedded event, and the timestamp of the latest embedded event. The

latter two are useful in supporting temporal constraints for a list or set.

– A preferred encoding. This is primarily for implementation purposes,

especially when standardized wire exchange formats (e.g., [35]) are used—

most contain an “other data” or “miscellaneous” field which is necessary

to transport privacy-transformed data structures, as most of the data

remains opaque to the format itself.

– The generator of the event. Depending on privacy concerns, this may

not be filled, but in general this refers to the class of event producer. This

is not equivalent to the source of the event; the generator typically refers

to the piece of software (e.g., sensor) whereas the source refers to the

organizational identity of the producer.

– The version number of this event type. The model supports a primitive

versioning scheme, allowing for type evolution and runtime type chang-

ing. The primary intention of this versioning is to ensure participants

keep types synchronized; this is especially significant when changing the

choice of privacy-preserving mechanisms based on evolving privacy re-

quirements, in which a event distributor or correlator may reject versions

deemed too old to use for safe exchange. This thesis does not generally

address type versioning, although the model does allow for more flexible

schemes; possible future versioning extensions are discussed in section

43

7.3.

• Single events. This is the core event type, representing one event instance.

In addition to the baseline, raw event, the model supports at least three

privacy-enabling mechanisms: sanitization (scrubbing of relevant fields, no

data transformation), hashing, and frequency transforms. Sanitization is not

new research, and is not considered further in this thesis.

Hashed structures are optimal for events that need precise matches (either

whole or partial). Frequency transforms, on the other hand, are particularly

useful when considering large, opaque events on which aggregated statistics

are effective. A more detailed discussion and comparison on these techniques

is in section 5.2.

• Event lists/sets. A number of event exchange standards, such as the IETF

intrusion-detection alert exchange standards [31, 35], allow the transmission

of more than one event per communication by concatenating them into a

single event, implying a logical grouping. The model discussed here supports

these by treating them as a form of meta-event that can be created by packing

individual events or unpacked into individual events, which are then treated

as per the events described above.

• Event models. Last, a number of data structures, including both Bloom

filters and frequency models, can represent multiple events without literally

embedding them as per a list or set. This is particularly relevant to privacy-

preservation, as the construction of a model creates a representation but

destroys the underlying actual sensitive data. A model may represent some-

thing as simple as a list of individual events or can be a more comprehensive

profile of a publisher of events over time. While a model is not colloquially con-

sidered a single event in time, there is no reason a model cannot be transmitted

44

as one; it has metadata, including a timestamp, and individual events can

be correlated against a model to see if expected behavior or patterns match.

The next section shows, abstractly, how models can be used in corroboration,

while chapter 5 discusses design challenges, including effective temporal

corroborations when having many events in a single model.

Many of these models can also be made privacy-preserving via the use of

frequency distributions or Bloom filters; one such application, supporting

intrusion detection in Mobile Ad-hoc NETworks (MANETs [132]), is described

in section 6.6.

This typology maps nicely to a object-oriented type hierarchy as per figure 3.2.

Given the ability to do type introspection, a correlator can quickly differentiate

between a hash verification-based corroboration as opposed to a frequency analysis

or a more generic predicate-matched rich event correlation operation, and allow or

deny appropriate correlation mechanisms.

3.2 Corroboration

The corroboration model presented in this thesis is formalized as follows. Envision

a set of participants A,B,C, . . . each with a set of events, i.e., EA,EB,EC, . . . , that they

wish to corroborate with each other. Each set of events E contains many individual

events e, e.g., eA1 , eA2 , . . . , eAn for participant A.

A non-privacy-preserving corroboration done by participant A, CA(EB,EC, . . .), is

a set intersection with the events EA with the supplied event sets. Note that the

subscript notation next toC explicitly designates a participant to do the corroboration,

whereas the parameters are event sets. In other words, here A is the subscriber, or

recipient, of sets or lists of events published by others. We assume that A is privy

to its own events. C essentially computes a set intersection with what has been

45

provided; for example, if A was the subscriber and B was the (only) publisher, we

denote that as

CA(EB) = EA ∩ EB = {eA1 , eA2 , . . . , eAn} ∩ {eB1 , eB2 , . . . , eBn}

yielding EA∩B = {eA∩B1 , eA∩B2 , . . . , eA∩Bn}.
2

However, since each event e may contain sensitive data, we would like to develop

a privacy-preserving corroborator C′A(E′B,E′C, . . .), where E′ either:

• Is a set of privacy-transformed events e′. This presumes the presence of a privacy

transform p(e) = e′, and by extension, E′ = P(E) = {p(e1), p(e2), . . . , p(en)}.

• Is a privacy-preserving model of events e1, e2, . . . , en. This presumes the presence

of a model creation function M(E), where E′ = M(E), and a similarity metric

S(e,E′) → [0, 1] which determines whether or not an individual event e

conforms to the model (and returns a score ranging from 0 to 1, where 0 implies

an event completely dissimilar and 1 completely conformant).

As the above implies, E′ may not actually be a set of events, unlike E; a model,

while incorporating information about the corresponding set, does not have to

explicitly reference each event individually. E′ is deliberately overloaded to connote

the fact that either representation may be published, depending on the privacy

technique used, and they are distributed in the same fashion and using the same

event type structure as discussed in section 3.1.

Given this pair of transforms, we can now write out a first attempt at privacy-

2Note that the indices i on events eA∩Bi do not correspond to the events from individual sets. We
could redefine the terminology as eAi∩B j , but this is not critical for our notation, and so choose the
simpler approach.

46

preserving corroboration if E′ is a event set:

C
∗
A(E′B) = P(EA) ∩ E′B = {e′A1 , e

′
A2 , . . . , e

′
An} ∩ {e

′
B1 , e

′
B2 , . . . , e

′
Bn} =

{e′A∩B1 , e
′
A∩B2 , . . . , e

′
A∩Bn}

While this is technically correct, and is certainly privacy-preserving, it is also

not useful: we are given a set of privacy-transformed events in return. These events,

by definition, are irreversible to the original objects, so we cannot make anything

meaningful of them (apart from |E′|). Additionally, this approach clearly does not

work for a model E′. What we actually want is the following, a special form of

intersection that selects the raw objects from A’s local event list that match the set or

model:

C
′
A(E′B) =

 {eAi | p(eAi) ∈ E
′
B} : E′ is a set

{eAi | S(eAi ,E
′) > τ} : E′ is a model

C
′ is the key privacy-preserving corroboration operation. In the case of model

exchange, τ is an empirically-set threshold. I describe appropriate thresholds for the

applications discussed in chapter 6. The set of privacy and model transformation

functions p,M used in this thesis are discussed in section 5.1.

3.3 Pluggable, Event Type-Driven Middleware

Given a standardized, type-driven event model and a corroboration scheme, I now

discuss the key pieces of the software framework.

• Type modules. Each of the above types are translated into first-class objects.

The system in chapter 6 implement these types as a collection of Java interfaces

and classes. In addition, translation facilities are written to support conversion

from one event format to another as necessary and when possible. For example,

47

during the transmission phase, events are converted into an instance of a

standardized messaging event, which then has code to serialize itself into a

compatible wire format when being sent. This translation facility is defined at

the abstract level and made concrete at lower levels where appropriate. These

facilities include the conversion of non-privacy-typed events to privacy-typed

events.

• Transform modules. In the cases where types cannot be directly converted to

each other (such as model creationM), transform modules are custom-written.

In particular, a number of aggregators are used when converting single events

into lists or sets. Configuration directives dictate appropriate aggregation

intervals (e.g., based on time or volume of event flow).

• Correlation modules. This is the heart of the framework: type-driven tem-

poral correlation. Depending on the scenario, a custom correlator can be

developed as its own standalone module, or a general rule-based correlator

can be adopted. Examples of general correlators include our Event Distiller

(chapter 2) or a third-party solution (see section 4.1 for examples). Third-party

solutions that are unaware of how to handle privacy-preservation can be

used with a retrofitting layer, as discussed in section 5.4. Retrofitting has its

limitations; ideally, a privacy-aware correlator would be used.

• Other modules. Finally, other modules are present to enable communication

in and out of the framework, including mechanisms to connect the framework

to the event publish/subscribe architecture, to potential backend databases,

and even to reporting/frontend modules. These are essentially middleware

“glue” and are not elaborated upon further here.

These modules are tied together by a runtime middleware engine that provides

module lookup, event routing and conversion facilities as needed. Ideally, this

48

engine should be written on a platform that supports late binding and/or dynamic

libraries, to support the installation of new type versions and correlation modules

during runtime. The implementations discussed in this thesis, including the Event

Packager in section 2 and the Worminator engine in section 6, were written in Java,

which support the runtime installation of both.

3.4 Publish/Subscribe Event Infrastructure

As stated earlier, this thesis is not concerned with implementing a new commu-

nication substrate. However, the notion of an event-driven publish/subscribe

infrastructure remains intrinsic to the model, and in addition to the anonymity and

authentication issues as previously discussed, other considerations must be taken

into account.

Briefly, publish-subscribe is a communication model whereby nodes (subscribers)

explicitly join a communication network, and then receive events of interest from

publishers, which may be a subset of the subscriber pool or a completely separate

pool, without explicit source or destination identifiers. Underlying nodes route

messages by using appropriate Internet communication mechanisms, ranging from

IP multicast to far more sophisticated techniques in an overlay network.

Both subscribers and publishers participate with only minimal information about

the underlying network; in particular, the address of a routing node that is already

in the network, possibly credentials to authenticate themselves, and optionally

declared interests, e.g., a pattern that matches the events that they would like to

receive or a predetermined “channel” in which events of interest are being discussed.

Given this information, routing nodes may adopt a number of techniques to optimize

communication efficiency, such as content-based routing (CBR) (discussed in section

4.2).

49

From the perspective of this thesis, several features of any chosen substrate

are desirable. At the same time, any implementation should do its best to work

without these features, so as to support generic applicability to a broad variety of

applications.

• Event type compatibility. Ideally, the infrastructure is type-compatible with

the definitions in section 3.1, as that minimizes the effort to marshal data to

and from different formats, and simplifies communication workflow. JMS, for

instance, supports arbitrary Java datatypes and can be easily integrated.

However, most pub/sub infrastructures do not offer generic typing facilities.

For instance, Siena [19] supports primitive-typed attribute-value pairs. As

a worst-case scenario, the model should support exchange via primitive

String-based datatypes, serializing more complex types into a publishable

form.

• Event latency and ordering. Again, an ideal pub/sub infrastructure minimizes

latency and guarantees ordering. However, anonymity and distributed

mechanisms increase latency and may, in a P2P deployment, disrupt ordering.

In order to effectively correlate, the proposed framework must support a

reordering mechanism, which would employ a sliding window and reorder

incoming events by their generation timestamps. The implementation of

Event Distiller, in section 2, features such a mechanism. If these timestamps

are absent, reordering becomes infeasible and correlation must be performed

in a non-order-specific manner, such as set intersections.

• Encryption is one last optional service to be offered by a pub/sub infrastructure

(optional, as privacy-preserving transforms can act as a “shared secret”, but

potentially important if authentication, metadata and related communication

should be protected). Ideally, a pub/sub infrastructure supports distinct per-

50

channel permission and encryption models, enabling distinct simultaneous

correlation groups and enabling scenarios where certain classes of peers may

not be able to interoperate with each other. However, many CBR-based

infrastructures do not support encryption beyond basic link encryption (e.g.,

SSL) due to the significant cost of decrypting/encrypting data at each node to

make routing decisions.

Very few publish/subscribe systems offer all of the above features, plus a robust

authentication, anonymization, and distribution infrastructure. Nevertheless, by

layering the proposed framework on top of a third-party infrastructure, different

infrastructures can be adopted based on the requirements of the collaboration

environment. Notable related and applicable work in this field, including several

projects done here at Columbia, are discussed in greater detail in chapter 4. A brief

comparative evaluation is included there for their relative applicability to this thesis.

3.4.1 Distribution and Timestamping

As discussed briefly in the introduction, one of several timestamps can be used

during the generation and distribution of an event in order to support, ideally, the

global ordering of events. Depending on the event typing used, the semantics of

a timestamp may vary–especially in the case of event sets or models, which can

contain many individual events.

Ideally, timestamps are assigned upon event creation. This enables more precise

temporal corroboration. In the case of an event model, this timestamp may act as

an upper bound (i.e., the time at which all events have been inserted and the model

is ready to be published) or both lower/upper timebounds may be included (i.e.,

individual events’ timestamps are scanned and appropriately aggregated into the

model’s metadata).

51

If this timestamp is not available, then an implicit timestamp must be created.

This is possible at several different points: at the point of distribution, i.e., when

the event is sent to the distribution framework, or upon receipt by the subscriber

of the event. If the distribution frameworks’ clocks are synchronized (either in an

absolute or logical [83] sense), this alternative produces similar results to having the

producer timestamp the clock. The received timestamp may work sufficiently well

in the case of a synchronized, low-latency publish/subscribe network. In a more

distributed/P2P environment, however, this may lead to ordering errors. In the

case of the model, these timestamps should represent the original event ordering as

much as possible.

The last alternative is to corroborate without timestamps. This reduces the prob-

lem to one of set intersection. Having accurate timestamp data, however, enables

accurate temporal constraints on correlation, which reduces state maintenance in a

correlator (as described in chapter 2).

52

Chapter 4

Related Work

This thesis and the implementations discussed herein relate to four main subclasses

of work in the software engineering and network security/intrusion detection fields.

4.1 Event Correlation

Event correlation is a difficult field to summarize, as nearly every specialization

in Computer Science has its own event correlation techniques. I confine my focus

here to some of the seminal event correlators in the software engineering and

networking communities; some intrusion detection-specific event correlation papers

are discussed in section 4.4.

• Luckham et al. describe Rapide, an “event-based, concurrent, object oriented

language” for describing event patterns to determine event causalities and

Root Cause Analysis (RCA). Rapide has been employed for a broad variety

of applications; [93, 94] discusses the most important context, which is the

enabling of specification and analysis of system architecture. It enables

declarative programming of system and communication architecture for

system monitoring and simulation. [92] is a book by the same author describing

53

Rapide as an event pattern language, and supporting a broader array of event-

driven “Complex Event Processing”.

• Yemini et al.’s work on DECS [181], or Distributed Event Correlation System,

describes techniques for very high-speed event correlation for network and

distributed application management. The “codebook approach” essentially de-

composed events into “codes” in bit vectors, enabling very high-speed lookup

and near real-time performance. DECS is paired with the Netmate network

modeling tool [41]; they used this architecture to model a distributed database

application for decentralized network problem detection (e.g., communication

failure).

There are many other event correlation approaches, but virtually all of them (with

a few notable exceptions, discussed in section 4.6) assume access to raw event data,

and the associated rule languages assume the ability to perform predicate tests on

whole events. Rapide provides a very general, flexible approach to event correlation,

including time constraints, but does not include any privacy-preservation; in theory,

an implementation of this thesis model could be built as a framework on top of

Rapide (as it provides a general programming language), but the project is currently

unmaintained [6]. Yemini et al. use a more compact and fast representation, and

their transformation to bit vectors shares some similarities with the data structures

used in section 5.2.2, but do not embed privacy-preserving transforms.

Event correlators have become ubiquitous enough that general open-source

solutions exist, e.g., [158, 13].

4.2 Event Distribution

While this thesis does not focus on the network aspects of event distribution per

se, it does depend on the use of a reliable, scalable, and anonymity-capable event

54

distribution architecture. I describe several relevant genres of distribution systems,

including Content-Based Routing (CBR) and Peer-to-Peer (P2P) systems, which

would be appropriate for the requirements discussed in chapter 1. Such systems

can be viewed as providers for the proposed infrastructure, as the model would

essentially “ride” on one or more of these systems.

Peer-to-Peer Systems

Peer-to-peer (P2P) systems are an increasingly popular decentralized communication

platform for a wide variety of applications, including event-based systems. They

offer resiliency where centralized systems do not, and can also be employed to

provide anonymity guarantees where no one party has enough information to

determine the identity of a collaborating participant. These systems fall into several

categories:

• Storage and lookup. Chord [144] is a popular distributed lookup protocol,

essentially guaranteeing a reliable assignment of hash keys to nodes in a partic-

ipating network, which may choose to anonymously store data against these

hash keys. It has been used for a wide variety of applications, from distributed

hashtable (DHT) storage to distributed intrusion detection. Similarly, Freenet

[23] pools storage space amongst a large set of nodes, and can be employed to

ensure that the source cannot trivially be traced without a very large number

of cooperating malicious entities in the cloud.

• Cryptographic routing. Onion routing [54] provides anonymity guarantees

in a P2P system using efficient cryptographic techniques; essentially, the data

structure is layered like an onion, with a progressive set of cryptographic

keys that must be decrypted as the message is routed. At the same time, this

layering provides guarantees of confidentiality and integrity via the use of

55

probabilistic memoryless random walks.

• P2P Distribution/Dissemination Architectures. Other distributed P2P in-

frastructures of interest include JXTA [56], Pastry [130], and Tarzan [46]. These

generally do not provide direct anonymity, but could be used in conjunction

with other techniques, typically as a low-level networking topology/overlay.

• Network Scheduling. Network scheduling discusses the problem of efficient

P2P pairings between nodes in a network where participants may rapidly join

and leave. Our own work [88] discussed an architecture called Whirlpool,

which envisioned “rings” of nodes rotating at different velocities; snapshots

of this topology would determine communications for any individual time

quantum. While this provided some desirable decentralized properties, some

data took a very long time (i.e., many epochs) to be fully disseminated.

Content-Based Routing

Content-based routing, or CBR, enables the subscription of events by (as its name

implies) content, instead of requiring subscribers to join a channel or multicast/P2P

group. This enables intelligent routing, as clients are able to specify their interest

more precisely and let the event infrastructure decide whether the event need be

propagated to that node. This often allows for the notion of pushing subscriptions

into the network, enabling the event distribution system to drop or summarize events

at an earlier point in their distribution path, reducing network traffic.

As a consequence of this subscription mechanism, CBR systems have intrinsic

basic event correlation techniques, but also pose unique problems for privacy-

preservation, since the CBR infrastructure generally expects full data access to

enable subscription matching. A few seminal systems are listed here. Note that, in

56

theory, such CBR systems could also be P2P; however, the ones discussed here are

either centralized or tree topology-based.

• Elvin [135] is perhaps the best known CBR publish-subscribe system; it

supports single-message predicate matching, but does not correlate between

events. Elvin also uses a centralized topology; while it supports multiple-

server federations, these are primarily for failure robustness, not arbitrary

routing.

• Carzaniga et al. [19] built Siena, a Scalable Internet Event Notification Archi-

tecture, with a flexible subscription language featuring predicate matching. In

addition, support for “sequence subscriptions” was added to the language

where predicates can be declared on a sequence of events; the subscriber then

receives the sequence of notifications that matched the subscription.

• IBM’s Gryphon [9] has the most extensive correlation facilities available for a

CBR publish-subscribe solution; “event stream interpretation” [182] allows

for both the semantic reduction of data, i.e., Gryphon will rewrite a stream of

events as a single event, and optimistic delivery to counter the slowness of

stream processing.

There are several issues with ensuring that CBR routers provide anonymity;

such desiderata are discussed briefly in section 5.3.5.

Other distribution technologies

Finally, I briefly discuss other distribution methodologies that may be applicable.

Use of these technologies with the model presented in this thesis is left for future

work, but may pose interesting possibilities.

• Cornell’s Astrolabe system [162] provides a different approach: it acts as a

distributed hierarchical information repository, using a replicated DNS-like

57

infrastructure to support a number of applications. They provide an SQL-like

interface as a base model, and define solutions, including management, as

manipulations on top of this repository. Information is summarized towards

the top of the hierarchy, and drill-down is supported to perform after-the-fact

analysis. While they have developed system monitoring solutions on the

Astrolabe infrastructure, their implementation benefits environments where

a large number of nodes may need to know specific application-specific

information and where short latencies are less critical.

4.3 Software Monitoring Middleware and Autonomic

Computing

Autonomic computing, and in particular the notion of self-managing and self-

healing software, is an attractive approach to reducing the time and effort costs of

operating and maintaining software systems, and to increase their dependability and

assurance levels [34]. Related solutions are already being promoted commercially;

several major vendors sell enterprise applications that require little help from IT

staff to run and maintain [57]. I briefly discuss related work to chapter 2 here.

• Several sensor and gauge technologies have been integrated into the event

propagation [182] and network layers, often in hardware via SNMP. These tend

to be optimized for lower-level, high-volume general-purpose packet streams.

They can easily be utilized by KX, which can provide higher-level semantics

to simple matches found in these lower layers. In the commercial arena,

OC Systems has an analogous platform to DASADA sensors and monitors

with their AProbe [106] and RootCause [107] products, while SMARTS offers

their Automated Business Assurance service with “Codebook Correlation

58

Technology.” [154] These technologies are generally noninvasive and rely on

quickly matching against static or predetermined analysis, as compared to our

intent to integrate with application semantics, where new success or failure

rules can be introduced on the fly.

• Distributed software monitoring middleware has also played a role in enabling

autonomic computing solutions. The JAGR project [15] adds self-recoverability

to the open-source JBoss J2EE application server, thereby providing a mid-

dleware autonomic layer for J2EE business logic components (known as

Enterprise Java Beans, or EJBs).

• Both the network and fault management communities have some autonomic

behavior as well. The NESTOR project [78] takes a network-layer approach

to monitoring. Additionally, JSpoon [79] is a language developed for the

NESTOR project that adds “management” attributes to a network architec-

ture. KX may benefit from JSpoon-like semantics in an attempt to enrich

our behavioral models with lower-level network information. Fault manage-

ment systems [143, 141] are also closely-integrated at the systems level, for

telecommunications-level reliability. These systems are largely static, designed

for vertical solutions, and not for complex distributed “systems of systems”.

• Minsky [99] defines a formalism to define whether or not a complex, distributed

system can be termed self-healing; the principal concept is that the system

must have regularities. Further research might help determine if the addition

of KX to an “irregular” legacy architecture can “smoothen” it and provide the

regularities needed to enable such self-healing behavior.

Although autonomic computing is a growing field, and several of the techniques

discussed in this thesis may be used in an autonomic computing context without

loss of generality, the rest of the thesis focuses on the actual privacy transformation

59

and corroboration techniques, upon which such autonomic systems would function

as distributed applications.

4.4 Distributed Intrusion Detection

A Distributed Intrusion Detection/Collaborative Intrusion Detection (DIDS/CIDS)

system is one that employs multiple Network Intrusion Detection and/or Host

Intrusion Detection sensors (NIDS/HIDS), often across multiple local area networks,

and correlates resulting alerts to get a broader picture of Internet-based threats. I

describe some of the more notable literature in DIDS below; many of them focus

on exchange of data within a single organization, e.g., distributed collection and

centralized correlation [145].

• GrIDS by Staniford et al. [139] is perhaps the earliest well-known DIDS; its

name stands for a Graph-based Intrusion Detection System. The graph forms

a hierarchy (tree); data is aggregated at lower-level nodes and summaries

are passed up the hierarchy. A rule engine is used to determine appropriate

aggregation.

• SRI’s EMERALD (Event Monitoring Enabling Responses to Anomalous Live

Disturbances) [121] is not formally a DIDS—it’s technically a NIDS—but

the authors point to its distributed component model as a “composable

surveillance” that scales better than a centralized monitor. Components

include service monitors that act as sensors, and domain/enterprise monitors

that aggregate and interpret sensor information. EMERALD uses event

communication mechanisms, but does not dictate a format to be used. It is

primarily geared towards signature analysis.

• Quicksand, by Kruegel et al. [82], is close to a hybrid of the first two; it is a

60

completely decentralized architecture, like EMERALD, but uses a rule engine

to implement a distributed pattern language (Attack Specification Language,

or ASL). Quicksand is particularly designed for a large network with lots of

sensors, although their experiments focused on a single departmental network.

Recently, more Internet-scale, cross-domain DIDS research has been conducted;

I describe several below.

• CARDS [104] is a prototype distributed intrusion detection system that uses

“attack trees”, or pre-defined sequences of attack steps. CARDS decomposes

global representations of distributed attacks into smaller units (called detection

tasks) that correspond to the distributed events indicating the attacks, and

then executes and coordinates the detection tasks in the places where the

corresponding events are observed. While fast algorithms for signature and

string matching exist, the best known are of complexity O(n log3 n). One

notable follow-up work is constructing new attack sequences to keep the

signature database up to date.

• Cuppens and Miege [28, 29] discuss methods for cooperatively correlating

alerts from different types of intrusion detection systems.

• Anagnostakis et. al. [5] has looked at Internet-scale correlation and detection

from the context of “cooperative immunization”. Their algorithm, COVER-

AGE, is based on a virulence model; they show simulations that demonstrate

its effectiveness. The mechanics of information exchange, however, are not

discussed.

• A study by Moore et al. [101] defines the resources needed to counter

worm propagation. Amongst other important observations, they note that

effective response must be done within minutes of an outbreak, and that

61

this may become more difficult as worms become more aggressive. Most

significantly, their data suggests that content-based filtering supports a much

longer response time than simple IP blacklists.

• Janakiraman et al.’s Indra [67] is one of the first DIDS platforms to explicitly

support a P2P-based communication platform. They also stress that most

existing DIDS platforms only collect data for humans, and that an autonomic

system is more appropriate. Their architecture leverages the Scribe publish-

subscribe protocol [131] running on top of Pastry, a generic P2P routing

substrate. However, at the time of publication this architecture was theoretical—

the implementation was at an early prototype stage.

• DShield [157], built by Ullrich, is the most active DIDS project on the Internet.

It is volunteer-based; anyone can download a client and submit alerts to

DShield. DShield then regularly produces “top 10”-style reports and blacklists

that enable people to update their filters to common threats.

• DOMINO by Yegneswaran et al. [179] organizes a decentralized, hetero-

geneous collection of NIDS sensors into “satellite” and “axis” nodes, with

satellites talking only to axis nodes and the axis nodes forming a overlay

graph between which encrypted traffic is exchanged hourly. The architecture

is mostly theoretical; a small experimental subset has been implemented,

featuring an “active sink” honeypot to collect potentially malicious payloads.

More importantly, the paper measured, using DShield alert logs, the notion of

information gain, and concluded that 40-60 sites enables building summaries

and/or blacklists with high degrees of confidence, and that very few IPs

dominate the alerts.

There are significant differences between the work presented in this thesis and

the works cited above. First, none of the above approaches are privacy-preserving,

62

although some of them use end-to-end encryption to prevent sniffers and man-in-

the-middle attacks. Second, with the exception of DShield (and the corresponding

analysis in [179]), none of the projects above offer a significant implementation

or deployment to verify the hypothesis with collected data; section 6 details

our approach—Worminator—and presents results collected from its deployment.

Finally, Worminator’s modular framework allows for the separation of event

type, application, correlation engine, and the underlying communication substrate,

allowing for a broader set of solutions.

4.5 Signature Generation and Exchange

Another approach is to “eliminate” the privacy-preservation problem by exchanging

only “known-bad” content; this approach is particularly common in the IDS

signature generation community.

• Earlybird [138], Honeycomb [80] and Autograph [72] are some of the seminal

approaches to signature generation; they generally implement string-style

payload comparison algorithms, including LCS, LCSeq, and Rabin fingerprints,

and can be considered similar in nature to the baseline techniques discussed

in section 6.5. Polygraph [103] builds on earlier work on Autograph explicitly

addresses the notion of polymorphic worms using LCSeq-like techniques; the

authors show that even polymorphic attacks must contain invariant substrings,

which is promising for the approaches discussed in section 6.5.

• FLIPS [91] pairs PAYL, one of our own in-house anomaly detectors ([174],

§6.3) with an Instruction Set Randomization infrastructure for zero-day worm

signature generation.

• PADS [155], or “Position-Aware Distribution Signatures”, seek to blend

63

frequency distributions and packet signature positioning.

While several of these systems attempt to sidestep privacy issues by focusing

on signatures generated in an enclave, which may then be distributed, they do not

offer privacy guarantees as to the generated signatures; false positives, in particular,

could convey sensitive content.

Additionally, newer attacks, such as polymorphic worms, have posed challenges

to pure payload-based signature generation. As a result, work has focused on

building semantic-aware or vulnerability-based signatures to handle multiple (or

polymorphic) attacks for the same exploit.

• Kruegel et. al. [81] use structural analysis of binary code and generate

control-flow graphs to catch worm mutations.

• Shield [169] provides vulnerability-specific but exploit-generic filters based

on predefined protocol-based policies.

• Vigilante [26] introduces the notion of vulnerability-specific self-certifying

alerts that focus on filtering undesirable execution control, code execution, or

function arguments, and can be exchanged via P2P systems.

• VSEF [102] builds execution-based filters that filter out vulnerable processor

instruction-based traces.

• COVERS [85] analyzes attack-triggered memory errors on a host and develops

structural memory signatures.

• Nemean [180] uses session-layer and application-protocol semantics to reduce

false positives. Some of these signatures and filter descriptions may be

exchangeable using our techniques.

64

These systems, to some extent, represent the next generation in vulnerability or

exploit-targeting strategies. While the techniques in section 6.5 focus on payload-

based strategies, there is no reason why these systems could be employed instead; I

consider integration of our privacy-preserving techniques with such approaches in

future work.

4.6 Privacy-Preserving Sanitization and Collaboration

The works referenced here are most similar in nature to the proposed work. In

particular, they make privacy preservation one of the key requirements, and support

it to varying degrees.

• Lincoln et al. [86] describe a privacy-preserving mechanism for sharing security

alerts, and addresses several techniques to sanitize alert data, including

scrubbing and hashing. They propose the use of multiple hash functions,

some keyed, to build solutions that avoid dictionary attacks. They also employ

multiple repositories that randomly forward alerts to each other to obfuscate

event sources. There appears to be no implementation, and more seriously, no

privacy evaluation of the above model, despite some small performance tests

of hashing and correlation overhead.

As opposed to Lincoln, et al., this thesis is application-agnostic; while section

6.4 discusses a similar, privacy-preserving CIDS, the infrastructure behind

Worminator can be applied to other forms of intrusion detection or software

fault correlation. Indeed, I describe and implement approaches to support

privacy-preserving collaborative payload anomaly detection. Additionally,

this thesis introduces the notion of a framework to enable scalable, heteroge-

neous privacy-preserving mechanisms, while [86] focuses on a fixed basket of

techniques. Finally, Worminator has several significant differences to enable

65

practical deployment, including the use of Bloom filters, fast Bloom filter

correlation techniques, and publish-subscribe infrastructures. To the best of

my knowledge, the work proposed in [86] remains unimplemented, and in

fact postdates much of the Worminator work. Finally, as I later show, their

work, while good in concept, has several fundamental issues. I demonstrate

how to resolve these and make the approaches described more practical in the

context of Worminator (§6.4.7).

• Kissner just completed a thesis titled “Privacy-Preserving Distributed Informa-

tion Sharing” [74]; some of the results were also published in [75]. She outlines

two different privacy-preserving mechanisms: a polynomial set representation

that supports not only privacy-preserving intersection, but also union and

element reduction (i.e., set count difference), and a pair of hot item algorithms,

one defining an identification mechanism and the other defining a publication

mechanism. The latter two algorithms are closest to the use of Bloom filters

[14] in this thesis; in fact, the HI algorithms use bit vectors that closely

resemble Bloom filters. Her notions of data and owner privacy also closely

correspond to the definition of source anonymity and data privacy in section

1.1. However, there are significant differences.

1. The described algorithms focus primarily on sets and associated mem-

bership tests. The work proposed here takes an event-first approach,

where data have timestamps closely associated with them and used in

correlation. The use of time-based correlation changes the algorithmic

approach significantly.

2. The model proposed here (see section 3) assumes the differentiability of

sources as being privacy-preserving. The work proposed by Kissner

enables either owner non-privacy or complete owner privacy, but does

66

not directly correspond to the indirectly differentiable-but-anonymous

model. The correlation techniques leveraged here require the use of

differentiability, and even classification in special cases.

Most significantly, her thesis focuses on a theoretical, cryptographic approach

to set operations and hot item identification; this thesis uses a set of algorithms

very close to her HI work, but focuses on the correlation itself. An

alternative version of the framework described here could be developed with

her algorithms, and in fact may serve as interesting future work. As a result, I

view the theses as more complementary than competing.

• Huang et al. describe Privacy-Preserving Friends Troubleshooting Network [63],

which extends Wang et al.’s PeerPressure research [170]—a collaborative model

for software configuration diagnosis—with a privacy-preserving architecture

utilizing a “friend”-based neighbor approach to collaboration. The key relevant

aspects of the paper include a variation of secure multi-party computation

problem to “vote” on the popularity of a configuration to determine the

configuration outlier, and the use of hash functions to enable secure multiparty

computation (SMC) to support an unknown set of values; the relation of this

thesis to SMC is discussed further in the next section. Finally, as with the

previous work, they do not address temporal constraints in their correlation

mechanisms.

• Xu [176] introduces the notion of “concept hierarchies” to abstract low-level

concepts, along with the use of entropy, to balance the sanitization and

information gain of alerts; a similar use of entropy may also be applicable

here.

• The JAM project at Columbia University [147] looked at abstracting and com-

paring models of data for bank fraud to enable competing financial institutions

67

to collaborate in catching criminals without releasing sensitive information.

The work in section 6.5, on the other hand, focuses on the validation of byte

content detected at multiple sites as indicators of common attack information;

the JAM work more closely resembles BF model intersection, which I briefly

discuss in section 7.3.

4.7 Other Privacy-Preserving Computation

Statistical transformation. If the data to be correlated is of significant size, a

statistical transformation of the data (such as a frequency distribution) is a convenient

privacy-preserving mechanism; not only is it extremely difficult to reconstitute the

original content given the distribution, but the distribution can also be transformed

in various ways to make the distribution itself difficult to reconstruct.

• Wang’s PAYLoad Anomaly Detector (PAYL [172], [174]) uses the combination of

a 1-gram statistical model with a learning anomaly detector to build extremely

accurate “normal” models of network packet payloads, and can effectively

label anomalous traffic. Additionally, PAYL can generate a signature of

ingress/egress correlated traffic, which can be represented as a substring of the

original payload or as a privacy-preserving Z-string (Zipf distribution) that

cannot be used to reconstruct the original packet(s).

• Wang’s Anagram Anomaly Detector [173] evolves the PAYL work into sup-

porting n-gram statistical models, and not only supports effective and accurate

models of normal traffic and detection of anomalous traffic, but also takes

steps to being robust against mimicry and other evasion techniques against

anomaly detectors.

68

Such techniques are complementary to this thesis; in fact, section 6.5 utilizes both

PAYL and Anagram as top-notch anomaly detectors that can generate payload alerts

that are exchanged using Worminator’s privacy-preserving mechanisms. Other

statistical modelers could be applied in a similar fashion.

4.7.1 Privacy-Preserving Databases and Data Mining

There is a tremendous volume of work on various aspects of data mining and

databases, including secure query mechanisms, statistical databases, secure indices,

etc. I mention here some of the relevant classes of work.

• Statistical databases refer to query engines that may return individually

restricted or perturbed results as privacy-preserving measures; Agrawal et

al. [4] demonstrates that accurate aggregations can still be reconstructed

via decision-tree learning. Lindell and Pinkas [87] expand on this notion

and discuss mechanisms to securely build decision trees over the union of

two otherwise private databases, enabling aggregate data mining operations.

However, statistical databases and aggregate data-mining do not directly

apply to precise matching applications as discussed in this thesis.

• Agrawal et al. [1] also presents mechanisms for supporting privacy-preserving

information sharing across databases; in particular, they develop secure

two-party intersection, equijoin, and cardinality algorithms. Strong privacy

guarantees are accomplished by the use of commutative encryption.

This approach—and many others—fundamentally assume two-party inter-

action, either based on the querier-database model or set operations on two

information-sharing databases. In general, these models do not generally

scale to multiparty event correlation.

69

• Instead of obscuring data, the k-anonymity model (Sweeney [152] and others)

argues disclosure is not an issue as long as the data has been scrubbed of source

information and individual sources cannot be correlated via any subquery of

the raw, anonymized data. The k refers to the minimum number of records

that must have the same value for a given column on any subquery. While this

property can be maintained for statistical aggregation models, this restriction

would be difficult to enforce on a generalized event correlation framework.

• In certain scenarios, the search queries and/or indices may need to be privacy-

preserving; Bloom filters [14] play a significant role in this requirement.

Bellovin and Cheswick [12] support privacy-preserving queries through a

“semi-trusted” third party to accomplish this goal; Bloom filters are used as

search keys. For indices, the goal is to prevent the index from revealing content

that was indexed within it. Bawa et al.’s privacy-preserving index [10] uses

content vectors constructed of Bloom filters. Finally, Goh [52] uses Bloom filters

as a per-document index to track words until they are integrated into a secure

index. The index itself is secured by requiring queriers to obtain key-based

trapdoors for words. In all of these cases, as with information sharing, the

model is two-party interaction, and the database is typically trusted; while

this thesis uses Bloom filters, it relies on a multi-party, untrusted model.

[45] introduced the notion of counting Bloom filters, which stores an integer

value in each array cell instead of a bit value, and thereby supports deletion

via a mechanism extremely similar to insert. This concept serves as the basis

for the MRU and Timestamp Bloom filters described in section 5.2.2.

[10] suggests the probabilistic copying of bits into a Bloom filter to introduce

uncertainty and robustness against curious entities or attackers. A more

extensive approach, along with a detailed evaluation, is described in section

70

6.4.

Additionally, most of the research in this field is more concerned with offline

analysis, as opposed to near real-time event correlation, and the adopted algorithms

and mechanisms differ correspondingly. [2] is more open-ended, and presents a

strawman for a “Hippocratic database” design that respects privacy, regulatory,

retention and other policies. Many of the approaches covered are complementary,

and could be applied as an extension to the proposed framework.

4.8 Other Privacy-Preserving Techniques

• Secure multiparty computation (SMC) ([177, 178], etc.) is a theoretically

attractive way to accomplish privacy-preservation; certain forms of correlation

can be fashioned as such a computation problem. For example, a SMC

approach to intrusion detection would formulate intersection as a function to

be executed over every participant’s input. Du et al. [40] discuss a model to

transform standard computation problems to secure multiparty computations,

and review, amongst other problems, the possibility of sharing intrusion

detection information. However, existing SMC algorithms are considered too

expensive [86] to handle large event streams such as the ones presented in this

thesis.

• Zero-Knowledge Proofs (ZKPs) ([55, 53] and others) are somewhat related

to SMC approaches. A Zero-Knowledge Proof is a theoretical approach for a

party (the “prover”) to prove to another (the “verifier”) that an assertion is

true, without having to reveal any information other than the assertion. This

is typically accomplished by establishing multiple probability distributions

in the proof structure which the verifier can use; the uncertainty as to which

distribution holds interesting data makes it impossible for the verifier to

71

glean information. Like secure data-mining, however, ZKPs are primarily

designed to be conducted between two parties; [42] proposes a model for

scaling the number of participants, but this requires clever timing constraints.

Moreover, like SMC, such approaches do not generally scale to the event

volumes discussed in this thesis.

• [38, 21] use Bloom filters (§5.2.2) for hardware-based packet inspection and

classification.

• Code obfuscation for introspection-enabled languages, e.g., [127] for Java, is

a different form of privacy, which corresponds to the notion of retrofitting

discussed in section 5.4. This work differs significantly in that it is the

data that is being obfuscated, which poses its own challenges (e.g., dealing

with inequality checks)—as compared to code, where namespaces, essentially

syntactic sugar, are being removed without any change in functionality.

72

Chapter 5

Privacy Preservation

As its name implies, this chapter is focused on the privacy challenges discussed in

section 1.3, and presents solutions for data privacy and anonymity. An application

of these techniques, Worminator, is discussed in chapter 6.

This chapter as organized as follows. First, the problem of data privacy is discussed

in detail, followed by a set of approaches to effectively enforce data privacy while

maintaining the ability to corroborate events. Next, methods and criteria for

anonymity are discussed, especially in the context of choosing appropriate event

distribution systems. Finally, I discuss strategies for applying privacy to existing,

legacy event correlation and distribution systems.

5.1 Data Privacy

The key consideration to providing data privacy is to transform data before it is

published on the collaboration network, yet still allow effective corroboration. I

define the key base operations required for corroboration as insert and verify: a

producer needs to insert values into the collaboration network, and peers need to

verify them to determine if they can corroborate what the initial producer saw. For

complete data privacy, no other data retrieval mechanism should be supported (e.g.,

73

enumerate, get, count, etc.). In other words, a one-way data structure is ideal for

this problem, which is reduced to set matching as per [73].

It is important to note, however, that such set semantics does not preclude partial

matching. A number of incremental analyses, especially n-gram analysis (§5.1.3),

are valuable in supporting more flexible matching than just entity equality—and

by using just the same two set primitives. Attribute-typed events can also support

partial matching, as discussed in section 5.4.

5.1.1 Techniques and Privacy Gain

As alluded to in figure 3.2, I introduce the use of two classes of privacy-preserving,

one-way data structures: hash-based transforms (hash sets and Bloom filters)

in section 5.2.1, and frequency-based transforms (frequency distributions and Z-

Strings) in section 5.2.3. The applicability of these techniques is application and

data-domain specific; several of these considerations are discussed in the above

sections, and others are described in the Worminator applications in chapter 6.

For each, we are interested in characterizing the privacy gain against a “honest

but curious” attacker accomplished by using these techniques. We focus on “honest

but curious” entities because a purely malicious attacker also has other avenues for

subversion, such as attacking individual hosts and reading events before they are

privacy-transformed and exchanged, or introducing a large number of fake hosts

that may be able to collude to gain revealing data about other participants. Both are

interesting distributed computation problems in their own right and are considered

outside the scope of this thesis, although the techniques in this thesis may be useful

as part of a larger system used to mitigate the effect of a malicious attacker.

Measuring such privacy gain depends on a number of factors, the most important

being the knowledge of discourse, that is, knowledge (language) of the event semantics

being exchanged, which in turn depends on the forms of data being exchanged.

74

Given this, I devise a probabilistic model as a first-order approximation to measure

the relative privacy of each privacy-preserving technique given participants who are

either aware or unaware of the language of discourse; more precisely, I develop a

probabilistic characterization of the recovery likelihood of the original data given the

privacy-transform data.

As a footnote, it is impossible to achieve perfect data privacy if meaningful

corroboration is desired. As a worst-case scenario, consider an event corroboration

scenario with two possible values. A participant in this corroboration will know

the published value with 100% certainty, no matter the data encoding technique

used. The argument put forth here is that if an appropriate balance can be struck

between privacy and corroboration, the value proposition of information sharing far

outweighs the extremely low probability of information disclosure, and the results

in section 6.5 support this argument.

One may also argue that an attacker does not need the exact original data to

pierce privacy; while this may be true, determining this is highly application-specific.

More detailed privacy analysis on Worminator can be seen in chapter 6. Of course,

anonymity still plays a meaningful role in all scenarios; I discuss appropriate

anonymity techniques in section 5.3.

Other desiderata in picking a privacy preservation technique include computa-

tion time and memory overhead; both are also discussed in each subsection.

5.1.2 Aggregate Matching

Despite the fact that hash sets and related structures only support individual set

membership tests, one can leverage their “generic container” aspect and hash

different raw datatypes into the same set. Not only does this make it more difficult

to brute-force, it allows a primitive form of aggregate matching.

For instance, in the case of inserting events containing an IP address, an additional

75

strategy would be to hash not only the IP address (1.2.3.4), but the corresponding

class C network address (1.2.3.0), the class B network address (1.2.0.0), and so

on. Of course, this requires a priori knowledge of the ideal aggregates to hash.

Additionally, this increases space and computation requirements, although a)

redundancy amongst aggregates and b) compression can be used to significantly

ameliorate storage overhead.

Syntactically heterogeneous event types can also be mixed, e.g., IP network

addresses versus network payloads, so long as a good set of hash functions is used

and can easily distinguish between them.

5.1.3 Incremental/N-gram Analysis

Despite the aggregation model suggested above, the model introduced in section 3.2

still is largely restricted to matching discrete events, since events e are transformed

into privacy-enabled events e′ and cannot be generally transformed back. However,

by treating an individual event as a set unto itself, we can reevaluate the problem as

ensuring a majority of event features are present, as opposed to the entire event

being identical. There are a number of techniques to accomplish this.

Feature-based incremental analysis. Given an event e with features eα, eβ, eγ, . . . ,

I define Ee as a set of events where each event is composed of an individual feature

in e.1 E′e is then a privacy-transformed version of that set, or rather, of e piecewise.

Given two or more events e1, e2, . . . , en, we now transform the corresponding sets

into E′e1 ,E′e2 , . . . ,E′en . These sets are now distributed to other participants.

At a recipient A, the same corroboration algorithm C′ei
A(E′ei

B, . . .) can be applied

for each set Eei , corresponding to event ei, yielding an intersected set of features.

Additionally, |C′ei
A|, the size of the intersected set, can be computed, scored and/or

1The term e or terms ei are superscripted to prevent confusion with the participant designator,
which is subscripted in my notation.

76

thresholded, e.g., |C′ei
A| ÷ |E

ei |
?
> τ, where τ is once again empirically set.

Feature determination is highly dependent on event semantics. For example,

in the case where attribute-valued events are used, a feature may be a string

concatenation of the attribute and value types. For XML, one may choose to process

all individual XPaths [166] of an XML message as distinct features. Finally, features

can be segregated opaquely, e.g., every n bytes. N-gram analysis is a variation of

this technique and is discussed below.

The one significant challenge to the above techniques is increased complexity;

instead of searching a set of events from a remote participant, the local corroborator

may potentially have to search many sets, transforming lookups from O(1) to O(n).

Alternatively, the sets themselves can be nested, rearranged or flattened to combine

separate event semantics and provide computational speedups. Nesting is largely

a convenience mechanism to reduce the amount of metadata transmitted per set

of events. Rearranging transmits sets of features instead of sets of events, allowing

aggregate frequency analysis on the prevalence of a particular feature. Flattening,

which essentially tosses out event boundaries and views the problem as a collection

of features that are to be correlated, is particularly useful in building models used

with n-gram analysis. Alternatively, multiple types of sets can be transmitted; the

flattened form can be used for quick lookup (e.g., look for an arbitrary feature f to

be present in this set before we search for it).

N-gram incremental analysis. In the case of opaque events, e.g., binary data

for which no wire format exists or is readily available, feature abstraction is not

necessarily tractable. Nevertheless, one may want to corroborate such events to

find commonalities, such as network payloads (§6.5). In this case, n-gram analysis

is used to extract features. N-grams entail a sliding window of n bytes over the

event data in question; each of the resulting entities—an individual n-gram—are

then viewed as a feature that is inserted into the (privacy-preserving) structure in

77

question. See figure 5.1. The set of n-grams in the data structure can be either kept

sorted by feature (i.e., enabling frequency analysis) or flattened (i.e., enabling binary

analysis). The latter allows for fairly efficient space coding via a Bloom filter, as

discussed in section 6.5, and produces surprisingly good results (specifically, for

network payload events).

...jihgfedcba

Figure 5.1: 5-grams computed over opaque data.
The first three 5-grams are shown. There are b − 4 distinct 5-grams in this data, where b is

the number of bytes.

The resulting privacy-enhanced event set is equivalent to a model over the

original event(s), and the similarity metric of an event e with k n-grams against

model E′ may be computed as

S(e,E′) =



k∑
i=0

f (gi)

k : E
′ is frequency-modeled

k∑
i=0
F (gi)

k : E
′ is binary-modeled

(5.1)

where gi is the ith n-gram in event e, f (gi) is the normalized frequency of n-gram gi

in E′, f (g) ∈ [0, 1], and F (gi) is a binary function returning 1 if n-gram gi is in E′

and 0 if not.

In fact, many types of events can be broken down into n-grams and inserted

into a single model, which can then be seen as a characterization of event flow. Given

such a model, not only can similar events be corroborated at other sites (given

appropriate thresholding), but new events can be checked to see how closely they

fit the characterization of event flows. Detection of events which differ, or which

are anomalous, is a key mechanism used in network traffic anomaly detection, as I

78

discuss in chapter 6.

One key consideration: the values of n, defining the size of the n-gram, have to

be predetermined before a n-gram corroborative distribution is started. Multiple n

can be inserted into the same model if desired. Automatic determination of optimal

n-gram sizes remains an open research topic.

5.1.4 Temporal Corroboration with Models

Temporal correlation for arbitrary events is a well-researched and implemented

topic; the Event Packager and Distiller tools in chapter 2 represent one such

implementation. However, temporal corroboration becomes significantly more

difficult when privacy-preserving models of events are exchanged. Since models

are not discrete collections of events, they must be kept “in full” if corresponding

local events have not yet been generated. Scans through these models as new events

are generated then becomes a (rather expensive) linear-time operation. For example,

the alerts generated in Worminator may be frequently distributed to peers—on the

order of several per minute—leading to a very large cache of Bloom filters.

This differs significantly from raw events or even hashed privacy-preserving sets,

as these can be either traditionally indexed to provide rapid lookup or recognized

through privacy-transformed event subscriptions (§5.4), enabling corroborators

to keep state. In this section, I discuss several techniques to accomplish nearly

equivalent functionality for models—primarily Bloom filters, but frequency models

as well.

Naı̈ve approach. A naı̈ve approach to solving this problem is to simply keep

merging models as they arrive. This reduces lookup time from O(n) to O(1). However,

repeated merges end up saturating models with old data, increasing false positive

rates and making them largely useless for meaningful corroboration.

Several techniques can be used to avoid saturation, as discussed in [59, 21]. One

79

is a cold cache, whereby the model is emptied when it crosses a certain threshold

of fullness, or double buffering, which allows a staging empty operation. Double

buffering employs a second model that is initially empty, but is increasingly filled as

the first becomes too full or when a predetermined time duration passes. Once the

first one has crossed the appropriate threshold, the first one is emptied and the role of

the two filters are switched, allowing for a graceful emptying operation. However,

neither of these enable effective timestamp-based constraints.

Expiration. The next level of timestamp support is to expire all models that were

created before some time t, possibly based on the longest timebound constraint in

corroboration rules, i.e., expire events which are too old to corroborate against any

rules. This can be accomplished in one of several ways:

• Associate a timestamp with each model, and garbage collect models whose

timestamps cross a threshold. Each model is kept distinct. While this avoids

ever-growing lists of models to corroborate against, it does little to reduce the

linear-time component of comparing events to models. On the other hand, it

works with essentially all model types, including frequency-based models.

• Associate timestamps with each model, cache a merged model, but also

remove entries from the merged model as individual models expire. This

assumes a model from which items can be removed, such as a counting Bloom

filter [45].

• Build a merged model which keeps the last timestamp per entry. This is not

practical for a frequency model, but I describe a variant of a Bloom filter, an

MRU Bloom Filter, which supports this operation, in section 5.2.2. This Bloom

filter supports aging without needing to store constituent event models, but

with the cost of losing individual timestamp information.

80

Timestamp range support. Expiration still does not accommodate range or

historical queries, i.e., “was event e seen by entity E between t1 and t2?”. Such range

queries become significant when coordinating a large number of events, especially

because sources may not publish at any coordinated time intervals. As previously

mentioned, however, standard techniques to support temporal corroboration do

not work with a opaque model. Here, I discuss two ways to support range lookups

in a faster-than-linear time.

First, a tree-based index can be created over the set of models for which lookups

will occur. The concept is vaguely similar to a B+-tree, with the original models

occupying the leaves of the tree, but intermediate nodes differ significantly. Instead

of having a set of discrete items in intermediate levels, each with associated references

to lower levels, each intermediate node consists of a merged model containing

all of its children’s data, the range of timestamps covered by its children, and the

associated list of children. See figure 5.2.

Event

t0

0101010101
0000000000
0000000000

Event

t1

1010101010
0000000000
0000000000

Event

t2

0000000000
1110101100
0000000000

Event

t3

0000000000
1111111110
0101110101

. . .Event

t4

0000000000
0000000000
1010110101

Intermediate
node

t0-t2

1111111111
1110101100
0000000000

Intermediate
node

t3-t4

0000000000
1111111110
1111110101

Root

t0-t4

1111111111
1111111110
1111110101

Older Newer

Figure 5.2: Temporal Tree Index of Privacy-Preserving Models.

Leaves are populated as remote event models are received, from left-to-right,

and are destroyed in the same fashion during garbage collection, as with a queue.

Intermediate nodes, like with B+ trees, contain a variable-length child list; new

81

nodes are created when more nodes appear on the level below it that do not fit in

the last existing node on that level, and are deleted when their children no longer

exist. Searches are accomplished by starting at the root, checking to see if the node

under consideration contains the item in question and fulfills the time constraints.

If so, all of its children are examined in the same way. The process repeats until the

original leaf nodes are reached and validated, which suggests a hit, or until a node

is reached which suggests no such event existed at a remote site within the specified

time period.

This approach, assuming the average intermediate node contains more than one

child, but still has O(1) children (i.e., proportional to the number of nodes), and

is clearly logarithmic in both size overhead and computation time. This temporal

corroboration tree structure is evaluated more closely in chapter 6.

The second possibility is to build a data structure that stores a collection of

timestamps per privacy-transformed “entry”, such as individual bits of a Bloom

filter; each bit can be expanded into a set of timestamps. This technique is very

memory-expensive but supports very fast lookup; if necessary, the timestamp Bloom

filter can support direct disk lookups. This technique is discussed in greater detail

in section 5.2.2.

Note that these techniques are intended to be used locally, in order to build

efficient structures for corroboration as remote events arrive. Most of the structures

created are too memory-intensive for frequent distribution, and some of them will

sacrifice privacy. For example, an MRU Bloom filter can be distributed to enable

individual event timestamp dissemination. However, the timestamps can be used

to more rapidly discern individual entries, reducing the brute-force search space of

the problem. One can round timestamps to reduce differentiation, but at the loss of

time resolution; and, in general, a MRU structure only contains a subset of the total

timestamps that may have been inserted in the model at a significant size cost.

82

Model clustering. Frequency models, in particular, are not amenable to building

intermediate data structures, as the relative frequency information is lost. However,

frequency models (and, potentially, Bloom filters) can potentially be clustered

into groups of similar events to reduce the linear scanning overhead. Doing

this effectively requires a very fast model comparison algorithm and significant

clustering. Model clustering is an interesting problem in its own right. One

algorithm, using Z-Strings, is discussed in section 5.2.4.

5.1.5 Model Combination and Comparison

Models also offer the opportunity to be opaquely combined or compared, while

maintaining privacy. This is usually a linear-time operation in length of the

model, and the different forms of combination/comparison vary with the encoding

mechanism.

There are a variety of applications that can benefit from these; the main applica-

tion explored in this thesis is that of building network traffic content models. These

models can be used not only to corroborate individual events, e.g., classify new

traffic based on old traffic patterns, but also to compare different traffic flows, e.g.,

compare models directly against each other and see if they are similar or different.

Such model comparison can be used as a trust model; similar models may imply

more trust, as traffic flows are similar, as opposed to distinct traffic flows which

may suggest incompatibility or malicious intent. I discuss this concept further in

section 6.6.

5.1.6 Varying Privacy Considerations

If a lower level of data privacy is required, less obfuscating solutions can be used. For

example, some sources are only concerned with obfuscating internal information,

83

while external data can be transmitted verbatim. The inclusion of raw events

alongside hashed events does not pose a significant challenge for corroboration,

as the system described here automatically utilizes event polymorphism and

corroborates accordingly based on incoming event types, and can support more

general event correlation when raw events are used.

One potentially appropriate mechanism where limited corroboration may be

extended to more generalized correlation is to establish policies releasing under-

lying event data if it has been corroborated by a sufficient number of peers; the

fundamental idea is that this event is no longer a secret, so obfuscation is no longer

necessary. This technique proves useful if only a fraction k of the participants can

corroborate the event; the remaining 1 − k fraction of participants remain in the

dark, as they cannot test the appropriate bits of the Bloom filter. (For the purposes

of this thesis, the value of k is empirically determined, but one could envision a

policy-driven or an information-theoretic approach to determining the optimal

fraction of participants.)

By sending out the raw event itself, remaining unaware participants can include

the event’s information in their correlation scenarios. This model proves especially

useful in Worminator, where I define the notion of a privacy-preserving “watchlist”

vs. a more explicit “warnlist” of correlated suspicious sources.

5.2 Privacy-Preservation Techniques and Transforms

5.2.1 Hashing

The use of hashes/one-way cryptographic functions, i.e., p(e) = h(e), are a baseline

mechanism to support insert/verify semantics. “Public” cryptographic hashing,

such as SHA-1 [105], works especially well—it is not computationally feasible to

reverse the hash, and the likelihood of collisions is extremely low. Other perfect

84

hash functions, like H3 [124], can also be used. H3 has some desirable properties,

such as support for incremental hashes, as discussed in 5.2.2.

Privacy gains based on hashing can differ significantly based on knowledge of

discourse. A attacker who is not aware of the correlation application would have

essentially no ability to determine the content. More relevant is an corroboration

participant; in this case, the recovery likelihood ranges from 1/An, where A is the

size of the event’s alphabet and n is the number of bytes in the event, to 1/L, where

L is the size of the event’s language. In the case of a small language, brute-force

attacks can be a problem. A number of techniques can be adopted here, including

mapping to increase the size of the language, mixing public and private hashes [86]

to provide plausible deniability, or adopting cryptographic techniques designed

for secure set intersection [73]; the choice is often application-specific. Chapter 6

describes several strategies.

The computation and storage overhead of an individual hash are both propor-

tional to the size of an event; compared to a large event, hashing is relatively small

but inefficient, whereas for a small event, hashing is relatively large but efficient.

These hashes can be transported as a set of items, e.g., a hash set can be made

into an event. Hash sets are very fast, but can be very memory-inefficient, especially

when many small items are inserted, since the table contains the original hash

values, and given a large alphabet needs nontrivial amounts of memory space to

avoid collisions. Such a scenario becomes likely when incremental event analysis,

such as n-gram analysis, is used; in fact, the hash table’s memory overhead renders

this technique moot. A hash list uses slightly less memory but at an extreme access

cost, and so is not considered. Bloom filters, on the other hand, ameliorate this

problem significantly by essentially implementing a form of lossy compression, yet

while remaining very fast and providing several desirable properties on their own.

Each of these are discussed in the following subsections. The implementation in

85

chapter 6 focuses primarily on Bloom filters as the preferred hashing technique.

5.2.2 Bloom Filters

The Bloom filter is not a new data structure [14], but its adoption to privacy-

preservation is recent (i.e., around the timeframe of the early work done in this

thesis) and its application to intrusion detection novel; see section 4.7 for related

work.

As seen in figure 5.3, a Bloom filter is essentially a bit array of n bits, where

any individual bit i is set if the hash of an input value, mod n, is i. A Bloom filter

contains no false negatives, but may contain false positives if collisions occur. The

false positive rate can be ameliorated by avoiding saturation:

• Size the bit array appropriately. In particular, Bloom filters are prone to

saturation and corresponding false positives, especially after approximately

50% of bits in the Bloom filter are set [14].

• Use multiple perfect hash functions. An entry is only considered present in

a Bloom filter if all of the corresponding bits to every hash function are set.

Given hash functions that avoid significant numbers of collisions, multiple

hash functions reduce false positive rates significantly.

• Leverage data diversity, as gained by participation by many collaborators.

Given B1...n, i.e., Bloom filters from n peers, the likelihood that the same hash

collisions occur at every peer decreases as n increases, i.e., the “global” view

of corroborated events filters out the “local” noise from any individual Bloom

filter.

I show results of false positive rates and amelioration techniques in chapter 6.

The Bloom filter itself is treated as a privacy-preserving model, whereM entails the

insertion of items into the Bloom filter. S, or verification, returns a binary response,

86

000001000010010000001010Bloom Filter

Hash
Functions

Input Data

Figure 5.3: Bloom filter.
A Bloom filter with three items inserted, using two hash functions. Two of the entries collide
in one cell, but this does not affect the verify function thanks to the use of different hash
functions.

either 0 (not present) or 1 (present), although false positives can return a 1 when

the item was never inserted. Both insertion and verification are similar to a hash

set—O(1), assuming a standard input size.

As with a hash set, a Bloom filter acts as a convenient one-way data structure that

can contain many items; however, it generally is orders-of-magnitude smaller. For

instance, given a 128-bit hash, a hash set would use 16 bytes to store just the hash

value, let alone allocate references or memory to that entry (say, 4 bytes). Compare

that 160 bit-per-entry overhead with the nH bits used per entry, where nH is the

number of hash functions used, and there is the possibility for significant space

savings. As the Worminator application will show, 3 hash functions can often be

sufficient to accurately represent complex data, which represents a memory savings

of almost two orders-of-magnitude.

The choice of hash functions used also essentially acts as a symmetric key/shared

secret encrypting the contents of the Bloom filter amongst all participants, obfuscat-

87

ing it to outsiders and reducing the need for wire encryption, although corroboration

itself obviously does not rely on keeping the choice of hash functions secret.

The privacy gain of a Bloom filter is at worst equivalent to hashes (e.g., if exactly

one item is hashed into a Bloom filter), and at best is considerably better, as bits are

reused amongst many entries, making it difficult to come up with characterizations

of size or the correctness of brute-force examinations. As implied, the application

chosen again has a significant effect on the privacy gain.

Experiments and corresponding results for Bloom filter corroboration false

positive rates are presented in sections 6.4 and 6.5, corresponding to IP alert and

payload corroboration. In general, Bloom filters, given the use of multiple hash

functions and multiple corroboration partners, perform very well with few false

positives, yet provide effective privacy.

Intersecting/Merging BF Models

Bloom filters of the same size and using the same hash functions also have the

ability to be intersected via simple, yet privacy-preserving, bitwise AND or OR

operations, corresponding to Bloom filter intersection and union. This enables two

or more Bloom filters to be semantically combined, depending on the corroboration

problem, in O(n) time, without needing access to the original data in the Bloom

filter.

This property enables a practical method for exchanging and comparing Bloom

filters—in addition to corroborating local events with received models, a similarity

metric can be defined between the Bloom filters/models themselves,

SA(E′B) =
|E
′
A & E′B|
|E′A|

where & is the bitwise AND operation and |E′| refers to the cardinality of a Bloom

88

filter, that is, the number of bits set in the BF. As the above definition implies, this is

an asymmetric metric, and can be computed differently for each participant.

The notion of model combination and comparison are novel in an Intrusion

Detection context; I discuss early research in chapter 6, and leave a more general

treatise to future work.

Temporal Corroboration and Bloom Filters

As discussed in section 5.1.4, a number of model-based techniques can be adopted to

deal with the inflow of a large number of Bloom filters over time. Here, Bloom filter-

specific techniques are discussed in addition to the general algorithms previously

described.

At the simplest level, we leverage the union operation over Bloom filters to

avoid a large number of BF comparisons. This naı̈ve approach, while spacewise and

computationally efficient, fares poorly with time for several reasons. First, there is

no way to expire content from a normal Bloom filter, since an individual bit may

be reused for many entries. Given this lack of expiration, saturation becomes a

severe issue, since entries corresponding to old data are not removed. Alternatively,

a counting Bloom filter can be used, which uses more than 1 bit per cell, to enable

removal; in this scenario, received Bloom filters are kept and this structure is kept as

a lookup cache, and expiration involves the subtraction of a old Bloom filter from

the counting Bloom filter cache. However, like cold caching and double buffering,

temporal representational power is still limited for more precise time ranges.

A more sophisticated solution involves an aging Bloom filter; the Most-Recently-

Used (MRU) Bloom filter is a simple variation on a Bloom filter that uses a similar

concept to counting Bloom filters, but instead of storing an integer representing

the number of events, a timestamp is inserted. While this increases memory

requirements by an order of magnitude, only one is instantiated at each site.

89

Moreover, timestamp requirements2 can be reduced, by more than half, by offsetting

from a more recent start time and using coarser granularity. Given this arrangement,

insert now updates the appropriate cell(s) with the latest timestamp. Union, in

turn, is also modified to store the latest timestamp for each corresponding cell in

the incoming BF; both insert and union maintain the same order running time, O(1)

and O(n), respectively. Verify, which now tests for the presence of a timestamp

as opposed to a on-bit, remains O(1), and an expire operation is added, which

removes bits that are older than some time t via a linear O(n) scan time. Finally, an

optional linear-time operation is generate, which generates a “regular Bloom filter

as of time t” by scanning the timestamp values and extracting those bits who fit

the threshold. The latter operation may be useful if the unioned Bloom filter needs

to be stored for historical purposes, or transmitted to others in a space-saving and

privacy-preserving fashion.

Finally, instead of storing one timestamp, many timestamps can be stored per

cell; this gives rise to the timestamp Bloom filter, or TSBF, as seen in figure 5.4. In

order to support effective lookup of these timestamps, we replace the one timestamp

per cell in the MRU Bloom filter with a reference to a range-capable data structure,

e.g., balanced binary search tree. Union and insert are modified appropriately

to manipulate this data structure. The computation costs increase; given n bits

and an average of m timestamps per bit, insert and remove become O(lg m), union

(with incoming non-timestamp BFs) is O(n lg m), and expire and generate become

O(nm). Two verify operations exist—one with a range lookup and another without—

and their computation times range from O(1) to O(lg m). (Interestingly, the more

expensive verify operation can be far more accurate than the regular verify, as it can

distinguish between bit collisions by checking for identical timestamps between

the n hash functions used for each entry, and failing if a common timestamp is not

2A typical UNIX timestamp is 64 bits.

90

found amongst them.)

t2

t1 t3

t0 t2

t1 t3

t5

t6

t5

t6t0

Figure 5.4: Timestamp Bloom filter.
This TSBF corresponds with the Bloom filter in figure 5.3, with differing number of
timestamps per set entry.

Most of these computation costs are mitigable because the average value of m is

significantly smaller than that of n, and a reasonable expiration policy keeps the

value of m manageable. However, the memory overhead for a timestamp BF is

significant. Instead of storing 1 bit per cell, many bits may be allocated; for example,

given an average m of 5, a memory allocation of 160n bits or more, assuming 32-bit

timestamps, is very possible. For n = 220 regular Bloom filter, capable of reliably

storing approximately 500,000 entries with one hash function, the timestamp BF

with m = 5 would be roughly 20MB in size. Once again, this is ameliorated by

the fact that only one TSBF needs instantiation. In cases where such overheads

may be too large, the TSBF can be adapted to disk-based storage, where a smaller

in-memory BF (either a counting or MRU BF) would be used as a first-pass cache to

see if an item exists; a corresponding disk lookup would then be implemented to

determine whether temporal constraints are satisfied.

BF Models and Incremental Analysis Optimization

Bloom filters are ideal for the incremental analysis approaches discussed in section

5.1.3. Not only do Bloom filters represent entries in very few bits (typically equivalent

to the number of hash functions used), enabling the storage of a large number of

features. Additionally, a single Bloom filter can store a mix of different feature sets;

91

for example, a single Bloom filter can contain 3-gram, 4-gram, and 5-gram “features”

of a original packet payload.

As previously mentioned, the overhead of inserting or verifying a single item

into a Bloom filter is O(1) per item inserted in the Bloom filter. However, the constant-

time overhead to process new entries can become significant when inserting or

checking many types of n-grams over a large population of packets, as repeated

computation is done when hashing different length n-grams over the same data into

the Bloom filter. Couple this with the fact that Bloom filters need good hash function,

and hashing can form the majority of computation overhead when processing a

collection of events into a model.

To reduce this computation overhead, a cumulative universal hash function can

be used with a Bloom filter. A cumulative hash function h∗ fulfills the requirement

that h∗(c(a, b)) = d(h∗(a), h∗(b)), where a and b are data (n-grams or fragments of them),

c is a (bitwise) concatenation function, and d is a composition function. Given such a

hash function, we can avoid re-computing hashes when sliding the n-gram window

and when using different window sizes, e.g., if we’ve hashed a 5-gram and need to

generate the hash of a 7-gram, we can just hash the additional 2 grams and combine

that with the 5-gram hash value. A class of universal hash functions known as H3

[124] uses XOR as the composition function, which is very fast and lends itself well

to our applications.

Compressed and Cascading Bloom filters

One of the challenges with Bloom filters alluded to earlier is its reliance on a

predefined size, which implies some a priori insight into the quantity of data to be

inserted into the BF. If such data is not available, there are essentially two choices:

assume the worst-case and instantiate a very large, potentially very empty Bloom

filter, or to create a smaller Bloom filter, possibly at the risk of saturation (and

92

increased false positives), and employ techniques to avoid that saturation scenario.

Given a large Bloom filter, we can compress it to make transmission sizes

manageable. LZW and similar off-the-shelf techniques can be used, and naturally

perform well in the case of a sparse BF. Alternatively, a more comprehensive solution,

like [100], can be adopted.

However, large Bloom filters still require significant amounts of space in memory

when manipulating the BF; in addition, there is the potential of significant CPU

overhead in repeatedly compressing and decompressing messages. These can be

ameliorated by choosing a smaller default Bloom filter size, at the cost of risking

saturation (i.e., 50%+ of the BF is full). Since saturation is also undesirable, cascading

can be employed. Simply, additional Bloom filters of the same size are instantiated

when the previous Bloom filter crosses a fullness threshold. Then, when checking,

subsequent cascaded BFs are checked if the previous BF did not successfully verify

the object. As long as only a few cascading BFs are present, this does not measurably

change the O(1) computation overhead of a BF. At the same time, this reduces

the usefulness of model merging and other techniques, including several of the

timestamp correlators, as the models must have the same number of bits and

saturation becomes much more likely.

5.2.3 Frequency Transforms

The other major class of privacy transforms explored in this thesis are frequency

transforms. Typically, this involves segmentation of the input event data and

compilation of a frequency histogram model of the segments for the events in ques-

tion. Given sufficiently small segments, the original event cannot be reconstructed.

Frequency transforms dovetail particularly well with incremental/n-gram analysis,

as those increments become the segments for which histograms are computed.

In order to implementM(E), the model creation function, events e1, e2, . . . , en

93

are broken into segments se1
1 , s

e1
2 , . . . , s

e1
m1
, se2

1 , s
e2
2 , . . . , s

e2
m2
, . . . , sen

1 , s
en
2 , . . . , s

en
mn . These seg-

ments are not necessarily all unique, and so they are gathered appropriately into

s1, s2, . . . , sk, where k is the total unique number of segments and each segment si has

a occurrence frequency amongst all events e1, . . . , en. (Note that a segment may occur

many times in any individual event; we are more concerned with the total occurrence

frequency over the set E.) These scores are normalized, i.e., f (si) ∈ [0, 1],
∑

i f (si) = 1

where f (si) is the frequency of segment si amongst all segments, and stored against

index i.

Computing the similarity metric S(e,E′) can be done in one of several different

ways, depending on segment size and the number of segments. For small and

relatively few distinct segments, e.g., the 1-gram distribution of byte payloads, we

can use a statistical distance metric, i.e., S(e,E′) = D(M(e),E′). One such statistical

metric is the simplified Mahalanobis distance [174]

D′Mah(x, µ) =
n−1∑
i=0

(|xi − µi|/(σi + α)), (5.2)

where σi is the standard deviation, and α is a smoothing factor to avoid dividing by

zero (with higher α values implying less of a confidence about the model).

However, even the simplified Mahalanobis distance is expensive for larger

segments, such as higher-order n-grams, as computations are done over very sparse

event vectors. Instead, we use the more approximate similarity metric defined in

equation 5.1, which looks for the frequency prevalence of each n-gram gi amongst

all n-grams k in an arbitrary event e.

The memory overhead of a frequency transform varies based on how much

data is inserted into the model. Given double-precision frequencies per segment,

a frequency transform could use 64 bits per segment; for the 1-gram payload

distributions in chapter 6, one frequency model would be 2KB. This is large if the

94

model is used for a single event with relatively few features; if event rates are high,

combining events may be desirable.

The last important consideration is that frequency transforms are not a useful

technique where feature precision is required, i.e., the ability to determine if a

particular feature X corroborates between an incoming event and the model. As a

consequence, a frequency model is not a very good privacy-preserving transform

when the event contains little data or data that is not easily separable into a large

number of features, e.g., if it is very tightly structured in the first place. On the other

hand, events that are largely opaque can be arbitrarily broken into small features,

which in turn provide sufficient data for a rich frequency distribution.

As this implies, selection of the appropriate mechanism is highly application-

dependent. Given appropriate feature selection, frequency models can be highly

accurate in corroboration, as shown in both section 6.5 and in [171]. However, they

are susceptible to mimicry attack, a form of masquerading that is based on modeling

malicious payloads as similar to legitimate ones as possible, as described in 5.5.

The privacy gain accomplished via a frequency distribution depends on the

feature size, as the problem is reduced to a permutation problem. Given sufficiently

small and diverse features, the number of permutations grows large and makes

events transformed into frequency distributions nearly unrecoverable.

Frequency Model Comparison and Combination

Frequency models can, of course, be compared against each other as opposed to

just purely against events. The overarching consideration here is to make such

comparisons fast to enable rapid determination of similar models, and for our

applications, we use the Manhattan distance metric

DMan =

n−1∑
i=0

|xi − yi|, (5.3)

95

which is reasonably accurate for our applications and requires only linear time in

the length of the model (and is essentially constant-time for the short models used

in chapter 6).

Given sufficiently similar models, there are various applications of merging or

combining models, which can be done via a straightforward averaging of the features

in question. Optionally, the original non-normalized frequencies may be stored to

provide a more accurate averaging (summing) of the individual models in question.

We describe one technique and application of model merging in section 6.6.

Effective Temporal Corroboration via Clustering

As implied in section 5.1.4, effective temporal corroboration is difficult with fre-

quency models—averaging dissimilar models does not have the same effect as ORing

two Bloom filters. In fact, merging many frequency models ultimately can cause

the model to become effectively uniform, eliminating its utility in corroboration. At

the same time, a linear scan through all collected remote models is not pragmatic or

generally scalable.

As a compromise, it is preferable to, at least, reduce the number of models that

must be scanned through, preferably to sublinear levels, when doing temporal

corroboration. Model combination is feasible when combining similar models, so a

clustering algorithm may be adopted. However, the cost of this algorithm must be

made as low as possible to accommodate the continuous real-time influx of new

remote frequency models. One can use Manhattan distance, which is reasonably

effective. Another, faster algorithm to cluster similar models is to use a portion of

the Z-String representation as a cluster key. This technique is described in the next

section, once Z-Strings are introduced.

5.2.4 Z-Strings

96

While frequency models introduce a level of privacy preservation, they are large

and they still do release aggregate frequency data. Such data is not revealing when

selecting extremely small features with a correspondingly large event, e.g., 1-grams

over network traffic, but can be more of a concern when the features are larger or

events are significantly smaller. In either case, a more limited representation of a

frequency distribution, termed Z-String [174], can be used.

A Z-String is essentially a list of the feature vectors from a histogram showing the

Zipf distribution of a given frequency distribution. In other words, the frequencies

are arranged from most-to-least, and the corresponding feature list is kept, while

the actual frequencies are thrown away. This is extremely small; the largest possible

Z-String is the size of the alphabet, and given a sufficiently small feature set, that is

generally small in-and-of-itself. Additionally, all zero-occurring members of the

alphabet are omitted.

In terms of privacy guarantees, a Z-String is essentially a permutation of a subset

of all possible features in the corroboration problem. Assuming a single feature

instance is not privacy-piercing, this transformation is very effective. A precise

characterization for network traffic is discussed in chapter 6.

Comparison, Accuracy and Clustering

As the Z-String is just a permutation of features, comparison may be difficult,

especially in the “tail” of the Z-String where individual features may be ordered

randomly. As a result, any practical Z-String comparison must look primarily at

the heavy-hitters, i.e., the beginning of the Z-String, instead of the later characters,

with a much flatter and lower frequency distribution. We can “tag” the Z-String

with a delimiter to separate the frequent from the not-so-frequent entries to enable

accurate comparison. Given this specification of the heavy hitters in the Z-String,

string comparisons can be employed, e.g., longest common subsequence or edit

97

distance. Experiments using both are described in section 6.5.

The major downside to the use of Z-Strings is its coarseness; given its very

approximate characterization of events, it is easy to construct multiple classes of

data that have the same Z-String. As such, its use as a malicious classifier is limited,

as it will naturally generate false positives. An analysis of false positive rates

for Z-Strings (and with other privacy transformations) with respect to network

packet payload data can be seen in section 6.5.4; in particular, figure 6.85 shows that

Z-Strings perform poorly for precise payload corroboration.

However, Z-Strings composed of the heavy-hitters can be useful as a clustering

tag on frequency models to enable sublinear temporal corroboration. Computing

the Z-String itself is straightforward, and string comparisons on relatively short

Z-Strings is also very fast. Section 6.5.5 describes such a clustering algorithm and

presents corresponding results that demonstrate that, while not perfect, Z-Strings

are particularly useful in such situations, especially when the clusters do not need

to be perfect, i.e., detection can still effectively be done even when some percentage

of payloads are separated across multiple clusters.

5.3 Anonymity and Publish-Subscribe Distribution

While data privacy removes personally identifiable information from the event

data itself, it still does not eliminate connection-level metadata; for example, in

the case of directed point-to-point communications, one can establish an event

source. There are circumstances in which anonymity must be kept even amongst

this communication; for example, one may guess the language of discourse of the

data based on the source. Therefore, anonymity guarantees are required. For the

purposes of this thesis, I propose the integration of several techniques into the

framework that accomplishes just that.

98

Before further elaboration, it is important to note that “anonymity” does not

clearly connote one concept. In this thesis, I focus on the problem of anonymity

amongst known participants, i.e., ensuring an inability to determine the source of a

given event in a well-defined corroboration group. I do not consider true anonymity,

as that raises a host of significant, possibly unsolvable, challenges; most notably,

untraceable dishonest participants can render a corroboration group meaningless

via noise and misdirection. Note that “known participants” does not imply that

all participants must know the identity of the others; as I discuss shortly, that

information can be kept confidential via a trusted party who is willing to vouch for

(authenticate) the participant.

Given this definition, one can define four different levels of anonymity: non-

anonymous, categorizable, differentiable, and nondifferentiable.

Differentiable refers to the notion that while sources (and events produced by

sources) cannot be traced back to the original producer, a distinction between

sources can be made. This enables techniques such as thresholding on the number

of corroborating peers. In addition, differentiability enables cardinality, e.g., one can

“count” the number of peers that detect a given event of interest; this is extremely

useful for thresholding.

Categorizable is a slightly more revealing variation on differentiability, where a

source may be unknown but can be differentiated and categorized into a certain

class of sources; for example, a distinction can be made between friends, peers, or

unknown people. An event coming from a friend may be valued more highly than

an event coming from a truly unknown person. Given a sufficiently large body

of friends, an individual friend’s privacy is preserved, while providing valuable

information for corroboration. This can be particularly useful for Worminator, where

different corroboration scenarios may include different genres of organizations, e.g.,

banks vs. academic institutions, and this metadata may be significant in determining

99

the threat of a common attack source.

Nondifferentiable, on the other hand, assumes a corroboration group that has

“known” participants but events are received completely anonymously, i.e., all

source information has been stripped from the event, leaving nothing but data. This

scenario, while the most anonymous, poses a number of difficulties for practical

corroboration. First, it becomes extremely difficult to differentiate between one party

publishing two instances of an alert versus two different parties publishing identical

alerts. Second, a misbehaving party can further this by flooding the network with

duplicate or bogus messages, and much like the true anonymity scenario described

above, can do so with impunity.

This thesis focuses on differentiable and categorizable anonymity. Nondifferen-

tiable anonymity can be deployed using the implementations discussed, but with the

caveat that the participants must be “known honest”, and with a poorer resolution

on the identity of alerts, raising the possibility of more granular corroboration.

As the architecture in chapter 6 is specifically geared towards effective cross-site

(cross-participant) corroboration, I do not consider this further.

To support these forms of anonymity, I adopt several components: a trusted party

responsible for authentication, the use of message signing for differentiability, and

publish-subscribe event infrastructure for distribution. As previously mentioned,

this thesis does not seek to implement a pub-sub event distribution infrastructure

from scratch, but the presence of one is crucial to ensure the anonymity of the

data-privacy-enhanced events exchanged.

It is also important to note that the framework described in 3 allows all of

these elements to be plugged in modularly, based on the requirements of the

actual application; moreover, the implementations discussed in chapters 2 and 6

were designed to support different publish-subscribe architectures, and the current

implementations of both use “reference systems” (Siena [20], JMS [151]) at the

100

distribution level. Siena is decentralized but is hierarchical, while JMS is an open

standard that is largely implementation-dependent (although most implementations

are centralized).

5.3.1 Event Model

Based on the model proposed in chapter 3, combined with the notion of typed

events, a correlator can seamlessly support heterogeneous types of events. This

heterogeneity is leveraged alongside an anonymity-capable event distribution

infrastructure, as described in a following section, to map the different levels of

anonymity to our model via the use of a uniform source identifier field.

• For completely anonymous sources, the source identifier is left blank. This

is a degenerate condition and can be considered a special case of the other

scenarios, and is not explored further in this thesis.

• Differentiably anonymous sources use a randomized-but-consistent string

when producing events—either a universally unique identifier (such as UUID

[60]), or an authority-assigned unique identifier. This identifier is created at

the beginning of a correlation task and is not changed for the duration of the

task. Optionally, producers may choose to change the identifier between each

correlation task in a long collaboration to further obscure their identity.

• Categorizably anonymous sources use a combination of a category identifier

(e.g., SIC codes for corporate sources [109]) along with a unique identifier.

• Finally, non-anonymous sources would simply use a descriptive string in

the source identifier, based on a pre-agreed standard naming scheme (e.g.,

hostname of the sensor).

101

5.3.2 Authentication

As implied earlier, a trusted third party (TTP)’s primary responsibility is to au-

thenticate participants. A publish/subscribe router may either coexist with the

authenticator, or be distributed, where the TTP is used for authentication but events

are then anonymously routed through a publish-subscribe cloud.

Authentication can be accomplished in one of several ways; if the TTP is

responsible for message distribution, it may act as a direct authenticator and

can enforce access control on the publish-subscribe network. If a peer-to-peer

pub/sub system is adopted, then the TTP may simply be a key distribution authority

that, upon verification of a corroborating peer, distributes keys to enable message

signatures that other corroborating peers can trust come from a “known” source,

i.e., given a message and a corresponding signature, the signature can be verified as

having been generated by a TTP-issued key.

Note that a key signed by a TTP is not a guarantee of innocuous behavior; this

architecture is designed to be robust in the case of known, but misbehaving, entities.

5.3.3 Malicious TTPs

One significant challenge exists with this authentication scheme—malicious TTPs,

who can do one of several malicious acts: reveal the privacy of contributors;

exchange or corrupt identities of contributors, invalidating differentiability; and,

in the case of centralized event distribution, either corrupt contributors’ data or

feed invalid data. The worst-case scenario enables the authority to disrupt event

correlation at each of the nodes. It is important to note that the malicious authority

still would not have access to the underlying data, as the data is encoded in a fashion to

preserve data privacy not only amongst collaborating peers but for the authority

itself. As for data corruption, this can be mitigated by using a decentralized routing

102

mechanism for publication, e.g., P2P, since the TTP is no longer involved in the data

exchange.

Unfortunately, corrupted or compromised identities remain a fundamental

problem. Even true anonymity, which prevents identity compromise, poses its own

problems, as the problem of determining identities is not generally solvable without

such an authority or significant computational expense [39], so while a completely

decentralized model where both anonymized routing and authentication may be

possible, this architecture does not address that scenario. Among two architectures

mentioned in the related work, [73] uses a TTP for group signature management,

and [63] uses a “friendship” trust model. Neither directly enables anonymous

differentiability, which is necessary in our correlation scenarios. Fortunately, many

applications adopt well to the TTP approach; Worminator illustrates one such

application and I discuss such “natural” TTPs in chapter 6.

5.3.4 Anonymity-Supporting Distribution Architectures

There are several desiderata that help differentiate the use of a central node, a cluster

of nodes, or a decentralized, peer-to-peer collection of nodes in event distribution;

the key considerations here are speed, resiliency, and anonymity guarantees.

• Distribution performance varies hugely, and is dependent on network topology,

the distribution of nodes, the number of publishers and subscribers, and the

overlap of subscribers’ interest. If network bandwidth is not saturated and

the network has optimal latency, centralized systems generally provide the

best performance, as both publishers and subscribers communicate with only

one other node, eliminating extra replication. On the other hand, distributed

peer-to-peer systems frequently replicate events as part of event routing, but

are robust to bandwidth saturation and network partitioning. Several other

cluster-of-nodes systems, such as hierarchical event distribution, can offer

103

good performance under both ideal and less ideal network conditions, but

incur privacy issues and still generally fail during severe network partitioning.

• Centralized systems are not resilient to network or server-side faults, although

they are not reliant on client reliability. P2P systems are extremely resilient to

network failures, although portions of the P2P network may be segmented

in certain situations; still, limited corroboration may be preferable over no

corroboration at all. Additionally, a central distribution node can be a target

for DDoS or subversion attacks. Clusters vary widely based on the type and

distribution of the cluster.

• Lastly, a trusted centralized distribution node provides the best anonymity

guarantee, as it can reliably guarantee that its communicating peers are

authentic, and can appropriately sanitize or transform network connection

information to prevent source determination. On the other hand, if this trust

is violated (e.g., a malicious TTP), that centralized node can wreak significant

havoc, as it has relevant information for every publisher.

A pre-established cluster of nodes can approach this level of privacy, as long

as a honest TTP is present to “vouch” for the authenticity of the cluster.

The cluster also provides limited resilience against corruption against a few

distribution nodes, although sufficient subversion, resulting in a significant

fraction of nodes as being untrustworthy, can pierce privacy by colluding on

data replicated between the nodes.

The anonymity of a P2P distributed system varies greatly. If nodes communi-

cate only directly to each other, i.e., the publisher publishes to a subscriber

by opening a network connection to it, anonymity is difficult—in fact, a

node can easily build a table of signatures and the corresponding network

nodes. Therefore, adoption of a less-deterministic publication path, such as

104

onion routing or memoryless random-walk routing (see section 4.2), is useful;

determination of the source then requires a large number (greater than 50%)

of malicious entities in the P2P cloud.

5.3.5 Routing Options: Channel, Content-Based, Destination-Based

The discussion of distributions so far does not consider the routing mechanism

employed in our publish-subscribe architecture, both in determining the correct

target entities and choosing optimal routing strategies to reduce latency.

As source-based routing is impractical due to our desire for source anonymity,

there are at least three different routing algorithms that can be chosen. (Broadcast is

always a routing option, but is essentially a baseline and is not considered further.)

• Route events based on a predefined channel. The channel can be implemented

as a tag on events entering the distribution infrastructure, or the distribution

infrastructure can employ different node(s)/overlays for different channels.

This approach is the most straightforward and lends itself to corroboration

applications where a large number of peers are exchanging information for

the same purpose. This is the core routing mechanism used for Worminator;

the goal there is to disseminate as much information as possible in as short a

time as possible, and minimizing routing decisions to channels simplifies this

problem.

• Route events based on content-based interest. A particular subscriber may

declare their interest to corroborate event “X”, and is not particularly interested

in receiving events of other types. This reduces network communication by

pushing much of the corroboration problem into the network. However,

building the routing infrastructure is challenging as the events are privacy-

preserving in the first place; the subscriber must declare their preference in a

105

matching privacy-preserving form (e.g., hash or Bloom filter), and then the

distributed event distribution infrastructure must push these subscriptions

to appropriate nodes. Our discussion on the implementation challenges and

strategies for building efficient Privacy-Preserving Content Based Routers is

considered outside the scope of this thesis; see [59].

• One last routing mechanism is particularly geared towards distributed P2P net-

works, and implements publish-subscribe in an entirely different mechanism:

the published material itself is used as metadata to make destination-based

routing decisions. For example, a Bloom filter may be used as a routing key

to determine the target node in a distributed hash table. This is particularly

useful for systems where channel-based or CBR-based routing decisions are

practical, and avoids the problematic approach of broadcasting, which does

not scale to large distributed networks. See [59] for further discussion on this

approach. Another question of relevance in P2P networks is determining

optimal network schedules for exchange amongst many peers of nodes; our

work in [88] provides some early strategies for effective event dissemination.

Work on decentralized exchange is ongoing orthogonal to this thesis.

5.4 Retrofitting Privacy onto Legacy Event Systems

The material in this chapter has been implemented across several different Intrusion

Detection System (IDS) applications, which are described in chapter 6. However,

many existing Internet-scale event distribution and correlation systems are currently

deployed, and it is not feasible to assume that they will all be adapted to support

privacy-preserving corroboration.

In order to work with these systems, therefore, privacy must be retrofitted onto

them. This can be accomplished by implementing the model from chapter 3 as

106

a lightweight translation layer running on top of legacy event distribution and

correlation systems. I first describe techniques to transform individual events for a

variety of common event formats, and then briefly discuss strategies and challenges

when retrofitting both distributors and correlators.

5.4.1 Rewriting Events

Many legacy event processing systems, including many of the ones described in

chapter 4, frequently take one of two underlying event formats: collections of

attribute-value pairs or a hierarchical tree of attributes, values and data, like XML.

Here, I describe three different transformations: first, the baseline technique of

transforming an entire event opaquely, followed by more specific strategies for

both attribute-value and tree-structured events. Many other event types can be

transformed using similar techniques.

Equality Matching

The first option is to treat an event as a datum which must be matched precisely

during correlation. In this case, the problem is straightforward; the event is privacy-

transformed and distributed, and other peers can similarly hash and distribute their

events. A translation tool can be used to transform event matches into Bloom filters,

frequency distributions, etc.

The advantage of this approach is that it will work with any event semantic, no

matter the structure. While meaningful data cannot be extracted (which attributes

about the event matched, etc.), it still follows the corroboration model. However,

this is a very coarse-grained approach, since all attribute/value pairs or other data

in the event must be identical.

Attribute-Value Pair Matching

107

For systems that treat events as collections of attribute-value pairs, i.e., e =

{(a1, v1), (a2, v2), . . . , (an, vn)}, the event can be processed in one of several ways,

with differing privacy guarantees while supporting retrofitting.

• Transform only the values and corresponding subscriptions, i.e., e′ = {(a1, p(v1)),

(a2, p(v2)), . . . , (an, p(vn))}. The advantage of this approach is that it’s straight-

forward to determine which attributes match, and the values are typically

unnecessary, as they’re already embedded in the subscription. The privacy

gain varies based on the language of discourse; given a sufficiently large distri-

bution of possible values for v1, v2, . . . , vn, this may be sufficient. On the other

hand, the presence of attribute names may give information away—especially

attributes that were not present in the subscription.

• Transform both the attribute name and corresponding value pair for published

events and corresponding subscriptions: e′ = {(p(a1), p(v1)), (p(a2), p(v2)), . . . ,

(p(an), p(vn))}. This offers some more privacy than the previous approach, as

only the presence of attributes the subscriber is aware of are revealed, and

only matching values are revealed. All other attributes and values remain

private.

• Privacy-transform the concatenation of the attribute value pair, i.e., e′ =

{p(a1v1), p(a2v2), . . . , p(anvn)}. Here, attributes are only discovered if both the

attribute and value of any given pair match. Additionally, this produces a col-

lection of single entities, not of attribute-value pairs. These entities can be trans-

mitted as a set of attributes, i.e., e′ = {(p(a1v1),null), (p(a2v2),null), . . . , (p(anvn),

null)}, or via a retrofitted set-based structure, such as a Bloom filter. Optionally,

we can also hash the attributes by themselves to allow for presence testing in

lieu of an exact attribute match.

108

While the above techniques allow for equality matching over individual at-

tributes, this still does not allow numerical or timestamp inequality matching, e.g.,

“Corroborate temperatures greater than 60”. However, this problem can be fixed by

using the first or second technique and adopting a numerical privacy transform

that supports inequalities, such as [3]. The third technique is still limited to equality

matches, but it does provide the greatest privacy of the three, and unlike the first

two can be used with the various set-based structures discussed in this chapter.

Hierarchical (Tree) Matching

The third subcategory represents hierarchically-structured events that essentially

form trees that are composed of nodes, attribute-value lists associated with each

node, and references to children. Nodes may also have a name and associated data.

The canonical example of such a structure is XML [165], although the techniques

described here can be generalized to other tree-based events.

For such events, the techniques used with events composed solely of attribute-

value pairs can be adapted to such an approach.

• Walk through the tree and only transform the values and associated data,

keeping the rest of the event structure intact. Once again, this approach reveals

metadata that is implicitly contained within the tree structure or attribute

names.

• Walk through the tree and transform all literals while keeping the underlying

structure of the tree intact. For example, the XML message <temperature

value="60" />may become <feahijo ajife="33201" />.

• “Flatten” the hierarchical structure and, for each attribute-value pair found,

concatenate the path of the containing node and the attribute name, and store

it as a collection of privacy-transformed attribute-value pairs as per the second

109

strategy in the previous subsection. This assumes that a path can be clearly

denoted; in XML, the XPath expression syntax [166] is a natural vehicle for

expressing both the path and the attribute’s name to which a value is mapped.

• Once again, flatten the hierarchical structure; this time, the path/attribute name

is concatenated with the attribute value. Once again, this leads to a result set

that can be embedded as a collection of attribute names or in a set-based data

structure, and generally preserves more privacy than the previous approach

at the cost of losing the ability to do inequality matches.

As with the attribute-value pairs, the last technique can be used to insert items

into a set-based data structure, like a Bloom filter. The privacy guarantees are

also very similar, although retaining the hierarchical structure may yield some

more information, while flattening it may make it more difficult to brute-force

possibilities.

5.4.2 Retrofitting Event Distribution Systems

As discussed in section 5.3.5, several different distribution systems can be used by

our model. The most straightforward system, channel-based event distribution, puts

all the logic in the actual destinations and naturally adapts to privacy-preservation;

Worminator was designed and built as a translation and corroboration layer designed

to run on top of legacy channel-based event providers, such as JMS.

Legacy content-based routers are significantly more difficult to adapt in an

effective fashion. While CBR systems can be used by treating them as a channel-

based system and using non-privacy-transformed event metadata as establishment

of implicit communication channels, this defeats the purpose of content-based

interest routing. Instead, a simple solution is adopted: the subscriptions used in the

CBR system are also privacy-preserved, in a similar fashion, i.e., S′ = P(S). The

110

privacy-enabled subscriptions S′ are then pushed into the CBR network as ordinary

subscriptions would be.

If a subscription is envisioned as a collection of attribute names, comparison oper-

ators, and values S = {(a1, o1, v1), (a2, o2, v2), . . . , (an, on, vn)}—and many of the CBR sys-

tems discussed in section 4.2 follow this model—S′ = {(p(a1), o1, p(v1)), (p(a2), o2, p(v2)),

. . . , (p(an), on, p(vn))} can be literally used as a subscription. Assuming the use of range-

compatible transforms as discussed above, the set of operators o = {=, <, >,≤,≥},

which covers many of the basic predicates that CBR routers use. (It is important to

note that, in-and-of-itself, partial matches such a “in” e are not trivial to support.)

These privacy-transformed subscriptions correspond to the attribute-value pair

transforms described above, where the attribute names and values are kept distinct.

Similarly, XPath matching can be still be accomplished against flattened XML events.

Of course, concatenated events only support o = {=}.

5.4.3 Retrofitting Event Correlators

Event correlators, such as the Event Distiller in section 2.4, support varying amounts

of correlation capability. Based on the system being used, one of several different

strategies can be adopted.

First, correlation rules can be rewritten much like CBR subscriptions. This

supports entire-event matching, attribute/value pairs, and hierarchical events;

it does not directly support set-based transforms. Temporal correlation can be

supported via explicitly-published timestamps or implicit received timestamps. The

same predicate matching operators are supported. Upon a successful correlation,

however, the correlator cannot report on the original values that were used to create

a match.

Alternatively, a two-phase correlation mechanism can be adopted. The first

phase would employ a dedicated corroborator whose job is to perform temporally

111

constrained corroboration against incoming privacy-preserved events, and to update

local event data with corroboration results. For example, a field may be added

to the local event attribute-value list specifying the number of peers who have

validated a particular event. The events are replicated and published accordingly

into the third-party correlator, which can execute rules based on these “local” events.

Original values can easily be re-reported, but only for equality matches. Finally, an

optional transform could then be written to take generated resulting events and

make them privacy-preserving before the results are transmitted.

Both the first and second approaches are compatible with the original Event Dis-

tiller. Wildcard binding works, although the wildcard value cannot be meaningfully

reported using the first approach.

5.5 Potential Attacks

Like any other distributed protocol, there are several attack venues against the

techniques described in previous sections. Here, I briefly discuss several classes of

these attacks and mitigation strategies. Worminator, itself, implements sufficient

privacy to effectively deal with “honest-but-curious” participants, and can be

extended to handle the malicious approaches described here. This is not intended to

be a comprehensive list; moreover, an implementation of these mitigation strategies

is outside the scope of this thesis, and is left for future work (see section 7.3.2).

5.5.1 Pollution

The simplest form of attack against such a system is to have a malicious entity report

large numbers of fake entries in the hope of confusing other peers who receive its

messages. This does not require collusion or other forms of subversion against the

network.

112

It is important to point out that the “pollution” problem is common to any DIDS;

the key difference here is that the privacy-preserving properties of exchange make

it trickier to identify the polluter. However, there are several strategies that one

can still adopt. First, while the model presumes anonymity, it does not assume

non-differentiability; in fact, it was observed earlier that differentiability is a key

requirement for a single node to avoid masquerading as multiple nodes. As a

result, while the actual identity of the polluter may not be known, the anonymized

identity can still be used to judge, and if necessary, discredit the polluter. Such

a discrediting can be done either at an individual site, i.e., a site may notice that

one alert contributor’s data distribution is significantly different from others—or a

distributed voting algorithm can be used.

Finally, it must also be observed that the most effective defense against pollution

is a prevalence of legitimate participants. As the results will show in chapter 6, the

approach is extremely resilient to noise, especially as the number of collaborators

increases.

5.5.2 Watermarking

Arguably, the most difficult attack vector to defend against is that of watermarking,

where, if collaborators are known to each other, enables a single participant to pierce

the veil of anonymous-but-differentiable by triggering events at peers’ sites in a

coordinated fashion.

For example, a malicious insider could execute portscans from a known source

to a specific peer known to be participating in a collaboration network, and can then

wait for corroborating evidence to come from that peer (“watermarking”). While

the event would be tagged with a unique identifier, the insider could scan the event,

and if the known source is found, draw an association.

This is fundamentally a difficult problem while maintaining differentiable

113

anonymity, as the fundamental goal is to enable differentiated alert source deter-

mination. The only truly general solution may be to eliminate differentiability,

but as discussed before, this has other negative consequences. Another strategy

would be to keep differentiable anonymity, but to mask it and only use it when

necessary (i.e., during selective verification). This can be accomplished by using, for

example, an Onion routing approach [54]—where the original identity is derivable,

but not without the cooperation of many peers. An alternative approach would be

to have nodes aggregate and republish data that others have given it. However,

this can significantly increase the amount of data exchanged and has implications

for determining an appropriate consensus on a candidate suspect.

5.5.3 Collusion

The techniques described in this chapter assume that each participant, while possibly

curious, does not collaborate in a potentially-malicious attempt to glean additional

data. If they do, there is the potential for several attacks, most notably those of

identity detection, brute-forcing, and significant pollution.

Identity detection may be possible via collusion if a significant percentage of the

nodes collude and the set of participants is known, by reducing the probability of a

bad guess (i.e., since the colluders are presumably aware of their mutual identities).

Brute-forcing is rendered more possible as the ability to correlate alerts between

two sites reduces the likelihood of false positives providing a reasonable “plausible

deniability”. Finally, the most serious aspect of collusion is cooperative pollution;

peers that receive such cooperative polluted messages will rank matching entries

with a higher threat metric, even if they are not of concern. In the worst-case

scenario, this provides an effective denial-of-service as nodes may choose not to

communicate with legitimate endpoints, because polluted alerts have confused

sites’ defense mechanisms.

114

There is no perfect solution for collusion detection, although some form of

distributed verification and trust may be useful in solving this problem. For

instance, legitimate nodes may choose to sprinkle in a few “fake alerts” to see

if polluters decide to mimic them in order to confuse the global threat picture.

However, in order to resolve such a dispute, a central authority, similar to the ISACs

described in chapter 6, may be necessary.

5.5.4 Mimicry

All of the techniques described in this chapter are designed to produce, essentially,

differentiable transformations of data in a manner that the original data cannot be

recovered. The simplest approach, hashing, is brittle with respect to the data that is

being hashed, i.e., if one bit of that data is changed, a hash value changes significantly.

Incremental techniques, such as N-gram analysis, work around this problem by

breaking the input datum into a set of features which are then transformed, and

looking for a prevalence of matching N-grams.

However, this looser prevalence requirement makes for an interesting problem:

what if a datum can be composed to look like another datum by matching the

prevalence requirement while being something significantly different? It turns out

that this is not a theoretical question; [168, 77] studied this problem for different

domains. Ultimately, the severity of the problem depends on the application at

hand; for IP-based collaboration as described in section 6.4, this simply devolves to

the noise problem, as the features are fundamentally brittle and mimicry attacks

can be treated as pure noise.

For payload analysis (section 6.5), however, the problem is more significant.

Mitigation strategies can include moving the corroboration problem to a domain

where mimicry is hard; for example, given network traffic, perhaps corroboration

can be performed at a higher level (e.g., application state) which focus on the

115

effect of traffic, as opposed to the traffic itself. A number of strategies specific to

payload-based corroboration are discussed in future work.

5.6 Summary

This chapter introduced and comprehensively covered a diverse array of methodolo-

gies for privacy-preservation, discussed requirements and desiderata to maintain

anonymity, discussed how existing event systems can participate in such a system,

and described several potential attack vectors for the techniques. The next chapter

introduces an implementation, Worminator, that uses these techniques. Results

are presented for both individual feasibility studies (e.g., the effectiveness of a

timestamp Bloom filter) and overall performance for real-world scenarios.

116

Chapter 6

Privacy and Intrusion Detection

As alluded to in chapter 5, many of the techniques presented have different

levels of utility, based on the application. In this chapter, I discuss each of these

methodologies and techniques in the context of a comprehensive set of Intrusion

Detection applications, the most important of which is Worminator, a ground-

up rewrite of the XUES platform with privacy mechanisms for the purposes of

Collaborative Intrusion Detection.

Collaborative Intrusion Detection proposes the sharing of intrusion alerts and

associated models in order to get a global view on network/Internet threats. As

such, it fundamentally runs into significant privacy issues, as participants may be

unwilling to release sensitive information pertaining to their network topology or

transmitted data. Worminator strikes a balance between the privacy requirements

of participating organizations and effective Intrusion Detection alert corroboration.

It has broad applications, ranging from sharing simple lists of sources, to automatic

malicious payload detection and signature generation, to even traffic modeling in

mobile ad-hoc networks (MANETs). It is not itself a sensor; instead, Worminator is

capable of using different third-party sensors, including both commercial-off-the-

shelf (COTS) and in-house research tools, such as the Columbia IDS PAYL [174, 172]

117

and Anagram [173] anomaly detectors.

This chapter is organized as follows. First, a detailed overview and motivation

for collaborative intrusion detection is discussed. Next, I briefly describe each of the

different underlying sensors used, including both of our in-house anomaly detectors,

and how they particularly dovetail with the privacy techniques described earlier.

Two specific collaboration domains—packet header-based misuse detection and

payload-based anomaly detection—are then designed and validated in a privacy-

preserving manner. Both quantitative results and empirical analyses are presented,

demonstrating the value of corroboration for alert accuracy as well as the privacy

guarantees afforded by this approach. Finally, a new application of collaborative

traffic model exchange for new network topologies, such as MANETs, is briefly

discussed. The chapter concludes with a brief look at other potential applications

for the developed Worminator technology.

6.1 Collaborative Intrusion Detection

Internet-based attacks, ranging from distributed denial-of-service attacks to trojan,

worm, virus, and direct attacks have been growing in frequency, size, and threat

[153]. Of particular concern are the growing class of zero-day attacks, which refer to

successful exploits of vulnerabilities the same day, if not before, they are disclosed

by the software vendor or security community. It is hypothesized that these and

other rapid vulnerability exploits are often preceded by difficult-to-detect stealthy

scans to determine hosts vulnerable to specific exploit vectors. Such stealthy scans

are generally accomplished by using many probes, distributing scan patterns across

the Internet so that any given target is hit by a particular source at very low rates.

Intrusion detection systems (IDSes) are often designed to detect such scan

attempts, but as most current commercial deployments are typically constrained

118

within one administrative domain, they lack information about global scanning

patterns and have little chance to detect such behavior—an individual COTS IDS

sensor either misses broad, slow scans (as they require too much state), or if their

sensitivity is turned up, produce far too many alerts, making it infeasible for a system

administrator or an automated response mechanism to respond in an appropriate

fashion. Such scans can be used to build hitlists, which in turn can be employed by

rapid “Warhol” worms [140], slow surreptitious worms, and targeted attacks.

In general, intrusion detection systems face the very real threat of information

loss from the sheer rate of available information. Schaelicke, et. al. [134] are

decidedly pessimistic about the ability of relatively powerful commodity hardware

and network links to absorb peak alert loads, noting that an IDS is effectively

neutralized by the loss of alert data resulting from a database unable to keep up

with incoming network data. DShield reports about 10 million alert records added

daily. Figure 6.1 shows the increase in contributed data per month between January

2002 and May 2003.

Therefore, the ability to rapidly and correctly identify, rank, and react to both

active attacks and stealthy probes is of importance. The exchange of alert data

between administrative domains can effectively supplement the knowledge gained

from local sensors. Global information can aid organizations in ranking and

addressing threats that they do perceive and in alerting organizations to threats they

would not otherwise have recognized. We term this Collaborative Intrusion Detection,

or CIDS. CIDS is an evolution from Distributed Intrusion Detection, or DIDS, which

also employed multiple sensors but did not distinguish between organizations,

instead uniformly viewing them as a set of nodes across a single or many different

networks.

CIDS, on the other hand, leverages the data diversity gained through multiple

sensors at different sites to better rank and understand the meaning of common scans

119

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

0 2 4 6 8 10 12 14 16 18

to
ta

l m
on

th
ly

al
er

t r
ec

or
ds

month number

DShield Alert Volume per Month Jan 2002 - May 2003

records

Figure 6.1: DShield monthly alert record contributions. The graph is not
cumulative, but rather shows the rapid increase in contributed alert information

per month as DShield grew in popularity.

and attacks. In particular, with sufficient global scan data from a CIDS, it should

be possible to create a profile of scanner behavior to help differentiate benign-and-

curious scanners, worm-infested machines, and actively malicious entities planning

their next attack. However, potential contributors, both academic and commercial,

are unwilling to release alerts, for fear of revealing their network topology, open

services, or even the distribution of source addresses or communications of peers

that regularly communicate with them. This concern is what motivates privacy-

preservation, and leads to the main hypotheses of the Worminator project.

6.1.1 Hypotheses

120

This chapter explores three key hypotheses connected to privacy-preservation and

intrusion detection.

A privacy-preserving architecture enables:

1. The participation of a broad group of contributors to detect both
slow, stealthy scans that act as precursors of attacks, as well as
traffic information necessary to automatically build defenses for
actively ongoing attacks, while ignoring false positives;

2. The ability of contributors to exchange vulnerability-specific infor-
mation to enable effective signature generation to help defend
against very broad exploits;

3. The ability of ad-hoc communication participants to determine
each other’s communication profiles, and develop a trust model
to determine exchange, without revealing intended future com-
munication.

These hypotheses are explored in great detail in sections 6.4, 6.5, and 6.6,

respectively, after Worminator’s requirements and a technical overview are discussed

in the next sections.

6.1.2 Requirements

From the discussion above, a set of requirements can be derived to guide the

design of the system. These requirements can be viewed as a specialization of the

requirements originally discussed in section 1.3.

• The exchange of alert information must not leak potentially sensitive data,

and should be robust to “curious” participants, yet should exchange enough

data for meaningful corroboration.

• The system should not involuntarily reveal the identity of participants, but

should allow the ability to distinguish between participants to help accurately

measure threats.

121

• Large alert rates may hide stealthy activity; any reasonable solution must

deal with or reduce the effects of these rates, including the use of temporal

constraints.

• The system must scale to handle active alert flows for anything from slow,

surreptitious scans to active worm attacks.

• The system should handle a heterogeneous set of intrusion detection sensors

to cover different applications and collaboration scenarios. Ideally, the system

should be sensor-agnostic, minimizing the amount of work needed to integrate

any individual sensor.

In the next section, I describe Worminator, our implementation of a CIDS

that aims to fulfill these requirements with the inclusion of privacy-preserving

mechanisms.

6.2 Worminator Overview

A ground-up rewrite of the XUES platform, Worminator adds support for privacy-

enabled data structures and transforms to take intrusion alerts generated by under-

lying sensors and embed them in Bloom filters or other hash-based structures. Like

EP, Worminator is fully modular and supports heterogeneous data types, sensors

and communication networks, and supports near real-time event processing and

correlation/corroboration.

Preserving Privacy

While IDS alerts themselves could be distributed, there are two substantial disad-

vantages to doing this: first, organizations may have privacy policies or concerns

about sharing detailed IP data, some of which might uncover who they normally

122

communicate with. Second, these alert files grow rapidly given substantial traffic.

While parameters may be tweaked to reduce potential noise, a preferable solution

would be to encode the relevant information in a compact yet useful manner.

Worminator provides the ability to represent alerts via one of several compact

formats, including hash sets, Bloom filters, frequency distributions, Z-Strings, and

n-gram signatures, as described in forthcoming sections. Since these are compact,

one-way data structures, we get several benefits:

• Compactness: Most of these alert representations are extremely compact; for

example, a Bloom filter smaller than 10k bits in size is still able to accurately

verify thousands of entries.

• Resiliency: Worminator’s support of decentralized corroboration enables effec-

tive alert-sharing even in the case of worm storms or network segmentation

due to failures.1 Several of Worminator’s data structures are also resilient

when scaling: for example, smaller Bloom filters saturate quicker, and start

producing false positives, but do not produce false negatives. Moreover,

corroboration against multiple alert lists can effectively ameliorate these false

positives.

• Security: By utilizing a one-way data structure, organizations can correlate

watchlists or models of behavior without releasing actual IP or payload data,

satisfying privacy needs while being able to participate. We demonstrate that

the above-mentioned data structures do indeed effectively corroborate while

maintaining extremely good privacy metrics.

1This is predicated on the use of an effective distributed event dissemination infrastructure;
Worminator itself is completely decentralized, and so does not impose extra conditions on such a
dissemination platform.

123

6.2.1 Architecture

First, the construction of privacy-preserving transforms by Worminator is employed

to protect the confidentiality of the data being exchanged between domains. Since

information is also compacted by the Bloom filter, correlation between peers becomes

extremely cost-effective in terms of bandwidth and processing power.

A key motivating factor for organizations to join a collaboration group in

performing distributed intrusion detection is that participants can implement fast

mitigation strategies against threats they otherwise would not have known about.

For example, DOMINO [179] illustrates the advantage of small blacklists (around

40 entries) that retain their efficacy even when data is fairly stale. Other responses

include the content filtering strategies proposed by Moore et al. [101], prosecution,

or military action.

One of the most important decisions we make is to employ the use of “watchlists,”

or lists of IP addresses or payload exploits suspected of subversive behavior. The

task of the distributed detection system is not to analyze the network or host events

of other domains, but rather to correlate summaries of alerts to identify attackers.

Therefore, watchlists encapsulate the appropriate information to exchange.

The goal, in the case of alert and suspect payload sharing, is to enable sites to

maintain a secure watchlist of alerts seen locally and from other sites, and to generate

a warnlist of significant threats if they have been correlated as having been seen at

multiple sites. This warnlist can then be reported to network administrators or could

be directly mapped to firewall or signature scanner rules to prevent impending

attacks. Depending on privacy policies, these local warnlists may also be explicitly

replicated to other sites to enable a fast global-scale response.

For alert exchange, watchlists consisting of encoded Bloom filters, hash sets,

etc. are created and exchanged between peers’ sites to corroborate local data.2 A

2As previously implied, raw alert data can be collected if participants are willing.

124

corroborator runs as a Worminator module on each site, and can perform decentral-

ized privacy-preserving corroboration using temporal corroboration structures, as

discussed in 5.2.2. Corroborated alerts can then be either reported via a website,

as feedback into the IDS system as additional metadata to determine threat levels,

or as a warnlist published back to the community. The latter may optionally be

published without privacy-preserving mechanisms to enable peers that have not

corroborated to take proactive measures against a correlated threat.

6.2.2 Implementation and Deployment

Worminator is written in about 20,000 lines of Java and Python code, and leverages

a number of J2EE (Java 2 Enterprise Edition) providers, including the PostgreSQL

JDBC provider for querying databases, the Apache Tomcat JSP/Servlet container

for the UI, and the JBossMQ JMS (Java Message Service [151]) provider as a

publish/subscribe infrastructure to communicate events. Worminator, like XUES, is

completely pluggable and supports different sensor and alert types, correlators, and

communication frameworks. Just as importantly, it supports continuous validation;

alerts from sensor(s) are exchanged immediately, and correlation runs real-time to

glean data as soon as possible to help prepare defenses against pending attacks or

fast-moving worms.

Watchlists and warnlists are communicated using the IETF IDMEF draft standard

(Intrusion Detection Message Exchange Format [35]). The configuration to determine

alert communication and workflow is written in an XML rule file and is site-specific.

Deployment

Worminator was successfully deployed for IP-based alert exchange at three academic

and two commercial sites over a six-month period. Deployment discussions with

other organizations have been ongoing; regulatory compliance and legal issues

125

make deployment an extremely slow, unpredictable process.

We have also been in communication with various ISAC (Information Sharing

Alert Coordination) organizations, set up to enable exchange of Internet threats,

especially the REN-ISAC (Research and Education Network ISAC [126]). An ISAC

forms a natural authenticating and anonymization authority, and future participation

with the REN-ISAC is possible, and may help encourage more participants to join

the Worminator effort in the future.

Finally, the performance benchmarks discussed in this chapter were tested on a

dual-processor 3GHz Xeon system with 4GB of RAM, running Java SE 5.3

6.3 Sensors

Intrusion Detection sensors typically partition into two groups: misuse detection,

which uses a predefined corpus of rules to determine scanning and suspicious

behavior, and anomaly detection, which builds “models” of normal behavior and

flags suspicious behavior as those that differ significantly from this norm.

Worminator has been tested with both categories of sensors; in fact, the modeling

techniques in the two anomaly detection sensors closely resemble several of the

privacy-preserving data structures discussed in chapter 5, and thus naturally scale to

the applications described here. It is important to note, however, that the algorithms

described are not bound to these sensors, per se, and they may be usable with other

host- or network-based misuse and anomaly sensors.

6.3.1 Misuse Detection

As mentioned, misuse detectors are essentially rule-based correlators that build

alerts from incoming traffic based on a static rulebase, looking at packets for content

3Only one processor was used, as out-of-the-box Java uses one CPU per process.

126

patterns (e.g., matching a known signature) or distribution patterns (e.g., a certain

volume of packets are received in a certain timeframe from the same source).

Outputted results usually include a pair of (IP, port) tuples representing the source

and the target, as well as other metadata, such as alert time, packet length, possibly

a score, etc. From this, features can be chosen for exchange.

The classic misuse detectors in the IDS community, Snort [129] and Bro [118],

can be used with Worminator, but they are ill-suited for long-term scan detection.

Instead, the main COTS IDS sensor used in Worminator was [128]. It is a surveillance

detector, a form of misuse detector that maintains a significant amount of state to

detect long-term scan attempts. Worminator read alerts from the underlying sensor,

extracted appropriate features, packaged them into Bloom filters, and exchanged

them with peers to determine sources of interest, targeted services, and potentially

exploit vectors.

6.3.2 Anomaly Detection

Worminator can theoretically be used with virtually any anomaly detector that

publishes alerts with discrete features. For the purposes of the payload-based

experiments described in sections 6.5 and 6.6, I opted to work with two exemplary

anomaly detectors developed in the Columbia IDS lab: PAYL, which implements

anomaly detection based on frequency-based 1-gram modeling, and Anagram,

which uses binary-based mixtures of higher order n-gram modeling (n > 1). Both

sensors train on normal unencrypted content flows and employ service-specific

models to test for suspicious traffic.4 Alerts are generated on traffic sufficiently

deviant from normal; it is these alerts that we wish to share with other sites to

resolve false positives from true zero-day attacks. The reader is encouraged to refer

4Anagram utilizes other information and is semi-supervised, i.e., it uses tools and heuristics to
ensure the training data is sufficiently devoid of anomalous n-grams in order to minimize false
negatives.

127

to [174, 172, 173] for detailed descriptions of the aforementioned sensors.5

PAYL: 1-gram frequency modeling

PAYL, or PAYLoad anomaly detection, was the first significant packet payload-based

anomaly detector that was developed at the Columbia IDS lab, and one of the first in

the community [174, 172]. PAYL’s models are 1-gram byte frequency distributions

conditioned on packet length and targeted service; data shows that network traffic

differs considerably given these two features. During the training phase, incoming

packets on a given port are frequency analyzed, and the distributions are clustered

together based on the payloads. This clustering process results in a number of

centroids that characterize the traffic for the chosen port and packet length. By

considering all the centroids obtained for different port and length, we obtain a

PAYL model.

Incoming packets are then compared against this model in the detection phase

to check for anomalies; traffic is classified as normal or malicious by computing the

Mahalanobis distance between the distribution of the candidate packets and the

frequency model. A larger distance means bigger deviation from the model and a

more abnormal packet; thresholding differentiates normal from malicious traffic.

It is also possible to check bidirectional traffic in the same manner and to detect

worms by performing ingress/egress correlation.

A raw PAYL alert typically contains metadata, including the source and target

IP/port pair, payload length, and score (distance from model). Additionally, the

suspicious packet may be included in its alert. While the payloads can be shared,

they significantly increase alert sizes and run into privacy issues, especially for

misclassified traffic, i.e., false positives. While PAYL’s false positive rates have been

5Both PAYL and Anagram were primarily written by my colleague, Ke Wang, and form a significant
part of her thesis [171]. Parts of Anagram use Worminator libraries written by myself, most notably
the Bloom filter implementation and its incremental multiple n-gram analysis techniques.

128

determined to be very low [172], the notion of transmitting any raw payload inhibits

collaboration among defensive sites.

Anagram: n-gram binary modeling

Anagram [173], the second payload-based anomaly detector developed at Columbia

IDS, uses binary-based high order n-gram modeling, i.e., it simply models the

presence or absence of particular n-grams as opposed to their relative frequency of

appearance. Compared to 1-gram, higher order n-grams are better at modeling

sequential content information in packets, and thus it is capable of detecting

significant anomalous byte sequences and their location within a packet. To avoid

significant memory overhead associated with n-gram frequency distributions, only

a binary (yes/no) statistic is kept for each possible gram. Scoring is accomplished by

counting the percentage of not-seen-before (i.e., unusual) n-grams out of the total

n-grams in the packet, and thresholding is again applied to differentiate traffic.

Surprisingly, analysis in [173] shows that binary-based modeling produces

extremely good results; it turns out the additional data representation of frequency-

based modeling is less advantageous when the space of potential grams grows

significantly (e.g., the likelihood of having significant frequency information for

distinct 5-grams, or 2565 grams, is significantly smaller than for the 256 distinct

1-gram), and the representational power of higher-order n-grams effectively offsets

the loss of frequency information. However, even though binary-based modeling

significantly reduces space overhead, there is still a significant number of possible

n-grams as n increases, and a typical hash set structure uses at least 4 bytes per

entry. Since only the binary set property is needed, we can use Bloom filters (§5.2.2)

as natural data structures for an Anagram model, reducing data requirements by an

order of magnitude.

The structure of a raw Anagram alert is similar to that of a raw PAYL alert.

129

6.4 IP-Based Collaboration and Scan Detection

The first application of Worminator is to enable the exchange of IP header-based

alerts. These alerts, typically generated by a local misuse or anomaly sensor,

consist of source and destination endpoints associated with some metadata (perhaps

information on the scan/attack vector, the payload length, time of the scan/attack,

etc.) It is important to note that the sensor itself is not constrained to IP headers;

rather, in this environment the sensor does not reveal payload information in its

alerts.

This model is the one used by many traditional network-based IDS sensors,

including Snort [129] and Bro [118]. Enabling the exchange of alerts enables a global

watchlist, i.e., information about the sources of a scan or attack. These watchlists are

privacy-preserving, are exchanged with collaboration peers, and verified against

each peer’s local database of alerts. Corroborated IPs that exist in the local database

plus one or more peers are then published into a warnlist, which may optionally

be distributed without privacy preservation in order to enable all nodes to fortify

defenses against a common scanner/attacker.

By building and optionally exchanging these warnlists, participating nodes can

get longitudinal attack information across IP space, and can choose to rank threats

based on their perceived risk. These longitudes can vary based on a number of

factors, including time, target classes, targeted services, etc. For example, a common

source scanning banks in particular may be viewed as a more serious threat, as

opposed to a source exhibiting worm-like random scanning behavior. Worminator

does not rank these threats automatically, but rather facilitates the exchange of

the watchlist and generation of the corresponding warnlist in order to make such

rankings possible either by a human or automated analysis tool.

The rest of this section is organized as follows. First, a precise description of the

corroboration in this scenario is made. Efficient ways of supporting the corroboration

130

are then discussed, including from computation, storage, accuracy, and privacy

perspectives. Finally, data collected from a test deployment of Worminator amongst

5 sites is analyzed to demonstrate the empirical observations that can be made

with such information; these observations form the basis of a longitudinal study of

common threats over space and time.

6.4.1 Corroboration Methodology

A set of participants A,B,C, . . . each contain an IDS sensor, e.g. IA,IB,IC, . . .

that produces alerts EA,EB,EC, . . . , possibly at different times, e.g., we may have a

collection of events eAt1 , eBt2 , While each sensor produces alerts asynchronously,

a common (global) clock is assumed. If a site were to have multiple sensors

IA1 ,IA2 , . . . , we remap each of those sensors as appearing from different sites, i.e.,

A1 → B,A2 → C, etc. This methodology does not impose that all sensors must

therefore be viewed as a flat group; if desired, the corroboration described here can

be done hierarchically, where a site may choose to aggregate data from individual

sensors and publish them as a single source. However, a global hierarchy is not

maintained; maintaining such a hierarchy makes anonymous differentiability more

complex—both from a privacy and anonymity-piercing perspective and from a Sybil

attack-like [39] poisoning perspective—and so I leave such a characterization to

future work.

An individual alert e has features eα, eβ, . . . ; for the purposes of this experiment,

we choose and extract three specific features to be corroborated.

• The source es, representing the source identifier in the IDS alert. Typically, this

is an Internet-accessible IP address. The presumption is that this IP address is

remote to the set of participants, although the system does not intrinsically

require this.

131

• The destination service ed, representing the service aspect of the destination

endpoint. Typically, this is mapped to the destination port. Destination IPs

are not kept as they are less useful when corroborating across participants;

it is fundamentally assumed that each participant has only a complete view

of their traffic. If they were to have access to a more global perspective, this

corroboration application would be unnecessary. (One special case is that

of a corroboration scenario when one of the participants, or a node on the

participant’s network, is themselves an attacker; in this case, corroborating

destination addresses may enable quicker detection. However, I leave this to

future work; amongst other challenges, participants are typically unwilling to

report on their nodes’ activities directly.)

• The time et, representing the timestamp as written by the IDS system. This may

vary; some IDS systems produce multiple timestamps, corresponding to the

detection window as well as the publication time. This system is capable of

using any of these, as well as an implicit alert timestamp that is generated by

the receipt of an alert from a remote site. More specific timestamps may enable

a higher-precision corroboration, but as timestamps must be transmitted

unencoded, this may not always be possible.

Given these features, we design a set of alerts A = a1, . . . , an, each alert ai =

{es, ed, et}, and then privacy-transform them via one of two mechanisms. (Frequency

models are not considered for this application, as they are ill-suited to support entity

matching.)

• A privacy-enabled alert set A′ = P(A) = {p(a1), p(a2), . . . , p(an)}, where each

privacy-transformed event a′ = {p({es, ed}), et}. That is, a privacy transform

is applied to the source/destination tuple and is then associated with the

timestamp in question.

132

• A privacy-enabled alert modelA′ =M(A), via the creation of a Bloom filter

A
′ = B({es0 , ed0}, {es1 , ed1}, . . . , {esn , edn}). Once again, the timestamp itself is not

inserted in the Bloom filter. The aggregate Bloom filter is assigned a pair of

timestamps Bt0 = et0 , Btn = etn as metadata, t0 ≤ t1 ≤ · · · ≤ tn.

The resulting set/modelA′ is the participant’s watchlist, and is published to peers.

Note that the set/model essentially acts as a “snapshot” of the alerts received between

the last publication tl and the current time tc. This publication schedule is flexible;

if more frequent exchanges are desired, the window tw = tc − tl can be reduced,

creating smaller sets/models that are published more frequently. This window size

also effects the granularity of the timestamps for a Bloom filter-based model, i.e.,

typically Btn ≤ tc, Bt0 ≤ tl and Btn − Bt0 ≤ tw. (In theory, if a participant wishes, they

could retransmit earlier events, which would produce a correspondingly larger

window; this case is not considered.) Additionally, the features published are also

flexible; if desired, any of the features can be removed, e.g. watchlists consisting only

of source IPs can be exchanged. This allows for threat-independent corroboration

of suspicious sources, and a few of the later aggregate experiments assume source

IP-only corroboration.

Upon receipt of one or more watchlists, a warnlistW can be generated via the

corroboration function W = C′ as described in section 3.2, with one significant

difference: as Bloom filters are binary-based models, the threshold function τ is

irrelevant; instead, a simple binary thresholding is done to determine whether

entries do corroborate against the BF.

For example,WAB = C
′

A(A′B) represents the set of alerts at participant A that

match entries in B’s watchlist. (As would be expected in corroboration,WAB =WBA.)

Multiple watchlists can be corroborated serially or in parallel, e.g., C′
C′A(A′B)(A

′

C) or

C
′

A(A′B ∩ A
′

C) given watchlists from B and C. While the latter is generally more

efficient, it presumes the simultaneous availability of both instances ofA′, whereas

133

the serial corroboration can be done progressively.

As previously mentioned, participants may choose to distribute a warnlistW

without privacy transformation. Consider the three-participant scenario A,B,C,

where a given source si scans both B and C on a particular service d j. B and C will

build local alerts and will distribute the watchlistsA′B,A
′

C, both of which contain

e′x = p({si, d j}). However, until A witnesses activity from si, it will not be able to

corroborate against e′x. The situation remains the same if 100 participants are present

in the collaboration network and 50 of them observe some behavior of interest.

One can argue that, given corroboration, source si no longer represents “private”

information; it has been observed elsewhere. An unencrypted warnlist WBC,

ex ∈ WBC, gives A the opportunity to prepare for potentially suspicious behavior

from si—which may be important when attempting to, for example, stem a worm

attack. Finally, such warnlists may be publishable to other distributed systems,

such as DShield, as a public service. Note that Worminator does not mandate such a

system; it is flexible to information disclosure policies. However, Worminator does

support this form of collaboration in conjunction with privacy-enhanced watchlists.

Finally, given one or more warnlistsWXY or evenW∗, i.e., a warnlist composed of

all warnlists published by participants, various defensive strategies can be adopted.

At the simplest level, the warnlist can be used to alert system administrator(s).

They can also be used to drive firewall and access-control rules. More sophisticated

strategies can be used, such as thresholding or threat ranking based on the number of

participants that corroborate a particular alert. Worminator is compatible with such

systems, so long as they are decentralized. (Centralized response and mitigation

systems can be adapted, but then effectively require the publication of non-private

warnlists or summaries).

6.4.2 Evaluation and Test Data

134

The following subsections evaluate the above methodology using a number of

criteria, including performance, space and transmission requirements, accuracy,

privacy gain, and results gathered. In order to complete these evaluations, data

was collected as part of the deployment discussed in section 6.2.2. Raw data was

collected where possible to enable a comparative evaluation between raw correlation

and various forms of privacy-preserving corroboration.

Approximately one year of data (March 2005–March 2006) was collected from 5

different sensors, three of them academic (including Columbia) and two of them

commercial (organizations in New York and in Washington DC); the statistics

are shown in table 6.1. Note that the total row is only a strict total for the

number of alerts, as IPs and IP/port pairs overlap by definition when considered

across sites. Additionally, the COTS sensor used with Worminator was capable of

detecting multiple targeted ports per a single alert. Unfortunately, for technical and

legal reasons, we were not able to run all of these sensors together for the entire

experimental period, although several subsets did collaborate for long periods of

time.

Site Time (days) # Alerts # Distinct IPs # Distinct
IP/port pairs

Academic 1 314.87 3919604 86108 4576155
Academic 2 28.53 823631 28838 844288
Academic 3 164.56 2811553 45255 3605271
Commercial 1 242.52 923482 119675 325283
Commercial 2 373.68 543979 60585 378062
“Total” 9022249 322391 9669162

Table 6.1: Statistics on Collected IP-based data.

The above data immediately suggests that academic networks, which are

frequently more “open” and may carry a much broader variety of content, generate

a higher volume of alerts than the commercial sites. The corresponding alert rates

are discussed in greater detail in the next subsection, while more distinguishing

135

characteristics are discussed in the analysis in section 6.4.8.

6.4.3 Performance and Scalability

In order to be useful, this system must be able to function in near real-time, i.e., at

the same pace as or faster than collaborating IDS sensors. The feasibility of matching

alert rates is examined for both the set-exchange (hash set) and model (Bloom filter)

scenarios.

Alert Rates

Table 6.2 shows the corresponding alert rates, given the data in table 6.1, for each of

the collaborating sensors in the aforementioned experiment.

Site Alerts/Min. Alerts/Sec.
Academic 1 8.64 0.3341
Academic 2 20.04 0.3341
Academic 3 11.86 0.1977
Commercial 1 2.64 0.0440
Commercial 2 1.01 0.0168

Table 6.2: Alert Rates of Participating Worminator Sites.

These alert rates are reasonably manageable, but the question is more of scalabil-

ity: ideally, any such corroboration system should be able to handle thousands of

such participants, i.e., thousands of alerts per second being distributed amongst

participants. Distribution issues aside, two key questions remain:

• Do privacy transforms measurably affect the publication rate at individual

nodes?

• As thousands of such alerts are distributed, can the recipient site corroborate

them sufficiently quickly?

136

The next subsections explore these questions. First, I measure the effect of

corroboration on alert rates. Second, the computation and space overheads of

privacy-preservation are measured. Finally, I address the challenge of providing

efficient temporal corroboration and the corresponding computation and memory

overheads.

Alert Reduction

To some extent, alert reduction is one of the most significant features of Worminator—

unless the number of alerts is sufficiently reduced through corroboration, Wormi-

nator does not help the individual site’s IDS operator. In order to characterize

Worminator’s potential in reducing alert rates via corroboration, the aforementioned

datasets were first intersected using raw data and using (IP, port) tuples. This

corroboration was done 2-, 3- and 4-way; the results are shown in figures 6.2–6.4.

N-way corroboration is defined as an AND function, i.e., the set of alerts that

appear in all of the specified sites. “OR” corroboration is less useful, as a 3-way OR

corroboration would simply be a pair of two 2-way corroborations. Since the scales

of the graphs vary widely, figure 6.5 is also included; it charts the maxima of each of

the figures. (This “scale figure” is also used in several of the subsequent figure sets

where the Y-axis ranges differ widely.)

Each of the three figures have two Y axes; the left Y axis, corresponding to the

bar values, shows the absolute number of corroborated alerts, while the right Y axis,

corresponding to the superimposed line, shows the number of corroborated alerts as

a percentage of the first site’s total tuple set, i.e., the number of distinct IP-port tuples.

Note that the X axis therefore features N copies of each unique N-way corroboration

so that the percentages can be shown over all cases (and specifically in the case of

very asymmetric original alert sets).

As the results show, corroboration leads to a dramatic decrease in the number

137

!1,!
2

!1,!
3

!1,&
1

!1,&
2

!2,!
1

!2,!
3

!2,&
1

!2,&
2

!3,!
1

!3,!
2

!3,&
1

!3,&
2
&1,!

1

&1,!
2

&1,!
3

&1,&
2

&2,!
1

&2,!
2

&2,!
3

&2,&
1

Sites intersected

0

5000

10000

15000

20000

25000

N
u

m
b

e
r

o
f

in
te

rs
e
ct

e
d

 a
le

rt
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
e
rc

e
n

ta
g

e
 o

f
fi

rs
t

si
te

’s
 a

le
rt

s
in

te
rs

e
ct

e
d

Figure 6.2: Alert rates, 2-way corroboration.

!1,!
2,!

3

!1,!
2,&

1

!1,!
2,&

2

!1,!
3,&

1

!1,!
3,&

2

!1,&
2,&

1

!2,!
3,!

1

!2,!
3,&

1

!2,!
3,&

2

!2,&
1,!

1

!2,&
2,!

1

!2,&
2,&

1

!3,!
2,!

1

!3,!
2,&

1

!3,!
2,&

2

!3,&
1,!

1

!3,&
2,!

1

!3,&
2,&

1

&1,!
2,!

1

&1,!
2,!

3

&1,!
2,&

2

&1,!
3,!

1

&1,!
3,&

2

&1,&
2,!

1

&2,!
2,!

1

&2,!
2,!

3

&2,!
2,&

1

&2,!
3,!

1

&2,!
3,&

1

&2,&
1,!

1

Sites intersected

0

500

1000

1500

2000

2500

3000

3500

4000

N
u

m
b

e
r

o
f

in
te

rs
e
ct

e
d

 a
le

rt
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
e
rc

e
n

ta
g

e
 o

f
fi

rs
t

si
te

’s
 a

le
rt

s
in

te
rs

e
ct

e
d

Figure 6.3: Alert rates, 3-way corroboration.

A1#A
2#A

3#C
1

A1#A
2#A

3#C
2

A1#A
2#C

2#C
1

A1#A
3#C

2#C
1

A2#A
3#C

1#A
1

A2#A
3#C

2#A
1

A2#A
3#C

2#C
1

A2#C
2#C

1#A
1

A3#A
2#C

1#A
1

A3#A
2#C

2#A
1

A3#A
2#C

2#C
1

A3#C
2#C

1#A
1

C1#A
2#A

3#A
1

C1#A
2#A

3#C
2

C1#A
2#C

2#A
1

C1#A
3#C

2#A
1

C2#A
2#A

3#A
1

C2#A
2#A

3#C
1

C2#A
2#C

1#A
1

C2#A
3#C

1#A
1

Sites intersected

0

50

100

150

200

250

300

350

400

450

N
u

m
b

e
r

o
f

in
te

rs
e
ct

e
d

 a
le

rt
s

0<00

0<02

0<04

0<06

0<08

0<10

0<12

0<14

P
e
rc

e
n

ta
g

e
 o

f
fi

rs
t

si
te

As
 a

le
rt

s
in

te
rs

e
ct

e
d

!"#$%&'()* !"#$%&'()+ !"#$%&'(),
-

.---

/----

/.---

*----

*.---

0
1
2
"3

$
3
'4
1
5$
&
'6
7'
7"
#
$
%&

Figure 6.4: Alert rates, 4-way corroboration. Figure 6.5: Alert rates, relative scale.

of alerts selected. Simple two-way corroboration leads to a 95%+ reduction in the

number of unique IP-port tuples; four-way corroboration leads to a fraction of

one percent of the original tuples. As figure 6.5 shows, each additional site yields

approximately another order-of-magnitude reduction. This does not mean to imply

that all of the other alerts should be ignored, but rather that fewer cross-site scanners

exist and that they can be easily gleaned from the raw data via corroboration.

Moreover, it’s very unlikely that legitimate traffic is common to these unrelated

sites—especially across longitudes (e.g., academia vs. commercial). Further analysis

and insight on cross-site scanner behavior is discussed in a later subsection, but this

simple analysis validates our approach to alert reduction.

138

Hashing Computation

The prime computation overhead for hash-based privacy transforms is the computa-

tion of the hash itself. For ideal privacy gain, a perfect/cryptographic hash function

is preferred; such functions, like SHA-1 or H3, are usually linear in the length of

the datum to be hashed. For fairly constant-length data, such as IP addresses, this

is essentially equivalent to O(1). Nevertheless, practical results are useful to get a

better idea of the actual constant-time overhead.

Figure 6.6 shows a performance comparison between the use of no hash functions

(i.e., copying a given datum in memory) versus the use of three different hashes

with varying numbers of IP/port alerts: the cryptographic hash function SHA-1 and

two variants on the hash function H3. The IP/port alert tuples are IPv4-based, i.e., 6

bytes, and were randomly sampled from the aforementioned data.

As the results show, computation overhead of the functions in question increase

linearly as the number of alerts increase. The SHA-1 implementation used here is

the (presumably optimized) Sun reference implementation built into Java. The two

variants on H3 reflect a simple optimization; the “cached” H3 implementation buffers

the hash values for all possible individual bytes in the input stream, instead of just

storing the hash values per bit. Bit manipulation in many 3rd-generation languages,

including Java, is cumbersome, and this removes a significant computation overhead

incurred in repeatedly shifting existing bits as each additional bit is processed. The

cost of the cached version is an increased use of memory to store the cache table;

4nm additional bytes of memory are used, where n corresponds to the number of

bytes of each possible input while m corresponds to the number of bytes of hash

output desired. It is important to note the hashes themselves are not affected.

Overall, the computation overhead is very small; in the case of one million

alerts, hashing imposes approximately a 3-to-4 second overhead total over the

underlying cost of copying events in memory. This translates to approximately a 3-4

139

0 200000 400000 600000 800000 1000000
Number of alerts

0

1

2

3

4

5

6

T
im

e
 (

se
co

n
d

s)

None
SHA1
H3NC
H3

Figure 6.6: Performance Comparison of Hash Functions for IP/Port Values.

microsecond overhead per datum, as shown in figure 6.7. While this is not strictly

negligible, hashing does not pose a problem for privacy transforms. If necessary,

further optimizations can be done by implementing these functions in a native

language or caching more commonly-hashed values.

Bloom Filter Computation

Bloom filters, being hash-based data structures, have correspondingly similar

computation overheads to standard hashes, and so most of the analysis in the

previous subsection applies here. Once again, BFs are O(1) per datum inserted.

However, the constant-time overhead can vary, due to two main factors:

1. A Bloom filter can be significantly smaller than an equivalent collection of

140

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Number of alerts

0.000

0.002

0.004

0.006

0.008

0.010

T
im

e
 p

e
r

a
le

rt
 (

m
il

li
se

co
n

d
s)

None
SHA1
H3NC
H3

Figure 6.7: Performance Comparison of Hash Functions for IP/Port Values per Alert.

hashes, and in general is a contiguous block of memory, so memory access

overhead is reduced. (A more precise characterization of Bloom filter memory

overheads can be found in the next section.)

2. Due to its size and nature, a Bloom filter minimizes hash collisions (false

positives) using a significantly different mechanism than a typical perfect hash.

Typical perfect hashes, like SHA-1 and H3, ensure a minimum of collisions by

producing long, unique hash strings. Since a Bloom filter throws away the

hash output, there is no incentive to produce such a long hash value. Instead,

the size of the hash value produced for a BF is on-the-order of the number of

bits used to represent a single entry, which for a variable-output hash function

can take significantly less work.

141

To counter the corresponding increase in collision rate, multiple hash functions

are used—typically, three or more are used. The optimal number of hash

functions is a function of the data and the corroboration scenario, and this is

discussed in greater detail in upcoming sections.

In order to better quantify the practical differences in overhead, I replicate the

experiment highlighted in figure 6.7 here, but with two additional Bloom filter

metrics. In figure 6.8, “BF-20” represents a 220-entry Bloom filter (≈ 1 million entries),

while “BF-24” represents a 224-entry Bloom filter (≈ 16 million entries). Both use

three H3 hash functions.

0 200000 400000 600000 800000 1000000
Number of alerts

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

se
co

n
d

s)

None
BF?20
BF?24
SHA1
H3

Figure 6.8: Performance Comparison of Bloom Filters and Hash Functions for
IP/Port Values.

Figure 6.8 shows that Bloom filters perform well with respect to collections of

hashes. Unsurprisingly, a 220-entry BF has a slightly lower computational overhead,

142

due to both a smaller memory footprint and less required hash output. However,

the 220-entry BF would be saturated with one million alerts and would not produce

satisfactory results; as we will see, 224 is ideal for this purpose, and it still performs

on par with a single H3 hash function.

6.4.4 Space and Transmission Requirements

The space overhead of the two privacy-enabled data structures described above

differs significantly, given the small size of an IP/port tuple.

Hashes are comparatively expensive: SHA-1, for instance, outputs 160 bits per

entry, which represents roughly a 25-fold increase in memory requirements. At the

same time, 28 bytes per alert (including a long timestamp) is not that large; given .33

alerts/second (the highest aforementioned alert rate), this represents approximately

9.25 bytes/sec per node. This can scale well; 1,000 nodes would use an aggregate

bandwidth of less than 10KBps. If more space efficiency is needed, fewer bits of

hash can be kept, albeit inducing a cost on corroboration accuracy, as discussed in

the next section.

Of course, typical sensor alert rates play a significant difference, and vary based

on the sensor used. For additional potential space savings, a Bloom filter can be

used. First, a Bloom filter can theoretically represent the presence of an individual

entry using a few bits, i.e., it acts as a compression mechanism upon the original

alert. The one challenge with the use of Bloom filters for effective compression are

sparse Bloom filters, which is common when alerts are being exchanged frequently.

This can be ameliorated somewhat by using a typical compression algorithm on the

Bloom filter.

For example, consider a Bloom filter with a 220 index size, i.e., ≈ 1 million bits;

it occupies 128KB of space, uncompressed. Given 5 hash functions per entry6,

6As we show in the next section, ≥ 5 hash functions typically provide low false positive rates

143

approximately 100,000 entries can be stored before the Bloom filter is saturated, i.e.,

≥ 50% of the Bloom filter is filled. The uncompressed storage space is therefore 1.31

bytes per entry. A small experiment was created using varying numbers of entries

and hash functions to demonstrate the effective space requirements imposed by a

Bloom filter; the results are shown in table 6.3.

entries Uncompressed Compressed Compressed
inserted (5 or 10 hash fns) (5 hash fns) (10 hash fns)

Size Per Alert Size Per Alert Size Per Alert
1 131072 131072.00 182 182.00 189 189.00
2 131072 65536.00 184 92.00 198 99.00

10 131072 13107.20 284 28.40 312 31.20
100 131072 1310.72 1177 11.77 1467 14.67

1000 131072 131.07 5098 5.10 8507 8.51
10000 131072 13.11 26109 2.61 41048 4.10

100000 131072 1.31 109714 1.10 119955 1.20

Table 6.3: Bloom filter sizes; all sizes are in bytes.

As the results show, the Bloom filter produces better size results than hash sets,

except for very sparse Bloom filters. When used to encode more alerts, Bloom

filters can be far more efficient than transmitting the original alert. However, even

sparse compressed Bloom filters are useable; given the same alert rate and node

configuration as before, the worst-case scenario of transmitting one-entry, 5-hash

BFs would consume 60KBps of bandwidth. It’s also worth noting that the number

of hash functions used does not significantly affect size, and as such choosing the

right number of hash functions is more an issue in optimizing false positive rates

and computation time.

6.4.5 Corroboration Accuracy

The most important criterion, of course, is that of accuracy; privacy-preserving

transforms are only useful if alerts can be reliably corroborated. Both hashes

when corroborating.

144

and Bloom filters offer 100% true positives; corroboration accuracy, therefore, is

predicated on effectively minimizing false positives.

The two techniques were tested with a subset of the aforementioned dataset. To

ensure that a sufficient number of alerts were gathered from each site and enough

data was retained for practical 2-, 3- and 4-way corroboration, all of 3-way alerts

were kept and mixed in with other alerts selected at random. A maximum of 600,000

alerts were kept per site (so as to readily allow a 224-bit Bloom filter to store all of

the alerts without saturation noise).

Hash Functions

As a baseline, false positive rates were tested using the various hash functions

discussed earlier. Unsurprisingly, FP rates are extremely low. Figures 6.9–6.11 show

false positive rates for H3 hashes, ranging from 8-bit to 48-bit hash values when

performing 2-, 3- and 4-way corroboration. No results are shown beyond 48 bits as

zero false positives were recorded for both 40- and 48-bit hashes, strongly implying

that additional bits were unnecessary for this dataset.

As can be seen in all three figures, the false positive rates rapidly converge to

zero; as mentioned earlier, 40 bits is sufficient for this dataset. However, the FP

rates for smaller hashes varies; in particular, as the number of corroborating sites

increase, the percentage of alerts that are false positive decreases. This is not due

to an increase in the number of true positives—in fact, they decrease by orders-of-

magnitude, as discussed earlier. Instead, the number of false positives decreases

even more dramatically. While smaller hash values cause an increase in the number

of collisions at any given site, corroborating between sites actually eliminates

coincidental collisions, since the likelihood the same collision was encountered at

multiple sites decreases.

This key insight gives us a number of attractive properties: first, it enables

145

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2

C1,A
1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.9: Hash function false positive rate,
2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.10: Hash function false positive rate,
3-way corroboration.

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.11: Hash function false positive rate,
4-way corroboration.

us to use smaller hash values than otherwise necessary, further ameliorating the

space requirements discussed previously. Second, it provides insight as to how to

minimize the false positive rates of Bloom filters, which are ordinarily far more

prone to collisions; results when doing N-way corroboration with Bloom filters are

discussed in the next subsection.

Bloom Filters

A similar analysis is done with Bloom filters, but with significantly different results.

Figures 6.12–6.14 show false positive rates for 2-, 3- and 4-way corroboration using

224-entry Bloom filters (e.g., large enough to avoid false positives due to saturation)

with H3 hash functions. The same alert set and graphing technique was used as in

146

the previous experiment.

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2

C
1,A

1

C
1,A

2

C
1,A

3

C
1,C

2

C
2,A

1

C
2,A

2

C
2,A

3

C
2,C

1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
c
o
rr

e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.12: Bloom filter false positive rate,
2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C
1,A

1,A
3

C
1,A

2,A
1

C
1,A

2,A
3

C
1,C

2,A
1

C
1,C

2,A
2

C
1,C

2,A
3

C
2,A

1,A
3

C
2,A

1,C
1

C
2,A

2,A
1

C
2,A

2,A
3

C
2,A

2,C
1

C
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
c
o
rr

e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.13: Bloom filter false positive rate,
3-way corroboration.

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C
1,A

2,A
1,A

3

C
1,C

2,A
1,A

3

C
1,C

2,A
2,A

1

C
1,C

2,A
2,A

3

C
2,A

1,C
1,A

3

C
2,A

2,A
1,A

3

C
2,A

2,A
1,C

1

C
2,A

2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
c
o
rr

e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.14: Bloom filter false positive rate,
4-way corroboration.

As the results show, there is a significant difference in false positive convergence

when compared to discrete hashes. When considering 2-way corroboration, a zero

false positive rate never occurs for all pairs; even with the use of 10 hash functions,

two academic sites still report just under a 10% false positive rate.7

How can Bloom filters best be utilized, then? Arbitrarily increasing the number of

hash functions past 10 is not a solution; at a certain point, the likelihood of saturation

and collisions increases significantly. Additionally, there is a multiplicative overhead

7If both the number of hash functions and Bloom filter size (to avoid saturation) are increased,
this FP rate will asymptotically approach zero, but this becomes increasingly inefficient.

147

for the extra computation required. Instead, as with hashes, increasing the number

of collaborators helps significantly, making error-free corroboration possible. Given

a 3-way corroboration, 6 hash functions are sufficient to obtain a near-zero false

positive rate (near 0.3%, to be precise; 7 yielded a maximum false-positive rate of

exactly 0%). The requirement is further reduced when four sites are corroborated; as

shown, just 3 hash functions are sufficient. As is shown in the next section, reducing

the number of hash functions not only reduces space requirements, but enhances

our privacy gain significantly.

6.4.6 Temporal Corroboration

As has been demonstrated, effective corroboration is possible given appropriate sets

of Bloom filters; however, in a distributed environment, many such Bloom filters

may be exchanged before desirable data can be extracted. More significantly, it

becomes difficult to search through the history of received Bloom filters when a new

local alert is generated (i.e., to effectively corroborate when others may transmit an

alert of interest before it is locally generated); a linear-order search in the number

of Bloom filters is impractical. Two data structures were proposed to solve this

problem in chapter 5, and in this section I evaluate their effectiveness in supporting

temporal corroboration.

Corroboration Accuracy

In terms of corroboration ability, these structures are equal to or better than that

of an ordinary Bloom filter. Both the MRU Bloom Filter and Timestamp Bloom Filter

(heretoforth referred to as MRU BF and TSBF, respectively) support “flattening”,

whereby the timestamps are reduced down to single bits, where “1” indicates the

presence of a timestamp and “0” indicates the lack of one. This flattened data

148

structure is equivalent to an ordinary Bloom filter, and so the above analysis applies.8

Performance and Memory Overhead

However, the most important analysis here is that of performance and memory

overhead; these must be tractable in order to encourage their use on each site. Ideally,

each site maintains one such Bloom filter, and progressively merges in received

Bloom filters. Additionally, a site may choose to expire old entries to prevent Bloom

filter saturation and to allow for the incremental evolution of alerts being exchanged.

In order to determine both the experimental computation and memory overhead of

these operations and of the resulting BFs, I devised a simulated experiment using

the dataset from section 6.4.5 to resemble a real-world exchange scenario.

More precisely, 5 virtual sites exchange Bloom filters every 30 seconds; each

Bloom filter contains 1,000 IP-based alerts, i.e., 1,000 (source IP, destination port)

tuples.9 The size of these Bloom filters varied from 16-bit (216) to 24-bit (224) to test

different saturation levels and memory overheads; in each, three hash functions are

used. This scenario was run for 1,800 simulated “seconds”, with an expiry threshold

of 900 seconds, i.e., after 900 seconds, all bits older than 900 seconds would be

removed after the receipt of each remote Bloom filter. Figures 6.15–6.21 show the

results along four different metrics with three different BF sizes: merge computation,

expiry computation, uncompressed space use, and compressed space use.

As alluded to earlier, figures 6.15–6.17 represent the computation overhead for

merge. In each, six lines are shown. Two data plots are shown for the MRU BF

and TSBF. Linear regressions are also shown for each to show computation trends.

8In the case of a TSBF, it is also possible to reduce the false positive rate slightly—by not flattening
the BF, and upon a check, ensuring that the n hash functions used yield bits that all have the presence
of the same timestamp. This strategy does not work with the MRU BF, as individual timestamps may
be overwritten when bits are shared. I do not explore this further here, as the flattening approach
works well and existing BFs provide a very good lower bound for false positive rates.

9The number of alerts is purposely high to challenge the temporal data structures being evaluated.
In reality, these Bloom filters could be far sparser.

149

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

5

10

15

20

B
F

 m
e
rg

e
 t

im
e
 (

m
se

c)

MRU BF
TSBF

10000

20000

30000

40000

50000

60000

70000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.15: Merge performance, 16-bit BFs.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

60

65

70

75

80

85

90

B
F

 m
e
rg

e
 t

im
e
 (

m
se

c)

MRU BF
TSBF

0

50000

100000

150000

200000

250000

300000

350000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.16: Merge performance, 20-bit BFs.

0 200 400 $00 800 1000 1200 1400 1$00 1800
Elapsed time in simulation (seconds)

850

1000

1050

1100

1150

B
F

 m
e
rg

e
 t

im
e
 (

m
se

c)

MRU BF
TSBF

0

50000

100000

150000

200000

250000

300000

350000

400000

N
u

m
b

e
r

o
f

B
F

 G
b

it
sG

 s
e
t

16-bit 20-bit 24-bit
0

200

400

600

800

1000

1200

M
a
xi

m
u

m
 v

a
lu

e
Figure 6.17: Merge performance, 24-bit BFs. Figure 6.18: Merge performance scale.

A separate, unmarked, solid line represents the equivalent number of bits set in

a flattened Bloom filter, and ranges from complete saturation to unsaturated but

relatively constant thanks to expiry. Finally, a vertical dashed line represents the

900-second mark, where the expiry policy started taking effect (although, for sanity’s

sake, its computation overhead is shown on a separate set of graphs).

In general, both 16-bit and 20-bit temporal BFs are very fast, supporting a merge

time well under 100ms. The 24-bit BF, which is significantly larger, has a greater

overhead; however, the performance is still reasonable given the number of bits,

hovering around 1000ms–1100ms per incoming BF even as the structures saturate.

Depending on the number of Bloom filters being distributed, various strategies,

including aggregation, can be used to ameliorate this computation overhead.

A close examination of the results shows surprisingly close results between

MRU and TSBFs; moreover, the larger difference accentuated in figure 6.15 must be

150

viewed in context of the small scale of the y-axis. That said, figure 6.15 shows a clear

increasing computation trend for TSBFs, while MRU BFs, representing a fixed vector,

remain consistent. Note that the equivalent Bloom filter is essentially saturated

around the 800 second mark in the simulation, so increasing TSBF computation can

be viewed in the context of its increasing tree depth; this hypothesis is validated

by figure 6.19. The 20-bit and 24-bit BFs, on the other hand, are never saturated,

and so the depth increases much more slowly. This is most noticeable in the 24-bit

case, where the average depth (figure 6.21) is asymptomatically close to zero, and

where the corresponding computation overhead in figure 6.17 actually decreases.

This decreasing trend is particularly noticeable after the 900-second mark where

expiry takes effect, and suggests that enough of the TSBF is now cached in a CPU

cache to allow performance metrics on par with MRU BFs. This surprising result

refutes the intuition that the TSBF, with its additional data structure overhead, must

always be slower than a MRU BF, although it will clearly suffer a performance

penalty if the tree depth grows significantly.

Figures 6.23–6.25, representing expiry computation overhead, are presented

identically to the previous figures, but represent the computation overhead required

for expiry as opposed to merge. Correspondingly, both lines sit on the y-axis

until the expiry policy takes effect. It is here that the MRU BF and TSBF differ

most significantly; MRU BFs simply need to change values, while TSBFs are more

complex data structures, requiring tree node destruction. Still, the difference is not

very significant, and both data structures support expiry in under 200ms even in

the 24-bit case.

Figures 6.27–6.29 show uncompressed memory usage, while 6.31–6.33 show

compressed memory usage, both for MRU BFs and TSBFs ranging from 16-bit to

24-bit. As is to be expected, both structures use up a significant amount of memory.

However, the comparative memory use, unintuitively, differs wildly based on the

151

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

1

2

3

4

5

6

A
ve

ra
g

e
 T

S
B

F
 t

re
e
 d

e
p

th

10000

20000

30000

40000

50000

60000

70000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.19: TSBF average depth, 16-bit.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
ve

ra
g

e
 T

S
B

F
 t

re
e
 d

e
p

th

0

50000

100000

150000

200000

250000

300000

350000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.20: TSBF average depth, 20-bit.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0.000

0.005

0.010

0.015

0.020

0.025

A
ve

ra
g

e
 T

S
B

F
 t

re
e
 d

e
p

th

0

50000

100000

150000

200000

250000

300000

350000

400000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

16-bit 20-bit 24-bit
0

1

2

3

4

5

6

M
a
xi

m
u

m
 v

a
lu

e
Figure 6.21: TSBF average depth, 24-bit. Figure 6.22: TSBF average depth scale.

size of the BFs being used. As is expected, the TSBF takes significantly more memory

than the MRU BF in the 16-bit case—on the order of 10 times more, and growing

until expiry kicks in.

However, in the 20-bit and 24-bit case, the TSBF is actually smaller, and signifi-

cantly so in the 24-bit case. At first glance, this makes no sense. However, it is likely

due to the uniform use of long-valued, or 64-bit, fields in the case of the MRU BF;

the TSBF, on the other hand, is initially composed entirely of null 32-bit memory

references, and only allocates memory to store timestamps as necessary. If the TSBF

is relatively sparse, as is the case when 24-bits are used, its memory usage never

becomes that significant. It would also possible to reduce MRU BF memory usage

in a similar fashion if desired, at the cost of greater computation/expiry overhead

and memory use when saturated. Choice of an appropriate strategy, therefore, will

depend on the saturation and expiry patterns as events are collected into the BFs.

152

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

5

10

15

20

25

E
xp

ir
y

ti
m

e
 (

m
se

c)

MRU BF
TSBF

10000

20000

30000

40000

50000

60000

70000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.23: Expiry performance, 16-bit BFs.

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!
Elapsed time in sim3lation 5seconds7

!

"!

#!

$!

%!

&!!

E
8p

ir
:

ti
m

e
 5

m
se

c7

MR= BF
TSBF

!

B!!!!

&!!!!!

&B!!!!

"!!!!!

"B!!!!

C!!!!!

CB!!!!

N
3

m
E

e
r

o
f

B
F

 G
E

it
sG

 s
e
t

Figure 6.24: Expiry performance, 20-bit BFs.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

50

100

150

200

E
xp

ir
y

ti
m

e
 (

m
se

c)

MRU BF
TSBF

0

50000

100000

150000

200000

250000

300000

350000

400000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

16-bit 20-bit 24-bit
0

20

40

60

80

100

120

140

160

M
a
xi

m
u

m
 v

a
lu

e
Figure 6.25: Expiry performance, 24-bit BFs. Figure 6.26: Expiry performance scale.

This intuition is demonstrated, to some extent, by the compressed size results.

Here, the disparity between TSBFs and MRU BFs are significantly diminished in the

20-bit and 24-bit case, as the sparseness of relevant data in the MRU BF is efficiently

compressed away. Nevertheless, the TSBF remains smaller in the 24-bit case. This

suggests that the TSBF is not just a theoretical data structure that grows too fast

for effective use; instead, it is capable of supporting in-memory corroboration with

reasonable efficiency.

6.4.7 Privacy Gain

The key privacy consideration when exchanging IP/port pairs is the possibility that a

curious remote peer may be able to brute-force the contents of the hash set or Bloom

filter and regain the original data, thereby violating Worminator’s utility. This is

largely possible with Worminator primarily because the space to be brute-forced

153

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

1

2

3

4

5

6

S
iz

e
 (

M
B

)

MRU BF
TSBF

10000

20000

30000

40000

50000

60000

70000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.27: Space overhead, 16-bit BFs.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

2

4

6

8

10

12

S
iz

e
 (

M
B

)

MRU BF
TSBF

0

50000

100000

150000

200000

250000

300000

350000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.28: Space overhead, 20-bit BFs.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

20

40

60

80

100

120

140

S
iz

e
 (

M
B

)

MRU BF
TSBF

0

50000

100000

150000

200000

250000

300000

350000

400000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

16-bit 20-bit 24-bit
0

20

40

60

80

100

120

140

M
a
xi

m
u

m
 v

a
lu

e
Figure 6.29: Space overhead, 24-bit BFs. Figure 6.30: Space overhead scale.

is relatively small, i.e., O(2566). As is shown in section 6.5, brute-forcing rapidly

becomes intractable as the discourse size increases.

Ideally, therefore, the goal should be to use a data structure that is not practically

brute-forceable, but with which one can effectively corroborate. Both hash functions

and Bloom filters have been shown to corroborate effectively as per the last subsection.

As for brute-forcing, figures 6.35 and 6.36 show the result when the hash sets and

Bloom filters discussed in the previous section are partially brute-forced for varying

numbers of bits and hash functions, respectively. The subset that was brute-forced

was the space of all IP addresses associated with port 80, i.e., ai = ∗, 80 (note that the

timestamps are not of consequence here, as they are not hashed). This limitation

does not affect the validity of the approach; the computation required, while less,

still captures the difficulty (or ease) in brute-forcing BFs and hashes. Additionally,

limiting the scope may resemble a realistic curious participant; by querying popular

154

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

100

200

300

400

500

600

C
o
m

p
re

ss
e
d

 S
iz

e
 (

K
B

)

MRU BF
TSBF

10000

20000

30000

40000

50000

60000

70000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.31: Space overhead, compressed
16-bit BFs.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

100

200

300

400

500

600

700

800

900

C
o
m

p
re

ss
e
d

 S
iz

e
 (

K
B

)

MRU BF
TSBF

0

50000

100000

150000

200000

250000

300000

350000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

Figure 6.32: Space overhead, compressed
20-bit BFs.

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time in simulation (seconds)

0

200

400

600

800

1000

1200

1400

1600

C
o
m

p
re

ss
e
d

 S
iz

e
 (

K
B

)

MRU BF
TSBF

0

50000

100000

150000

200000

250000

300000

350000

400000

N
u

m
b

e
r

o
f

B
F

 "
b

it
s"

 s
e
t

16-bit 20-bit 24-bit
0

200

400

600

800

1000

1200

1400

1600

1800

M
a
xi

m
u

m
 v

a
lu

e
Figure 6.33: Space overhead, compressed

24-bit BFs.
Figure 6.34: Space overhead, compressed

scale.

services, they can try and reduce the search space, while focusing on the most

relevant results.

The two figures show drastically different results. The false positive rate of

hash functions initially start at 100%, but converge very quickly; in fact, when 48 or

more bits are used, the FP rate is essentially zero. Bloom filters, on the other hand,

converge far more slowly. In fact, with 10 hash functions, only site C1 witnesses

a drop below a 50% false positive rate. This remarkable result is likely due to the

fact that any bit i may be used by more than one possible datum; in fact, the simple

observation that 2566 >> 224 (for the 24-bit Bloom filter) suggests that a large number

of bits are in fact shared. This, then, gives us our desirable property: any individual

Bloom filter by itself cannot be brute-forced meaningfully, but may be effectively

corroborated. An attacker or curious participant would then find the most useful

results by corroborating alerts of their own with one or more participants’ Bloom

155

A1 A2 A3 C1 C2

Site

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
%

 o
f

b
ru

te
-f

o
rc

e
d

 a
le

rt
s

24
32
40
48
56

0

200000

400000

600000

800000

1000000

N
u

m
b

e
r

o
f

a
le

rt
s

Figure 6.35: Hash set brute-force results.

A1 A2 A3 C1 C2

Site

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
%

 o
f

b
ru

te
-f

o
rc

e
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

0

200000

400000

600000

800000

1000000

N
u

m
b

e
r

o
f

a
le

rt
s

Figure 6.36: Bloom filter brute-force results.

filters; this, however, is exactly what Worminator is designed to do, and the attacker

has not gained any extra information.

One may observe that exchanging hash sets or Bloom filters with up to 600,000

alerts is not particularly meaningful, as nodes usually exchange just a few alerts

during any one communication, but do so frequently over a period of time. Ensuring

the privacy of the sparse hash set or Bloom filter, therefore, is of equal concern; the

correlation accuracy and brute-forceability of this scenario is discussed in the next

section.

In the meantime, we can conclude that Bloom filters accomplish the desired

privacy-preserving goals, while hashes are significantly less useful. This does

not discount the utility of hashes in the general case—in particular, hashes can

be extremely useful in providing accurate results when the size of discourse is

significantly larger—but they do not provide adequate privacy in-and-of-themselves

for exchanging IP watchlists. [86] proposes an approach by which hashes of IP

information may be exchanged without violating privacy; I show shortly that their

approach does not generally work, and propose another technique by which they

can be made to work.

Sparse Hashsets and Bloom Filters

156

In order to test a more realistic continuous corroboration scenario, the following

experiment was devised: for each site, 20 of the 4-way-correlating alerts were

chosen, privacy-transformed into hash sets and Bloom filters, and exchanged. These

20-alert exchanges were then corroborated against the much larger alert set as used

in the previous two subsections. The results for corroboration accuracy are shown

in figures 6.37–6.38 for hash functions, and 6.39–6.40 for Bloom filters; brute-force

results are then shown in 6.41 and 6.42.

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2

C1,A
1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.37: Sparse hash set false positive
rate, 2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.38: Sparse hash set false positive
rate, 3-way corroboration.

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2

C1,A
1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.39: Sparse BF false positive rate,
2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.40: Sparse BF false positive rate,
3-way corroboration; all score at 0%.

Unsurprisingly, fewer false positives can be found when a smaller number of

alerts are being corroborated. Unfortunately, however, fewer false positives are also

encountered during a brute force analysis of the sparse hashset or Bloom filter. A

157

A1 A2 A3 %1 %2

Si(e

0+0

0+2

0+4

0+6

0+8

1+0

/
0

1
3

 o
5

6
r8

(e
-5

o
rc

e
d

 a
=e

r(
s

24
32
40
48
56

0

20

40

60

80

100

N
8

m
6

e
r

o
5

a
=e

r(
s

Figure 6.41: Sparse hash set brute-force
results.

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

"
#
$
,
?
-
@
.
A
"*

*

#*

,*

-*

.*

"**

B
8
C
6
)
7
24
52
<
=)
7
(>

Figure 6.42: Sparse BF brute-force results.
(The y-axis is extended slightly for visibility

at 0% and 100%.)

48-bit hash or a Bloom filter using three or more hash functions produce zero false

positives during a brute force, thereby eliminating the privacy gain discussed in the

last section.

Since it is the sparseness of the data exchanged that is enabling the possibility of

an effective brute force, a simple adaptation can be made to try and improve the

privacy analysis: transmit noise along with the sparse data structure. Ideally, such

noise would correlate out when comparing multiple sets/BFs, but would render a

brute-forcing meaningless. Noisy Bloom filters are discussed in the next subsection,

while noisy hash sets are discussed in the following section.

Noisy Sparse Bloom Filters

The analysis shown in figures 6.14 and 6.36 implies that a non-sparse Bloom filter

naturally generates many false positives when brute-forced, but that these false

positives drop out nicely when multiple sites corroborate data. In order to test

this with the sparse Bloom filter, a Bloom filter is created with a percentage of bits

randomly set. (An alternative technique for introducing noise would be to use a

different hash function, random inputs, etc. However, one can observe that these

other forms of noise would yield similar results, assuming the other noise technique

158

generates follows a near-uniform distribution.)

Two different noise levels were tested: 5% and 10%, e.g., 10% of the total size of

the Bloom filter (as opposed to the number of occupied bits). The correlation results

for a 5% noisy BF are shown in figures 6.43–6.45, while the results when using a

10% noisy BF are shown in figures 6.47–6.49; the resulting brute-force false positive

results are shown in 6.46 and 6.50, respectively.

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2
C1,A

1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.43: Sparse BF (5% noise) false
positive rate, 2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.44: Sparse BF (5% noise) false
positive rate, 3-way corroboration.

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.45: Sparse BF (5% noise) false
positive rate, 4-way corroboration.

A1 A2 A3 C1 C2

Site

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
%

 o
f

b
ru

te
-f

o
rc

e
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

0

20

40

60

80

100

N
u

m
b

e
r

o
f

a
le

rt
s

Figure 6.46: Sparse BF (5% noise) brute-force
results.

The results are remarkable; effective 4-way corroboration can be accomplished

with both noise values; 4 hash functions are sufficient at the 5% level, while 5

hash functions produce zero false positives at the 10% level. More importantly, all

but 10 hash functions produce near-100% false positives when 5% noise is used,

159

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2
C1,A

1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.47: Sparse BF (10% noise) false
positive rate, 2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.48: Sparse BF (10% noise) false
positive rate, 3-way corroboration.

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

Figure 6.49: Sparse BF (10% noise) false
positive rate, 4-way corroboration.

A1 A2 A3 C1 C2

Site

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
%

 o
f

b
ru

te
-f

o
rc

e
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

0

20

40

60

80

100

N
u

m
b

e
r

o
f

a
le

rt
s

Figure 6.50: Sparse BF (10% noise) brute-force
results. (No matter how many hash functions

are used, all yield ∼ 100% FPs.)

while not even 10 hash functions are able to effectively remove false positives when

brute-forcing a 10% noise BF. While these are empirical and do not necessarily

suggest the appropriate noise thresholds to use for effective corroboration in all

situations, they demonstrate that a small amount of noise provides effective privacy,

and does not significantly affect corroboration when enough sites are involved.

Noisy Hashsets

One of the attractive aspects of introducing noise in a Bloom filter is that uniformly

distributing noise across the space of possible “hash values” is straightforward; bits

are correspondingly set as desired. Unfortunately, this is not possible with hash

160

sets consisting of discrete entries. [86] suggested inserting two sets of IPs into the

hash set to provide effective misdirection: remote IPs are inserted using a standard,

known and shared hash, while private IPs are inserted using a HMAC-keyed hash,

where the HMAC private key is not disclosed to partners. This technique was

only described and not tested, but was hypothesized as making the brute-forced

results meaningless, as a curious entity would not know for sure if the IP addressed

brute-forced was legitimate or a coincidental side-effect of a keyed hash.

Here, a variation of the proposed algorithm was implemented and tested for

its effectiveness. First, observe that HMAC-hashed entries are effectively pure

noise to remote peers, and entries composed of random bits can be substituted for

the HMAC entries with no loss of generality. This observation was employed to

provide a similar “noise effect” as with Bloom filters. More precisely, during the

insertion of a hashed IP value, an extra entry, composed of an entirely random bit

sequence, is probabilistically added as well. This technique was tested at 50% and

100%, i.e., for approximately every two entries and one entry, respectively, an extra

random-noise item was added to the bit hash. The resulting hash sets were tested

for both corroboration and privacy effectiveness; the results are shown in figures

6.51–6.58.

Unsurprisingly, the results are only marginally better than those shown in the

earlier sparse corroboration example. Despite the noise, 32 bits (the minimum

needed to accomplish zero false positives when corroborating) still yields no false

positives when brute-forcing. This clearly demonstrates that the aforementioned-

proposed approach is not a feasible solution, at least for IP-based hashing where the

domain of the input dataset is far smaller than the domain of the output dataset.

Instead, a better technique would be to randomly permute the input to the

hash functions, i.e., the IP addresses. For example, some percentage of legitimate

IP addresses could be mutated and reinserted. These would certainly affect the

161

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2

C1,A
1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.51: Sparse BF (50% noise) false
positive rate, 2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.52: Sparse BF (50% noise) false
positive rate, 3-way corroboration.

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.53: Sparse hash set (50% noise) false
positive rate, 4-way corroboration.

A1 A2 A3 %1 %2

Si(e

0+0

0+2

0+4

0+6

0+8

1+0

/
0

1
3

 o
5

6
r8

(e
-5

o
rc

e
d

 a
=e

r(
s

24
32
40
48
56

0

20

40

60

80

100

N
8

m
6

e
r

o
5

a
=e

r(
s

Figure 6.54: Sparse hash set (50% noise) brute
force results.

results of a brute-force search; more importantly, what’s the effect on corroboration

accuracy? Figures 6.59–6.62 show the results for both corroboration and brute-

forcing when this “new” technique is used with 100% noise, i.e., for every legitimate

alert, a false one is also generated.

The brute-force results are as expected; the worst-case FP rate is round 50%,

which corresponds to the number of false entries inserted. The more interesting

results are those of corroboration; there is little-to-no effect by inserting these noisy

entries. In fact, comparison against the previous set of figures show no qualitative

difference at all. If a higher brute force FP rate is desired, it should be straightforward

to increase the noise rate to 200%, and it is hypothesized that this will still not

measurably effect corroboration effectiveness (although it will significantly increase

162

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2

C1,A
1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.55: Sparse BF (100% noise) false
positive rate, 2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.56: Sparse BF (100% noise) false
positive rate, 3-way corroboration.

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.57: Sparse hash set (100% noise)
false positive rate, 4-way corroboration.

A1 A2 A3 %1 %2

Si(e

0+0

0+2

0+4

0+6

0+8

1+0

/
0

1
3

 o
5

6
r8

(e
-5

o
rc

e
d

 a
=e

r(
s

24
32
40
48
56

0

20

40

60

80

100

N
8

m
6

e
r

o
5

a
=e

r(
s

Figure 6.58: Sparse hash set (100% noise)
brute force results.

storage/transmission overheads).

Temporal Corroborators

In terms of privacy gain, the MRU BF and TSBF have the potential to yield

significantly more data than a regular Bloom filter, especially if each inserted

timestamp is unique, as this is capable of significantly reducing false positives.

Combined with the fact that the MRU BF and TSBFs use far more memory than

regular BFs, this makes them unattractive for exchange. In the Worminator model,

these structures are best used for local corroboration, i.e., they provide a structure

that allows for effective back-lookups. A single instance is sufficient for such a

model, which keeps memory requirements down, and the lack of distribution avoids

163

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2

C1,A
1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlati./ sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
9

e
rc

e
.

ta
/

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.59: Sparse BF (100% “new” noise)
false positive rate, 2-way corroboration.

A1,A
2,A

3

A1,A
2,C

1

A1,C
1,A

3

A1,C
2,A

2

A1,C
2,A

3

A1,C
2,C

1

A2,A
1,A

3

A2,A
1,C

1

A2,C
1,A

3

A2,C
2,A

1

A2,C
2,A

3

A2,C
2,C

1

A3,A
1,C

1

A3,A
2,A

1

A3,A
2,C

1

A3,C
2,A

1

A3,C
2,A

2

A3,C
2,C

1

C1,A
1,A

3

C1,A
2,A

1

C1,A
2,A

3

C1,C
2,A

1

C1,C
2,A

2

C1,C
2,A

3

C2,A
1,A

3

C2,A
1,C

1

C2,A
2,A

1

C2,A
2,A

3

C2,A
2,C

1

C2,C
1,A

3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.60: Sparse BF (100% “new” noise)
false positive rate, 3-way corroboration.

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Figure 6.61: Sparse hash set (100% “new”
noise) false positive rate, 4-way corroboration.

A1 A2 A3 C1 C2

Site

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
%

 o
f

b
ru

te
-f

o
rc

e
d

 a
le

rt
s

24
32
40
48
56

0

20

40

60

80

100

N
u

m
b

e
r

o
f

a
le

rt
s

Figure 6.62: Sparse hash set (100% “new”
noise) brute force results.

serious privacy implications. Both the MRU BF and TSBF allow fast generation of a

“flat” Bloom filter, which may then be exchanged as desired with the same privacy

guarantees as described above.

6.4.8 Longitudinal Study of Scan Behavior

This study of stealthy scan behavior is designed to demonstrate the proposed

Worminator hypothesis, that collaborative intrusion detection not only enables

detection of worm spread but also scanning behavior as precursors to an attack. There

are three key longitudes for analysis:

1. Over time: as it is difficult to determine ahead of time when a widespread

worm attack will occur, the goal here is not necessarily to correlate certain

164

scan behavior with particular attack behavior10, but to identify long-term

scanners who try to “fly under the radar” by throttling their scanning rates at

any individual site to as little as a few scans per day per IP. One can define

a measure of stealthiness by looking at scan time windows, both on a local

(single-site) and on a global (many-site) basis.

2. Over geographical and network space: a clever attacker is unlikely to focus

all their scanning efforts from a single source; instead, the current trend is

to spread scan efforts over a broad range of sources, and to leverage those

sources as a proxy to mask scanning behavior. Botnets ([97], [122]) are also

becoming an increasingly common tool for scans. By leveraging collaboration,

the goal is to observe a wider destination space to ease detection of broader

networks of coordinated scanners.

3. By target: one key form of anonymity described in this thesis is that of

anonymous but categorizable. This allows for the exploration of targeted scans,

e.g., sources that scan particular categories of networks but skip others. Here,

we compute aggregate statistics on the popularity of commercial vs. academic

targets, etc. As of the writing of this thesis, only two commercial sites have

been deployed, so the results of this experiment are limited.

Scan Lengths and Stealthiness

As the Worminator system was design to observe long-term scanning behavior, the

first question of relevance is the actual scan behavior of sources, especially those

who are observed at multiple sites. Table 6.4 shows aggregate scan length results

for sources (site/IPs, not site/IP/destination tuples) appearing at exactly 1 through

10Correlating scan and attack behavior is difficult, unless known attacks occur during the scan
period. While we collected much interesting information, major Internet-scale attacks did not occur
during the Worminator experiment, and so conclusions are not predicated on such a correlation.

165

5 sites, in days, e.g. source IPs seen at four sites were observed, on average, for a

period of about 30 days.

Sites # (Site,IPs) Max Avg StDev
1 307050 373.57 7.14 33.12
2 22250 372.60 10.86 36.98
3 10074 373.64 17.20 47.01
4 3228 373.65 29.86 60.09
5 245 373.49 70.77 102.15

Table 6.4: Maximum and average scan lengths for 1–5 sites, by source IP/site, in
days.

The conclusion is clear: sources which are observed at multiple sites tend to

scan for longer periods. The most likely explanation for this behavior at the small

scale is the elimination of false positives; source IPs that are seen at two or three

sites often eliminate the local false alerts that IDSes typically observe. On the other

hand, the dramatic increase in average for 5 sites is interesting. Figure 6.63 shows a

time plot of the scan lengths for sources that scanned 5 sites.

This suggests that, indeed, many 5-site-scanners were long-term, and that the

high standard deviation is primarily due to the limited length of the experiment

(and the fact that not all sites were up for extended periods of time). Unfortunately,

conclusive results cannot be drawn from the small sample set, but still, the noticeably

higher average scan time suggests that many of these sources are long-term broad

scanners—and that corroboration helps to identify them.

These results do not take volume into account, however. In particular, if a scanner

happens to be a machine that aggressively scans all of its targets, that’s more easily

detectable without corroboration. Of greater concern are scanning sources that

only generate a few alerts at each site over a long period of time. These scanners

essentially fly under the radar by hiding behind all the noise generated at individual

sites. By corroborating and looking for the slowest scanners over long periods

of time, we can find, without difficulty, entities who are looking to do significant

166

0 50 100 150 200 250
Feb 2005

Apr 2005

Jun 2005

Jul 2005

Sep 2005

Oct 2005

Dec 2005

Feb 2006

Mar 2006

Figure 6.63: Scan length distribution, 5-site scanners.

machine mapping.

To do this, we define a “stealthiness” metric St for any arbitrary source si, total

scanning time ti and number of alerts |a|i:

St(si) =
|a|i
ti
.

Low stealthiness levels amongst scanners at multiple sites is of particular interest;

tables 6.5 and 6.6 show the top-10 stealthiest scanners detected across 4 and 5 sites,

respectively.

As can be observed, there are scanners that issue only a few scans per site over

the course of a year. Even more interesting are the italicized entries—these are

scanners from the same subnet! A quick lookup on that /24 yields the results in table

6.7. ev1 is a major ISP in the United States, and this may have been the IP space of

167

Scan Length
Source IP (days) # Alerts St
61.185.246.34 257.73 7 3.144e-07
207.218.223.98 302.96 9 3.438e-07
61.129.45.54 302.12 10 3.831e-07
207.218.223.91 270.71 9 3.848e-07
207.218.223.89 271.16 11 4.695e-07
207.218.223.93 301.50 13 4.990e-07
66.150.8.18 199.92 10 5.789e-07
62.189.244.254 287.28 17 6.849e-07
61.172.250.90 234.36 14 6.914e-07
206.253.195.10 293.14 19 7.502e-07

Table 6.5: Top 10 stealthy scanners detected at 4 sites.

Scan Length
Source IP (days) # Alerts St
207.218.223.92 300.14 12 4.628e-07
207.218.223.103 302.52 17 6.504e-07
69.7.175.21 293.50 41 1.617e-06
69.25.27.10 225.52 33 1.694e-06
161.170.254.232 299.29 51 1.972e-06
219.148.119.199 227.03 45 2.294e-06
66.151.55.10 303.12 62 2.367e-06
62.73.174.150 338.39 90 3.078e-06
64.41.241.171 338.39 90 3.078e-06
64.56.168.66 338.39 96 3.283e-06

Table 6.6: Top 10 stealthy scanners detected at 5 sites.

one “customer” (be it a legitimate customer whose machines were subverted against

their knowledge, or an illegitimate customer using the machines as a scanning

source). The likelihood that these hosts were legitimately present at 5 disparate

sites is extremely unlikely, especially since several of the sites have absolutely no

relationship with each other (excepting this study; however, no Columbia IPs are

listed above).

Further discussion about subnet analysis can be found later in this subsection.

Breadth and (Loud) Volume

168

Source IP #sites #alerts Scan len Hostname
207.218.223.92 5 12 300.14 ivhou-207-218-223-92.ev1servers.net
207.218.223.103 5 17 302.52 ivhou-207-218-223-103.ev1servers.net
207.218.223.89 4 11 271.16 ivhou-207-218-223-89.ev1servers.net
207.218.223.91 4 9 270.71 ivhou-207-218-223-91.ev1servers.net
207.218.223.93 4 13 301.50 ivhou-207-218-223-93.ev1servers.net
207.218.223.98 4 9 302.96 ivhou-207-218-223-98.ev1servers.net
207.218.223.94 3 10 300.44 ivhou-207-218-223-94.ev1servers.net
207.218.223.95 3 8 301.51 ivhou-207-218-223-95.ev1servers.net
207.218.223.97 3 8 63.06 ivhou-207-218-223-97.ev1servers.net
207.218.223.99 3 10 271.10 ivhou-207-218-223-99.ev1servers.net
207.218.223.102 3 10 297.12 ivhou-207-218-223-102.ev1servers.net
207.218.223.90 2 9 20.04 ivhou-207-218-223-90.ev1servers.net
207.218.223.101 2 5 270.55 ivhou-207-218-223-101.ev1servers.net
207.218.223.100 1 1 3.99 ivhou-207-218-223-100.ev1servers.net
207.218.223.132 1 4 2.12 ns1.rackshack.net
207.218.223.162 1 6 1.05 ns2.rackshack.net

Table 6.7: Subnet search results for 207.218.223.0/24.

As a counterpart to the previous subsection, Worminator should also ideally be able

to identify the noisy sources—to enable, for example, evidence of an active attack.

There are various ways to establish a noisy source, including: the aforementioned

stealthiness metric can be used to determine the least stealthy source; the number of

alerts generated by the IDS may also serve as an indicator, regardless of scan length;

and the number of sites a source appears at. Figures 6.8–6.11 show the noisiest

sources at 4 and 5 sites using the stealthiness and alert count metric, respectively.

The results shown here, especially the ones by stealthiness, are remarkable; for

example, the top noisiest source issued 331 alerts scattered amongst 5 sites over

the space of two days; a quick port analysis yields that all of these were to port 22

(ssh), suggesting a brute-force password attack against ssh servers. Moreover, a

number of IPs in 61.152.* appear in the top 10 by both noise metrics. Of particular

note was 61.152.158.109, which generated nearly 2,000 alerts over the stretch of three

months at all five sources. A quick port analysis yields that these scan alerts were

distributed across ports 1026–1030, which is indicative of a Windows Messenger

169

Source IP Scan Length # Alerts St
61.143.210.244 0.07 137 2.224e-02
64.246.36.36 0.03 58 2.118e-02
58.215.64.204 0.03 45 2.022e-02
211.100.17.210 0.03 42 1.829e-02
202.103.178.214 0.02 33 1.817e-02
220.166.63.45 0.22 318 1.662e-02
211.76.177.154 0.13 174 1.567e-02
58.215.65.43 0.05 64 1.512e-02
222.191.251.92 0.09 111 1.488e-02
219.149.86.90 0.03 33 1.442e-02

Table 6.8: Top 10 noisy scanners by stealthiness, 4 sites.

Source IP Scan Length # Alerts St
149.205.192.85 1.85 331 2.069e-03
61.141.32.80 11.08 484 5.055e-04
61.152.158.109 93.84 1920 2.368e-04
212.176.49.56 302.58 3697 1.414e-04
81.74.106.18 42.45 504 1.374e-04
162.40.95.86 48.64 456 1.085e-04
24.164.180.228 142.62 1300 1.055e-04
69.40.165.231 33.58 282 9.720e-05
207.67.25.104 61.45 290 5.462e-05
69.133.97.207 364.95 1654 5.246e-05

Table 6.9: Top 10 noisy scanners by stealthiness, 5 sites.

spammer. (As mentioned before, active large-scale worm attacks were not observed

during this period, but one can construe a UDP spammer as an attacker, as scanning

behavior will likely be similar.)

Given such metrics, a simple thresholding may enable automatic response

with high confidence, which is ultimately what is desired during an actual attack.

Therefore, in addition to determining stealthy scanners, we can also identify active

attackers, to enable a comprehensive two-pronged approach.

Geographic Analysis

170

Source IP Scan length #alerts
12.130.50.213 373.49 5978
12.130.50.214 373.47 5589
61.152.91.69 56.19 3498
61.152.239.68 321.26 3311
219.138.199.170 47.73 2769
218.30.114.214 259.45 2436
70.86.131.171 48.94 1989
67.182.20.245 315.31 1869
68.114.241.56 307.77 1865
66.38.27.13 369.60 1853

Table 6.10: Top 10 noisy scanners by #
alerts, 4 sites.

Source IP Scan length #alerts
212.176.49.56 302.58 3697
61.152.158.109 93.84 1920
69.133.97.207 364.95 1654
24.164.180.228 142.62 1300
199.97.98.40 368.12 1024
128.9.160.82 373.18 1017
128.9.160.251 373.49 1016
82.77.62.33 366.00 1012
128.9.160.83 373.18 1011
81.74.106.18 42.45 504

Table 6.11: Top 10 noisy scanners by #
alerts, 5 sites.

Given multiple-site corroboration, we can do some analysis to see if there is any

correlation between multiple-site scanners and geographic tendencies, by both the

number of scanning sources and the number of alerts generated by IDS sensors.

A combination of DNS and WHOIS data was used to determine the geographic

distribution of IP addresses. Figures 6.64–6.68 show the results of this analysis. The

country codes shown are the ISO codes used by WHOIS. Countries with less than

1% of alerts or IPs are not shown, and are instead lumped into “Other”.

US

54.05%

FR

24.15%

CN

5.16%

TT

2.94%

JP

2.22%

EU

1.56%

CA

1.05%

TW

1.03%
Other

7.85%

US

28.91%

FR

3.17%
CN

16.24%

TT 1.71%

JP

7.65%

EU

5.59%

CA

3.81%

TW

2.57%

KR

3.56%

DE

4.90%

AU

1.81%

BR

1.48%

IT

1.33%

PL

1.03%

MX

1.08%

ES

1.03% Other

14.13%

Figure 6.64: Geographic distribution of 1-site scanners, by # of alerts and # of IPs.

171

US

50.80%

CN

19.75%

FR

10.54%

JP

3.98%

EU

1.61%

TW

1.51%

KR

1.32%

AU

1.15%

CA

1.09%
Other

8.25%

US

29.45%
CN

24.86%

FR

1.87%

JP

9.97%

EU

3.97%

TW

2.33%

KR

4.06%

AU

1.68%

CA

1.99%

PL

1.16%

GB

1.18%

IT

1.27%

DE

1.02%

BR

1.03%

HK

1.20%

BE

1.30% Other

11.67%

Figure 6.65: Geographic distribution of 2-site scanners, by # of alerts and # of IPs.

CN

43.20%

US

42.14%

JP

4.54%

EU

1.87%

KR

1.42%

RU

1.18%
Other

5.64%

CN

48.06%

US

25.40%

JP

6.10%

EU

2.95%

KR

2.26%

TW

1.64%

AU

1.25%

HK

1.07% Other

11.26%

Figure 6.66: Geographic distribution of 3-site scanners, by # of alerts and # of IPs.

The trend from 1-site to 4-site is clear: as more sites’ alerts are corroborated, the

geographic distribution takes an increasingly international bent; most notable is

the shift from the US being the primary source of alerts to China. Part of this is

due to the fact that corroboration eliminates most of the false positives observed at

local networks; for example, most false positives in CUCS would be attributable

172

CN

45.65%

US

41.07%

JP

3.66%

CA

2.95%

AU

1.28%

TW

1.27%
Other

4.13%

CN

51.80%

US

29.00%

JP

3.59%

CA

1.86%

AU

2.35%

TW

1.49%

KR

1.49%
Other

8.43%

Figure 6.67: Geographic distribution of 4-site scanners, by # of alerts and # of IPs.

US

54.53%

RU

17.93%

CN

15.60%
RO

4.91%
IT

2.44% DE

2.17%
Other

2.42%

US

61.22%

RU

2.04%

CN

14.29%

RO

2.04%

IT

2.04%

DE

4.08%

ES

4.08%

FR

2.04%

JP

2.04%
GB

2.04% BR

2.04%
EU

2.04%
Other0.00%

Figure 6.68: Geographic distribution of 5-site scanners, by # of alerts and # of IPs.

to machines on the same LAN. This is already visible in the second chart in figure

6.64, where the US actually has significantly more alerts than actual IP space. By

the time 4-site scanners are counted, China has 45% of total alerts and 51% of IP

addresses. 5-site scanners are somewhat of an anomaly to this trend. However,

the 5-site dataset is small, and it is difficult to draw concrete conclusions from

173

it. Further study is required to see how this trend continues when more sites

are included (although it should be noted that Russia seems to have a significant

presence amongst 5-site scanners). What remains clear is that the largest source of

scan behavior emanates, by far, from two primary countries. This also suggests that,

despite the “great firewall of China”, outbound scans and probes are unaffected

and continue to propagate to a broad cross-section of the Internet.

Scanning Subnets

As mentioned earlier, the presence of multiple scanners within the same subnet

may be indicative of a coordinated scan or attack, which may be of greater interest

especially if multiple sites have seen the same behavior. To evaluate this, a scan was

made through the IP addresses collected through the IDS to see if any interesting

outlier class C subnets (i.e., /24s) were found. To make this more accurate, the

“number of sites” criterion was modified to act as a lower bound, since not all

addresses may have been detected at all sites. Table 6.12 shows the aggregate

statistics for subnet scanners.

Min Sites # /24s Avg StD Max
1 208763 1.54 3.45 254
2 10939 1.40 1.91 115
3 2882 1.46 1.50 23
4 703 1.22 0.69 10
5 46 1.11 0.37 3

Table 6.12: Statistics on scanning subnets.

On average, very few IPs (≈ 1 − 2) are found to be scanners within any given

subnet. This would imply that a subnet with 115 scanners detected on at least two

sites is a significant anomaly—60 standard deviations above the mean, to be precise!

To get a better feel of the outlier distribution of scanning subnets, figure 6.69 shows

a logarithmic graph of the largest subnets varying with the minimum number of

174

sites the scanners are detected upon. While all of the variations show a “long tail”,

as more sites are involved the “head” of the tail becomes a larger outlier. While the

possibility remains that these IPs were independent and coincidentally happened

to be many active blocks in the same class C, the statistics make this extremely

unlikely.

0 200 400 600 800 1000
Subnet #

20

21

22

23

24

25

26

27

28

#
 a

d
d

re
ss

e
s

in
 s

u
b

n
e
t

1 sites
2 sites
3 sites
4 sites
5 sites

Figure 6.69: Distribution of scanning subnet sizes by varying # min sites. The top
line is 1 site, and the bottom/leftmost line is 5 sites.

It is worth mentioning that newer scanning botnets are not necessarily restricted

to single subnets; indeed, many of the newer scanning approaches use a much

broader range of machines, such as compromised computers distributed across the

Internet. While this analysis technique cannot detect such botnets, other approaches

can, including the exploit-specific corroboration as described in section 6.5.

175

Target Analysis

One last significant form of analysis is looking for alerts that correspond to certain

target longitudes, i.e., scanners that may target commercial institutions but not

academic institutions, or vice-versa. These may be indicative of scan sources that

are more than just purely automated—they may be actively scanning some entities

and not others to build more specific hitlists.

Given our collected data, a total of 2,095 sources matched these criteria; 311

sources targeted all three academic institutions but neither of the two commercial

ones, while 1,784 sources targeted both commercial institutions but none of the three

academic sites. Tables 6.13–6.16 show the top 10 for each, measured by number

of alerts and stealthiness, respectively, along with the top ports for the sources in

question. A number of these correspond to well-known services; for a list of ports

and their corresponding services, see appendix B.

Source IP Scan Length # Alerts Stealthiness Top Ports
218.94.124.43 206.47 2913 1.633e-04 8080, 3128, 8000
202.63.188.2 19.87 1062 6.187e-04 25, 3389, 202
61.233.40.205 99.78 832 9.651e-05 1028, 1029, 1032
221.12.161.99 89.81 717 9.240e-05 1029, 1028, 1032
61.138.136.28 74.40 499 7.763e-05 4257, 1029, 1031
193.6.40.135 0.19 482 2.881e-02 22
202.103.86.66 184.99 473 2.959e-05 1026, 1027, 2
62.195.115.67 13.07 331 2.931e-04 1026
219.157.19.157 69.76 319 5.293e-05 1028, 1029, 1030
67.176.227.12 25.38 309 1.409e-04 1026

Table 6.13: Academic-only scanners, top 10 by # alerts.

What these four tables make clear is that there are both categories of targeted

scanners—those that issue many scan attempts against specific sites, and those

that issue as few attempts as possible. The latter make intuitive sense; the former,

however, are more unusual; if a scanner is going to generate so many reports against

disparate organizations, why would they not broadly scan other networks? One

176

Source IP Scan Length # Alerts Stealthiness Top Ports
194.204.0.1 288.15 5 2.008e-07 53, 54463, 54558
193.92.150.3 256.93 5 2.252e-07 53, 1118, 32877
64.15.205.211 278.54 6 2.493e-07 1086, 1118, 32877
200.23.242.197 277.62 6 2.501e-07 46319, 32877, 46796
213.150.135.213 259.05 6 2.681e-07 53, 1118, 32782
68.142.249.189 171.66 4 2.697e-07 80, 53, 443
213.140.2.12 286.52 7 2.828e-07 1118, 56156, 59916
203.116.1.78 294.10 8 3.148e-07 34269, 33020, 32840
194.85.82.254 229.77 7 3.526e-07 80, 443, 42
68.142.251.21 96.37 3 3.603e-07 80, 8080, 8060

Table 6.14: Academic-only scanners, top 10 by stealthiness.

Source IP Scan Length # Alerts Stealthiness Top Ports
61.241.93.47 2.38 732 3.555e-03 783, 2622, 762
195.7.3.100 168.75 566 3.882e-05 15118
221.202.84.227 368.21 537 1.688e-05 1434
61.175.218.186 171.19 467 3.157e-05 1434
62.210.4.23 9.69 368 4.396e-04 1434
61.139.54.94 171.68 345 2.326e-05 1434, 1433
62.233.215.129 17.04 340 2.309e-04 15118, 445
80.231.169.58 372.60 317 9.847e-06 1434
202.103.207.139 83.90 303 4.180e-05 1434
61.153.15.163 142.26 262 2.132e-05 1434

Table 6.15: Commercial-only scanners, top 10 by # alerts.

Source IP Scan Length # Alerts Stealthiness Top Ports
69.157.8.5 286.74 3 1.211e-07 80
219.140.177.20 343.79 4 1.347e-07 1434
61.183.37.164 320.83 4 1.443e-07 43868, 139, 19547
80.188.58.18 306.44 4 1.511e-07 445, 135
221.15.233.166 301.49 4 1.536e-07 80
202.145.48.193 296.50 4 1.561e-07 139
200.149.32.170 290.44 4 1.594e-07 139, 135
218.95.64.229 287.86 4 1.608e-07 1434
69.157.174.218 281.53 4 1.644e-07 135
220.229.76.66 348.90 5 1.659e-07 139

Table 6.16: Commercial-only scanners, top 10 by stealthiness.

might chalk it up to coincidence, although the volume of the outliers (on the order

of thousands of alerts) and scan length suggests that it is more than a coincidence.

177

Additionally, we can note that these scanners appear to be targeting different

services across domains. For instance, academic sites seem to be more targeted for

Messenger (port 1026) spam, while commercial sites seem to be targeted more for

SQL vulnerabilities (port 1434); while both are discussed in greater detail in the next

subsection, there may be both pragmatic and topological considerations behind

these results.

In general, this form of analysis needs longer periods and broader data collection;

ideally, such collection would enable analysis per industry or segments of industry,

instead of the current rough-granular academic vs. commercial. Nevertheless, the

results above show promise in this form of analysis.

Targeted Services

The other specific targeting of interest is service—namely, what services are the broad

scanners particularly looking at? And does this scan behavior differ significantly

between narrow and broad scanners? Tables 6.17–6.26 show the top 15 targeted

ports by 1- to 5-way scanning sources by both the number of IP and the frequency

of alerts.

A few conclusions can be drawn from these figures. In particular, broad scanners

frequently targeted different ports than narrow scanners. Most notable was port

1026; the most common service on that port is the Windows Messenger service,

listening for UDP messages. During the time period of this data collection, Windows

Messenger spam was still a major open target, and it appears many nodes were

scanning for non-firewalled machines to deliver such spam. [95] What is interesting

is that these alerts were far more noticeable when corroborated across sites, as

opposed to individual site data. This may be due to the fact that unwanted or

potentially malicious UDP traffic is far harder to detect via misuse analysis without

generating too many false positives, and so many IDS analysis techniques reduce

178

Port # IPs TotFreq
445 51537 999057
113 1087 967649
139 43079 790319
135 41054 753613
53 3320 635161
80 52716 452787

6881 819 309281
1025 60684 248797
1026 32966 244276
6346 1002 197356
1433 24683 185933
1434 9889 149863

25 1929 136517
137 6567 108274

33434 258 100873

Table 6.17: Top ports by
frequency, 1+ site scans.

Port # IPs TotFreq
1026 2090 143753

33434 83 100067
53 533 98551

113 93 84649
1434 1380 83981

80 2685 65153
139 973 30470

1027 470 23372
137 303 15286

1024 578 14773
445 621 14169

3072 279 14120
1029 223 12583
1028 205 12370

25 282 11786

Table 6.18: Top ports by
frequency, 2+ site scans.

Port # IPs TotFreq
1026 713 120073

33434 19 99128
1434 255 48687
1027 263 17332

80 431 16285
53 184 12578

1024 355 12334
3072 136 11851
113 38 11363

1029 107 8162
1028 103 8022

25 89 7721
1030 114 7113
1080 94 6288
135 414 5968

Table 6.19: Top ports by
frequency, 3+ site scans.

Port # IPs TotFreq
1026 207 79425
1434 37 16786
1080 29 4742
1024 115 4453
3072 31 4196
135 98 3422

1029 33 3315
1028 30 3168
1030 30 2638

33437 21 2308
1027 101 2182

80 56 2131
33438 22 2015
33436 25 1792
33439 17 1596

Table 6.20: Top ports by frequency, 4+
site scans.

Port # IPs TotFreq
1026 11 6482
1080 4 3843
1029 6 2079
1028 5 1934
1030 5 1688

33436 9 880
135 7 842

33438 9 764
33437 8 744
33439 6 618
33440 4 376
33443 2 368
1434 1 352

80 4 346
22 2 335

Table 6.21: Top ports by frequency, 5+
site scans.

the weight of “suspicious UDP behavior” during their analysis and aggregation.

The same analysis can be applied to many of the high ephemeral ports, such as

port 33435, 33436, etc. in tables 6.21 and 6.26; a quick investigation yields [22] that

179

Port # IPs TotFreq
1025 60684 248797

80 52716 452787
445 51537 999057
139 43079 790319
135 41054 753613

1026 32966 244276
1433 24683 185933
6129 13236 62960
443 10339 59947

1434 9889 149863
2745 9068 83470
3127 8098 64363
137 6567 108274

5554 6151 23818
8080 5446 90736

Table 6.22: Top ports by #
IPs, 1+ site scans.

Port # IPs TotFreq
80 2685 65153

1026 2090 143753
1434 1380 83981
135 1276 11556

1025 1175 11288
139 973 30470

34098 963 2519
22307 907 2034
54296 849 2320
23137 832 1977
1840 832 2467

26159 806 2163
14890 805 1718
1433 793 9753

49188 791 1971

Table 6.23: Top ports by #
IPs, 2+ site scans.

Port # IPs TotFreq
1026 713 120073

22307 668 1601
23137 629 1613
34098 628 1763
14890 625 1399
26112 617 1460
50739 586 1497
6487 585 1241

54296 575 1658
26159 572 1598
1840 559 1709

14945 558 1406
54316 554 1313
20021 554 1276
11355 537 1292

Table 6.24: Top ports by #
IPs, 3+ site scans.

Port # IPs TotFreq
1026 207 79425

26112 207 515
22307 206 515
6487 190 403

14890 188 424
34098 187 599
48148 182 399
60766 182 400
11355 180 479
5680 180 405

37948 178 395
4981 178 507

18183 175 383
5411 168 365

15201 167 375

Table 6.25: Top ports by # IPs, 4+ site
scans.

Port # IPs TotFreq
1026 11 6482

33435 10 222
33436 9 880
33438 9 764
33437 8 744

135 7 842
137 7 258

1029 6 2079
33439 6 618
1028 5 1934
1030 5 1688

80 4 346
1027 4 177
1080 4 3843

33440 4 376

Table 6.26: Top ports by # IPs, 5+ site
scans.

this is most likely Van Jacobsen-based traceroute packets, possibly due to newer

load-balancers trying to redirect traffic to the closest datacenter. More data, and more

sites, may prove to help glean more useful information in this regard. However, it

180

is already clear that corroboration helps to identify several “chatty” ports that are

not ordinarily detected by good misuse detectors, and analysis strategies should

likely be reflected to include them.

One interesting change from 4-site to 5-site target results is the incidence

reduction in port 1434 (MSSQL UDP). Further analysis suggests that one of the sites

appeared to be blocking inbound port 1434 traffic, presumably as a preemptive

firewalling strategy against Microsoft SQL-based worms. Ideally, a misuse sensor

should be placed outside the firewall; barring that, given enough sites and analysis,

it should be possible to discount certain data at certain sites due to firewalling or

topology-specific considerations.

A more focused analysis of interest is to see which (IP, port) tuples have been

observed across multiple sites. Tables 6.27 and 6.28 show the results for 4 and 5

sites, respectively, aggregated by scanner.

Source IP # Ports Top Ports
211.154.222.56 81 1917, 1803, 1911, 1263, 1352
209.208.0.15 66 1080, 40934, 41457, 1813, 1978
218.30.70.56 49 1393, 1151, 1928, 1093, 1295
61.145.127.92 45 1614, 1674, 1450, 1286, 1087
60.31.184.7 29 1865, 1682, 1660, 1641, 1563
221.174.17.252 28 1639, 1499, 1834, 1642, 1577
69.25.135.154 7 8000, 81, 80, 8080, 8081
82.96.96.3 7 3128, 3802, 3777, 6588, 8080
65.223.84.131 6 2301, 8000, 80, 8080, 3124
199.181.135.4 6 33438, 33440, 33439, 33437, 33436
66.219.100.118 5 1080, 3128, 6588, 8080, 80
161.170.254.232 5 33438, 33436, 33441, 33444, 33435
166.91.254.4 5 2968, 2967, 2970, 2969, 8081
216.183.96.100 5 33439, 33438, 33437, 33436, 33435
61.137.117.208 4 1027, 1026, 1029, 1028

Table 6.27: Most popular (IP, port) tuples by source IP seen at 4 sites.

This form of analysis can, amongst other things, better help sites rank threats. If

a site perceives certain services, as delineated by ports, as more vulnerable, they

181

Source IP # Ports Top Ports
209.208.0.15 65 1080, 40934, 41457, 1813, 1978
216.183.96.100 4 33439, 33438, 33437, 33436
69.20.1.77 2 33440, 33438
221.12.161.109 2 1026, 1027
24.164.180.228 1 1026
61.141.32.80 1 80
64.94.45.30 1 33443
66.150.223.54 1 33443
66.151.55.10 1 33440
66.151.55.30 1 33439
66.179.168.100 1 33437
69.25.27.10 1 33440
69.40.165.231 1 1026
69.133.97.207 1 1026
81.74.106.18 1 1026

Table 6.28: Most popular (IP, port) tuples by source IP seen at 5 sites.

may choose to adopt more proactive stances against sources known to be broadly

scanning those services across many sites, as opposed to ephemeral ports, possibly

sign of a portscan or a less-important protocol. The results in these tables suggest

such a distribution; certain sources are very focused, e.g., 69.25.135.154, which

is scanning primarily HTTP ports versus 64.94.45.30, which is likely computing

traceroutes as discussed earlier.

Comparison with DShield

DShield, as mentioned in the related work, represents one of the largest and most

successfully-deployed DIDS around; how does Worminator compare? To further

evaluate this question, IPs collected from at least two Worminator sites were checked

against DShield; queries were conducted over a span of about two months and

covered 12,460 sources. The results for 2-way through 5-way sites is shown in figure

6.70.

The figure makes intuitive sense; the broader the scanner, the higher the

182

2 sites 3 sites 4 sites 5 sites
0

1000

2000

3000

4000

5000

#
 s

ca
n

 s
o
u

rc
e
s

Not in DShield
In DShield

Figure 6.70: Worminator vs. DShield, 2-way through 5-way corroboration.

likelihood that it was going to be detected by DShield. In fact, if we do a stealthiness

analysis, i.e., observe the stealthiness metric of the top 10 sources detected by

both Worminator and DShield, the results closely match; see table 6.29 and how it

compares to table 6.6.11

Why would DShield be able to pick up seemingly stealthy sources? Amongst

other reasons, it’s highly likely that some DShield contributors use honeypots or

very verbose IDS sensors, choosing to submit large numbers of alerts and letting

DShield find commonality between them. I hypothesize that Worminator has a

better ability to pick up stealthy scanners using low volumes of alerts, but this is

difficult to prove.

11The stealthiness metric itself was computed using solely Worminator data; the only difference
here is that the source IPs listed were also found in DShield.

183

Scan Length
Source IP (days) # Alerts St
207.218.223.92 300.14 12 4.628e-07
207.218.223.103 302.52 17 6.504e-07
69.7.175.21 293.50 41 1.617e-06
69.25.27.10 225.52 33 1.694e-06
161.170.254.232 299.29 51 1.972e-06
219.148.119.199 227.03 45 2.294e-06
66.151.55.10 303.12 62 2.367e-06
62.73.174.150 338.39 90 3.078e-06
64.41.241.171 338.39 90 3.078e-06
64.56.168.66 338.39 96 3.283e-06

Table 6.29: Top 10 stealthy scanners detected at 5 Worminator sites as well as
DShield.

We can also compare DShield’s performance when looking at targeted sites.

Figure 6.71 shows the percentage of Worminator site “targeted” alerts detected by

DShield. The results are inconclusive, as the number of sites for each (three and two,

respectively) yield somewhat similar results to the non-targeted analysis. Further

data is needed to draw a more clear distinction between Worminator and DShield

in this regard.

Finally, we can more closely examine the port distributions of IPs not detected by

DShield. Tables 6.30 and 6.31 show the most popular ports of remaining scanners,

including both those that scan at least 3 sites and those that scan at least 4.

When compared to the results in tables 6.24 and 6.25, there are some clear

differences: the non-DShield scanners tend towards less-well-known ports. This

is indicative less of an exploit delivered via a well-known execution vector, but

rather some form of communication or communication attempts of services installed

after-the-fact. Given the large number of IPs involved and the breadth of target port

ranges for each, this is suggestive of some form of coordinated network behavior—

possibly that of a bot or worm. While the DShield alerts should not be ignored, these

also merit closer investigation by site administrators. Ideally, those administrators

184

Academic Commercial
0

500

1000

1500

2000

2500

#
 s

ca
n

 s
o
u

rc
e
s

Not in DShield
In DShield

Figure 6.71: Worminator vs. DShield, academic vs. commercially-targeted sites.

would be able to conduct payload analysis on these ports to better determine their

purpose.

Other Anecdotal Results

One interesting footnote: while performing analysis on the two-site data, two alerts

were generated for the IP 128.9.168.45. Reverse DNS revealed the URL to be

http://ptr.isi.edu, which turns out to be an Internet mapping server performing

“low-volume” scans. Indeed, this source comprised only .00007% of the total alert

exchange, yet we were able to observe activity by the source with a minimum of

effort.

http://ptr.isi.edu

185

Port # IPs Total Freq
23137 244 566
50739 231 522
54296 229 608
26159 228 589
34098 227 612
22307 226 524
49188 225 540
20021 222 470
39017 221 562

1840 219 590
54316 217 479
14890 215 470
35840 206 509
41246 205 499
26112 202 454

Table 6.30: Top ports by # IPs, 4+ site
scans not in DShield.

Port # IPs Total Freq
22307 61 129
6487 57 103

34098 56 159
60766 56 106
4981 55 137

14890 54 103
37948 52 96
11355 52 115
48148 52 99
5411 51 95

26112 51 109
5680 51 100

15201 50 96
49188 49 113
18183 49 91

Table 6.31: Top ports by # IPs, 5+ site
scans not in DShield.

6.4.9 Conclusion

Based on this section, two important conclusions can be drawn:

1. IP-based feature sharing, e.g., source address and destination port, can be

successfully done in a privacy-preserving manner. The techniques outlined

in this section scale effectively while maintaining adequate privacy. The key

insight is that brute-force enumeration of any individual site’s alerts produces

meaningless results, as it is fraught with noise, but corroboration across sites

effectively eliminates this noise, yielding accurate intersections of watchlists

and enabling the production of warnlists.

2. Sharing even just source addresses and destination ports produces meaningful

insight into the nature of suspected intrusions as detected by an Intrusion

Detection System (IDS). First, such sharing reduces the volume of alerts

that need closer inspection, enabling more detailed inspection using smaller

warnlists. Second, insight as to cross-site scanning behavior enables better

186

classification and ranking of threats.

Based on the results presented and the above conclusions, IP sharing remains

a feasible technique, and privacy-preserving corroboration is an effective means

of reducing concerns about the possibility of information leakage. Future work

includes increasing the number of participating sites, which will greatly increase

the depth and breadth of the types of sources of surveillance and we expect it to

further validate our approach.

Some significant challenges remain, however. The largest is arguably the

proliferation of botnets, which threatens a massive increase in the set of sources

that can be used to launch attacks. With such a larger IP space as potential sources,

attackers have the flexibility of distributing sources so that cross-site scanning

behavior becomes harder to detect. There is arguably no IP header-based detection

mechanism that can effectively detect this behavior. Instead, the next generation

of IDS sensors will have to focus on the attack exploit, which is independent of the

attacking source. This approach generates further privacy challenges, and I describe

them, as well as approaches to solve the problem, in the next section.

6.5 Payload-Based Collaboration and Signature Gen-

eration

As described in the previous section, most information-sharing approaches share

header-based alert data, e.g., source IPs, destination ports, and aggregate statistics;

the goal of corroborating such features across multiple sites is to detect common

sources of attack, especially as they are performing initial scans to build hitlists in a

future attack. Not only can these lists be used in building fast-propagating worms

[140], they can also be used for targeted attacks, e.g., an attacker looking to exploit a

187

critical infrastructure industry that may use common services, such as the financial

services industry.

However, the advent of botnets [25, 30, 122] and other forms of indirection have

made it far more difficult to discover the true attack source, instead of bot machines

which play a small role in the actual process. While firewalling can be employed

against common IPs [179], there is no guarantee an attacker will not scan using

one network and attack using another, thereby defeating proactive attempts. The

problem has continued to escalate, and has recently been covered in mass media

[96].

Instead, one can approach the problem from the perspective of detecting the

actual exploit used in the attack attempt: in an increasingly monocultured-software

world, specific vulnerabilities are common to a large pool of applications [90].

We can leverage the commonality of such attack approaches (and, in particular,

the “invariant substrings” as defined in [103] and others) to identify and protect

against such attacks even if target machines are unpatched and remain vulnerable.

This is particularly advantageous for zero-day worm detection, when common

attack vectors may present themselves across many sites in short timeframes, i.e.,

corroboration of common alerts across space, and for stealthy scanning for long

time periods, i.e., corroboration of common alerts across time. In either case,

corroborating alerts among collaborating sites requires careful design for accuracy

and efficiency.

Of course, exploit-specific vulnerability detection has its challenges: in particular,

a reliance on payload detection and corroboration is necessary. It is impractical to

assume that organizations can exchange raw traffic streams; there is far too much

data of a potentially sensitive nature. Even if exchanged material is confined merely

to suspicious payloads as classified by an anomaly detector, organizations may fear

that some legitimate and/or sensitive traffic may be misclassified and exchanged to

188

other, possibly competing institutions. Instead, techniques are required to exchange

privacy-preserving alerts that make it impossible for other entities to determine the

actual content of the underlying traffic, yet at the same time exchanging information

that can effectively be corroborated. We propose that this is not only possible, but

practical and broadly applicable, and propose a collection of techniques to do so.

The rest of this section is organized as follows. Section 6.5.1 introduces the

payload-enabled privacy-preserving corroboration techniques at the heart of this

section. Section 6.5.4 then shows some early results based on the techniques

described in section 6.5.1, including performance, accuracy, and the efficacy of

signature generation. Finally, a privacy characterization of the techniques is

discussed in 6.5.6.

6.5.1 Corroboration Methodology

Once again, a set of participants A,B,C, . . . each contain IDS sensors IA,IB,IC, . . .

that produce alerts EA,EB,EC, . . . at times, i.e., eAt1 , eBt2 ,
12 However, a significant

difference is in the content of alerts; instead of having discrete features, an event may

now contain arbitrary binary payloads, e.g., for an event with a payload length m,

ρe = {b0b1 . . . bm}, bi referring to a single (typically 8-bit) byte of data.13 This payload

ρ is presumably (but not required to be) generated by an anomaly detector that

classifies it to be of interest.

Privacy Transformations

What we would like is a transformation that allows us to extract discrete fea-

tures from ρe, which can then be binary-modeled or frequency-modeled and

scored appropriately for corroboration. In order to do this, we use the n-gram

12And again, a hierarchical characterization of multiple sensors of sites is left to future work.
13ρ is not to be confused with p or P, both of which correspond to privacy transforms.

189

incremental analysis approach described in section 5.1.3. We may also keep

source, destination service, and/or timestamp as per the mechanisms described

in the previous section. In other words, an alert ai consists of many n-grams

derived from ρei , i.e., ai = {{b0b1 . . . bn}, {b1b2 . . . bn+1}, . . . {bm−nbm−n+1 . . . bm−1}}. Each

of the alerts, i.e., in the set A = a0, a1, . . . , ak, are then privacy-transformed, i.e.,

A
′ = P(A) = {p(a1), p(a2), . . . , p(ak)}, as follows:

• Frequency-modeled 1-gram alerts, i.e.,A′ =MF(a0),MF(a1), . . . ,MF(ak), where

MF is the frequency transform, i.e.,MF(ai) =MF(bi0 , bi1 , . . . , bik). In other words,

for each individual alert, the bytes are treated as individual features (1-grams)

and a frequency distribution is composed over them. We could also build the

frequency distribution of n-grams with n > 1, but [173] observes that the sparse

frequency matrix is computation-intensive, requires significant amounts of

space and does not provide significantly better results than binary-modeled

n-grams.

An alert/packet payload represented by its byte frequency distribution makes

it nearly impossible to reconstruct the actual payload except in degenerate

cases—the byte distribution contains byte values but no sequential information.

• Optionally, frequency-modeled 1-gram alerts can be reduced yet further

into a Z-String [174], representing the content rank-ordered by frequency,

i.e., Z(MF(ai)) = {bαbβbγ . . . }, f (bα) ≥ f (bβ) ≥ f (bγ), etc. Typically, such rank

orderings produce Zipf-like distributions (exponentially decreasing frequency

values). We rank order the distribution of a suspicious packet from most

frequent to least and drop the frequency counts, resulting in a “Zipf String”.

• Both frequency models and Z-Strings offer privacy. However, neither can

represent a sequence of characters. For worms and other malicious binary

payloads, we may want to capture such sequences, as they may serve as

190

invariants across multiple suspect payloads that can be corroborated. We

therefore create binary-modeled n-gram alerts, i.e.,

a′ = p({{b0b1 . . . bn}, {b1b2 . . . bn+1}, . . . , {bm−nbm−n+1 . . . bm−1}}) =

{p({b0b1 . . . bn}), p({b1b2 . . . bn+1}), . . . , p({bm−nbm−n+1 . . . bm−1})}.

These may then be inserted into a Bloom filter, i.e.,A′ =M(A), by inserting

the privacy-transformed n-grams into

B = {a′0, a′1, . . . , a′k} = {h({b00b01 . . . b0n}), h({b01b02 . . . b0n+1}), . . . ,

h({b0m−nb0m−n+1 . . . b0m−1}), h({b10b11 . . . b1n}), h({b11b12 . . . b1n+1}), . . . ,

h({b1m−nb1m−n+1 . . . b1m−1}) . . . }.

This implies that the n-grams from multiple alerts may be mixed as a “bag”, if

desired, for additional space savings over the use of separate Bloom filters per

alert.

The resulting Bloom filter(s) and/or frequency distributions essentially serve

the purpose of a participant’s watchlist as per the previous section, but this time

containing a representation of actual payload content, as opposed to IP endpoint

information. Publication can be scheduled in a flexible manner, as described earlier.

Upon receipt of one or more such watchlists, a warnlist composed of frequency

transforms, n-grams, or even n-gram-flattened signatures can be generated; these

are discussed in a later subsection.

6.5.2 Evaluating Corroboration

We corroborate content alerts using three main approaches: raw packet alert

corroboration, privacy-preserving frequency-based alert corroboration, and privacy-

191

preserving n-gram alert corroboration. First, however, we develop several metrics

as to how we can best compare these techniques.

One can view payload corroboration techniques as a tradeoff: on one extreme,

we can consider the idea of transmitting the raw packets that generated alerts; while

this enables any corroboration technique, we consider it infeasible because of the

sheer amount of data and the fact it is not privacy-preserving. On the other end of

the spectrum, we can consider privately-encrypted packet content: unless the key is

shared, it essentially appears as noise to peers—but this requires all or no trust. The

payload techniques described here fall somewhere in between, and we characterize

their relative merits from two perspectives: our ability to corroborate data given

a transformed version of packets, and the amount of privacy that is gained using

different privacy-preserving transformations of packet content.

Corroboration ability. The fundamental question, given any technique, is

whether it is possible to corroborate alerts with low false positive and low false

negative rates. Given raw, non-privacy-transformed packets that generate an

alert, there are several well-defined algorithms that aim to accomplish this task.

We consider the longest common subsequence, or LCSeq (discussed below), as an

appropriate baseline, as it is able to find any non-semantic commonality in the

candidate packets. Other approaches, including semantic matching, are discussed

briefly in section 4.5, and are considered outside the scope of this chapter, which

focuses on corroboration amongst pure network sensors, i.e., no host-specific

information.

Given a technique, and a collection of alerts, a similarity score distribution is

computed as each pair of alerts is tested (§6.5.4). This score distribution then

becomes a useful metric for comparing corroboration ability. If we consider LCSeq

as a useful baseline, for instance, we can measure the deviation of other techniques

from LCSeq as a comparative measure of how other techniques corroborate alerts.

192

Ideally, a network sensor would be able to use a privacy-enabled technique and get

similar results, signifying an increase in the privacy preservation while maintaining

the ability to determine common threats and exploits.

Privacy gain. We characterize the baseline as having no privacy as raw pack-

ets are exchanged, and having total privacy with encrypted content without the

corresponding key (noise). To characterize intermediate approaches, we utilize a

probabilistic model: given a representation of the encoded payload, what is the

likelihood that a curious peer would be able to reconstruct the original, possibly

sensitive data? For most of the approaches listed, we can estimate this probability

by determining the number of original payloads that could be represented by the

encoded alert; the resulting measurements are discussed in section 6.5.6.

Corroboration speed. Finally, one remaining important characteristic is the

ability to corroborate quickly, especially if many sites are involved with many alerts

being generated and exchanged. This “speed” metric is reflected in two aspects: the

resulting alert size after a transformation is applied, and the computation overhead

necessary to transform the original alert. As with the previous cases, we consider

raw packets the baseline: it is the largest unencrypted alert encoding (up to 1500

bytes, i.e., bounded by packet size, per alert) and LCSeq is amongst the slowest

corroboration mechanisms (up to polynomial-time with respect to buffer size).

Baseline Corroboration: Raw Payload Techniques

As previously discussed, we choose raw packet alert corroboration as a baseline

technique: it contains the most complete original information.

SE: String Equality. This is the simplest and most intuitive corroboration

approach. Two alerts are deemed similar to each other only if they have identical

content. This metric is very strict and does minimize false positives, but has

no tolerance for any variation—fragmentation, polymorphism, obfuscation, etc.

193

Equality is memory and computationally efficient (linear time).

LCS: Longest Common Substring. LCS is one of the classic string comparison

techniques; it is less deterministic than SE, and is not susceptible to fragmentation.

The longer the string that LCS computes, the greater the confidence that the

compared alerts are similar. While it allows minor payload manipulation, multiple

changes often cause a short LCS, reducing confidence in its corroboration ability.

LCS is reasonably fast; a suffix-tree implementation is linear-time, but at the cost

of having to store a suffix tree per alert (or O(n2) for a naı̈ve but memory-efficient

algorithm).

LCSeq: Longest Common Subsequence. LCSeq can be considered a gener-

alization of LCS; instead of finding a single contiguous matching block, LCSeq

allows non-matching characters to be interposed. This enables detection despite

a variety of payload manipulation operations, including insertion and reordering,

and potentially polymorphism. Like LCS, the length of a LCSeq is an indication

of similarity. Its main shortcoming is its computation overhead; at best, sparse

dynamic programming can achieve, on average, O(n lg n) complexity (and can range

to O(n2 lg n) worst-case).

ED: Edit Distance. Edit distance, also known as Levenshtein distance, is another

commonly-used approach to compare string similarity. It computes the smallest

number of insertions, deletions, and substitutions required to change one string

into another. In general, it has similar properties as LCSeq.

Frequency-Modeled 1-Gram Alert Corroboration

Having discussed different techniques for raw payload comparison and corrobora-

tion, we now describe our first alert transformation: frequency modeling. As our

work on PAYL demonstrates [174], 1-gram frequency models are a good indicator

of the nature of packet content. We can leverage this technique and use frequency

194

distributions as alerts, either with the corresponding normalized frequency counts

or with an approximation of this information.

Frequency Distribution. Given two packets with their respective byte distribu-

tions, we can apply standard distance metrics to determine similarity; Manhattan

distance is efficient (O(n) in length of the alert) yet produces a good approximation

of the actual distance. Frequency-based alerts are comparatively sized to packets; a

floating-precision frequency distribution takes 1KB of space.

Z-String. A Z-String relies on the relative notion of frequency just by the ordering

of the individual byte values, and since it is a string, we can apply the raw matching

techniques described above (SE, LCS, LCSeq, ED) to the Z-Strings themselves.

Z-Strings are also often smaller than full packets (e.g., 8-bit byte-based packets

would be referenced by a 256-byte Z-String), and as such the string comparison

times are generally shorter than on the raw packets themselves. However, Z-Strings

still have an O(n lg n) creation overhead in the size of the alphabet. (See section 6.5.4

for an example of a Z-String.)

Binary-Modeled N-gram Alert Corroboration

As discussed in [173], binary-based modeling produces surprisingly good results

and leads to two different possible alert types.

N-gram signature. We can generate a list of n-grams that are found to be

suspicious from an originating packet. Such a “signature” is position-independent

while capturing specific malicious byte sequences. Given two n-gram signatures,

we can simply compute the intersection of the two and threshold the cardinality of

the intersected set to determine a similarity score. Such an intersection is linear time

in the length of the signatures by using fast set-based data structures; depending

on the n-gram size and packet content, this can vary significantly; while most

packets are regular and have few n-grams, encrypted traffic, with a very flat byte

195

distribution, can have as many n-grams as the size of the packet itself. In either

case, an n-gram signature is a degenerate form of a raw packet; when distributing

large n-grams, this is clearly not privacy-preserving, as even a 5-gram can contain a

password. In these cases, we need a transformation on the n-gram itself.

Bloom filter n-gram signature. Instead of publishing an n-gram signature, we

can instead insert the n-grams into a Bloom filter and publish it.14 Since Bloom

filters support both insert and verify, set intersections can be done between a (local)

“raw” n-gram signature and a published BF n-gram signature, identifying the same

n-grams as the previous technique without yielding other, potentially sensitive

n-grams. This approach is also linear in time but leverages a BF’s space efficiency.

Optionally, multiple alerts can be published via a single Bloom filter, treating the

BF as a bag of suspicious n-grams. This enables a multiplicative reduction in the

amount of data transmitted and work needed to compute intersections.

Incidentally, corroborating two BF n-gram signatures from different sites can be

done via a bitwise AND “intersection”; this does not yield actual n-gram content,

but may help find commonality between signatures, increasing confidence that the

correct common code has been found when corroborated against local data. BF

intersection can also be used for model comparison, e.g., comparing two Anagram

models to see if different sites exhibit similar traffic properties. Experiments on

these approaches are outside the scope of this paper and are briefly discussed in

section 7.3.

6.5.3 Performance and Scalability

In order for privacy-preserving corroboration to be effective, it must impose a small

overhead. This subsection discusses the performance overheads for hashing and

Bloom filters, both of which are critical for n-gram analysis.

14This is not to be confused with Anagram’s use of a BF model; here, individual alerts are placed
into Bloom filters.

196

Full Payload Analysis

Unlike IP lists, privacy transform performance obviously changes when considering

larger items, such a full packet payload (typically between 1 and 1500 bytes).

Figure 6.72 shows the computation overhead when a distribution of such packets is

considered with a selection of hash functions. More precisely, 100,000 packets were

sampled from the CUCS network, covering approximately 10 seconds of traffic, and

had an average length of 228 bytes and standard deviation of 410 bytes.15 The results

are shown in figure 6.72. The average packet length is shown as a dotted black line

in the figure. The “None” line corresponds to the cost of merely copying the packet

in memory, i.e., doing a linear read/write without any further transformation.

0 20000 40000 60000 80000 100000
Number of packets

0

2

4

6

8

10

12

14

16

18

T
im

e
 (

se
co

n
d

s)

None
SHA1
H3NC
H3

0 20000 40000 60000 80000 100000
0

200

400

600

800

1000

1200

1400

A
ve

ra
g

e
 p

a
ck

e
t

le
n

g
th

Figure 6.72: Performance Comparison of Hash Functions for Packet Payloads.

15This is likely due to the extreme distribution produced by packets that have zero content as
opposed to packets carrying large amount of network data. Nevertheless, this does not invalidate the
experiment, as the computation trends remain the same even if only “long packets” are considered.

197

The figure shows that SHA-1 is extremely fast, processing ten seconds of gigabit

network traffic in under one second of computation time. SHA-1 is a block cipher,

supporting 512-bit blocks, and this likely accounts for the result. H3, on the other

hand, must process bytes individually, significantly increasing the amount of work

needed as more packets are processed. (A larger lookup cache for H3 can be used, if

necessary, at the cost of additional memory utilization.)

Per-payload 1-gram frequency analysis is also an extremely fast transform.

Figure 6.73 shows the results of both a per-packet frequency transform and Z-String

generation, which instead of normalizing the frequency distribution merely sorts

it. As such, the two of them still do less data manipulation than the cost of simply

copying the packet. A fourth transformation, “Hashcode”, is shown; this is the built-

in Java Object hash function, which generates fewer bits of output than other hash

functions and is extremely efficient, but is less generally useful, as it suffers much

higher collision rates. A technique to effectively leverage Hashcode is described in

the next subsection.

N-Gram Analysis

Unsurprisingly, partial matching via n-grams significantly raises computation

requirements; due to the sliding window over which a set of n-grams is computed,

byte values are repeatedly hashed. Unfortunately, individual hash byte values

cannot be reused, as bytes are hashed in different positions each time. This adds a

significant constant-time overhead to the overall transform. (N-gram values can be

reused; I discuss this possibility shortly.)

In the experiment detailed in figure 6.74, 10,000 packets were randomly sampled

out of the 100,000 used in figure 6.72. N-grams for a range of sizes, from 3 to 10,

were computed.16 Between 2.75 and 2.85 million n-grams were extracted from this

16Testing using the Anagram sensor showed that these size n-grams produce the best results for
payload anomaly detection [173, 171].

198

0 20000 40000 60000 80000 100000
Number of 0ac3ets

0.00

0.05

0.10

0.15

0.20

8
im

e
 :

se
co

;
d

s=

No;e
>as?code
FreA
BStr

0 20000 40000 60000 80000 100000
0

200

400

600

800

1000

1200

1400

A
Ee

ra
F

e
 0

a
c3

e
t

le
;

F
t?

Figure 6.73: Performance Comparison of Frequency Transforms for Packet
Payloads.

data (when using sizes ranging from 10-grams through 3-grams, respectively, i.e.,

there are more 3-grams than 10-grams). As mentioned earlier, the result is a clearly

greater computation overhead than for the same number of packets in figure 6.72.

One other hash function is present—“H3Inc”—which I discuss below.

The computation overhead is additive if multiple n-gram sizes are desired for

any given data. To ameliorate this cost somewhat, two different optimizations can be

used: first, the optimization discussed in section 5.2.2 can be used here to reduce the

hashing computation overhead to, essentially, the amount of work needed to hash

the largest n-gram. This technique is particularly useful when creating models that

contain mixtures of n-grams for matching accuracy or flexibility when corroborating

against different inputs. The result of using an incremental H3 implementation is

shown as “H3Inc” in the aforementioned figure 6.74. Note that each additional

199

3 4 5 6 7 8 9 10
N-gram size

0

1

2

3

4

5

6

7

8

T
im

e
 (

se
co

n
d

s)

None
SHA1
H3
Hashcode
H3Anc

Figure 6.74: Performance Comparison of Hash Functions for N-grams.

n-gram size imposes a constant-time overhead, which for large mixes of n-grams

grows far more slowly, additive, than using a non-incremental hash function. (The

higher initial cost is more difficult to explain; most likely, the testing mechanism,

which tests multiple n-grams for the same information at the same time instead

of testing all n-grams of one size separately, leverages the computer’s and VM’s

caching mechanisms less efficiently. Implementation in a lower-level language, like

C, may reduce or eliminate this performance difference.)

Second, a cache of n-grams can be created to speed up hash value lookup for

the most commonly-occurring n-grams. While it may seem unintuitive to build

a “hash cache”, as the keys in this cache would be looked up via a hash function

themselves, the hash function used for these keys can be far simpler than the general

200

hash function, and would simply index into a small array of the actual n-grams in

question, as is illustrated by the “Hashcode” value in figure 6.74. Different caching

strategies, as well as different cache sizes, can be adopted. Figures 6.75-6.78 show

results with different n-gram sizes and cache policies, using the same dataset as in

figure 6.74. Note that each graph has two axes; the left axis, corresponding to the

solid lines, refers to the cache hit rate, while the right axis refers to the computation

time involved in creating and maintaining the caches. A graph combining the cache

maintenance overhead with actual n-gram hashing is shown later, in figure 6.79.

0 2000 4000 6000 8000 10000 12000 14000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 %

Relative cache performance for 3-grams

Fixed
Fixed-Optimal
FIFO
LRU

0 2000 4000 6000 8000 10000 12000 14000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
o
ta

l
ca

ch
e
 p

ro
ce

ss
in

g
 t

im
e
,

m
s

Figure 6.75: Cache performance, 3-grams.

0 2000 4000 6000 8000 10000 12000 14000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 %

Relative cache performance for 5-grams

Fixed
Fixed-Optimal
FIFO
LRU

0 2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

12000

T
o
ta

l
ca

ch
e
 p

ro
ce

ss
in

g
 t

im
e
,

m
s

Figure 6.76: Cache performance, 5-grams.

0 2000 4000 6000 8000 10000 12000 14000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 %

Relative cache performance for 8-grams

Fixed
Fixed-Optimal
FIFO
LRU

0 2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

12000

T
o
ta

l
ca

ch
e
 p

ro
ce

ss
in

g
 t

im
e
,
m

s

Figure 6.77: Cache performance, 8-grams.

0 2000 4000 6000 8000 10000 12000 14000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 %

Relative cache performance for 10-grams

Fixed
Fixed-Optimal
FIFO
LRU

0 2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

12000

14000

T
o
ta

l
ca

ch
e
 p

ro
ce

ss
in

g
 t

im
e
,

m
s

Figure 6.78: Cache performance, 10-grams.

As is shown in the figures, four different hashing functions are used. “Fixed” is

the simplest; the cache is populated with misses until it is full, and is only checked

thereon. “Fixed-Optimal” employs a two-pass stage: n-gram frequencies are first

201

computed, and then only the most popular n-grams are statically populated and kept

in the cache. “FIFO” and “MRU” refer to first-in-first-out and most-recently-used

cache policies.

Several conclusions can be drawn from these figures. First, cache efficiency

will vary by n-gram size; in particular, smaller n-grams work better, which is

unsurprising as the total population of n-grams is smaller. Interestingly, Fixed-

Optimal’s performance declines precipitously as the n-gram size increases; this

strongly suggests that global frequencies are not necessarily useful when the

population of possible n-grams far outstrips cache sizes. Instead, some locality with

respect to the data being processed at any time quantum is far more useful. Finally,

the most interesting result is that a simple-to-implement and fast FIFO policy works

nearly as well as the best, but significantly slower MRU policy. In other words, given

network traffic, locality is the most important principle in repetition. In retrospect,

this is unsurprising—between whitespace, repeated characters, and consistent

data encodings through any arbitrary packet, a cache is most useful at preventing

duplicates in a particular network flow or flows at any given time. Best of all, the

FIFO cache policy has significantly smaller computation overheads when compared

to Fixed-Optimal (whose two-phase pass requires significant precomputation) and

MRU (whose requirement of a heap or similar sorting data structure in order to

determine the least-recently-used item significantly adds to the cost).

Therefore, FIFO was used as a caching policy when actually processing n-grams;

the result with a 15,000-entry cache is shown in figure 6.79. H3 is used for both the

baseline and optimized versions (“H3FIFO”), and the same network traffic as per

the previous figures is used.

At first glance, these results seem poor; for a small number of n-grams, there

is hardly any difference. This can be largely attributed to the fact that the cache’s

benefits are neutralized by the additional bookkeeping required to maintain the

202

3 4 5 6 7 8 9 10
N-gram size

0

1

2

3

4

5

6

7

8

T
im

e
 (

se
co

n
d

s)

None
SHA1
H3
H3FIFO
Hashcode

Figure 6.79: Performance Comparison of Hash Functions for N-grams.

cache. The cache’s benefits become far more apparent when processing larger

n-grams, such as 9- or 10-grams, where the performance improvement is over 20%.

The hash cache’s performance improves further when multiple hash functions are

considered (as in a Bloom filter), or when the cache enjoys a higher hit-rate (e.g.,

when more homogeneous packets—such as those from one protocol—are processed).

For instance, figures 6.80-6.82 show results when 7,000 HTTP packets are chosen

from the same dataset, including both cache hit rates and effective performance.

(Given the higher average size of HTTP packets, 7,000 packets yields roughly the

same number of n-grams, ranging from 2.95 million to 3 million n-grams.) Given

the greater homogeneity of packet content, it’s unsurprising to see significantly

higher hit rates—reaching into the 90% range for 3-grams through the 70% range for

203

10-grams. Figure 6.82 shows results when one H3 instance is used as well as when

three H3 instances, i.e., three distinct hash functions, are used per n-gram. In the

latter case, the performance speedup is close to 50% in our prototype system, and

presumably can be optimized further given a optimized rewrite using a lower-level

language, e.g., C.

0 2000 4000 6000 8000 10000 12000 14000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 %

Relative cache performance for 3-grams, @TTB

Fixed
Fixed-Optimal
FGFO
HRU

0 2000 4000 6000 8000 10000 12000 14000
0

1000

2000

3000

4000

5000

6000

T
o
ta

l
ca

ch
e
 p

ro
ce

ss
in

g
 t

im
e
,

m
s

Figure 6.80: HTTP cache performance,
3-grams.

0 2000 4000 6000 8000 10000 12000 14000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 %

Relative cache performance for 10-grams, ?TTA

Fixed
Fixed-Optimal
FFFO
GRU

0 2000 4000 6000 8000 10000 12000 14000
0

1000

2000

I000

4000

J000

6000

K000

8000

L000

T
o
ta

l
ca

ch
e
 p

ro
ce

ss
in

g
 t

im
e
,

m
s

Figure 6.81: HTTP cache performance,
10-grams.

Given these numbers, what conclusions can be drawn? First, hash-based

corroboration can indeed be done in real-time. The current prototype easily handles

opaque IP-based and payload alerts at alert rates that match the fastest distribution

systems. N-grams pose a significantly harder challenge, as many features are

being extracted from every single alert (packet). Nevertheless, given the data in

figures 6.74-6.82, certain classes of n-gram analysis can be done at wire speed. The

analysis in figure 6.82, focusing on 3.2MB of HTTP packets, is capable of supporting

approximately 10-20mbits/sec without further optimization.

Bloom Filters

For completeness, I include one more figure, corresponding to figure 6.82, that

reflects Bloom filter performance when processing n-grams. 3 H3 hash functions

are used with a 224-entry BF. Both the results with and without a 15,000-entry FIFO

204

! 4 # 6 % 8 ' 10
*-gram size

0

2

4

6

8

10

12

14

16

T
im

e
 7

se
co

n
d

s<

*one
=>?1
>!
>!FAFO
>!C!
>!FAFOC!

Figure 6.82: Performance Comparison of Hash Functions for N-grams given HTTP
traffic.

cache are shown.

The results in figure 6.83 demonstrate that Bloom filters scale as well as, if not

significantly better than, hashed n-grams themselves. While the cost of the non-

cached Bloom filter hashing is significant, caching offers between a 44% (10-gram)

and 52% (3-gram) reduction in computation overhead. Of the n-gram hashing

techniques shown, the cached Bloom filter implementation is by far the best. We

speculate [173] that an optimized C-based Bloom filter implementation can handle

a sustained 100mbps network connection.17

Finally, Bloom filters may themselves be exchanged and directly compared

17Of course, an out-of-band network would be necessary to support the communication of such
alerts.

205

3 4 5 6 7 8 9 10
N-gram size

1

2

3

4

5

6

7

8

T
im

e
 (

se
co

n
d

s)

BF
BFFIFO
SHA1
H3
H3FIFO

Figure 6.83: Performance Comparison of Bloom Filters and Hash Functions for
N-grams given HTTP traffic.

amongst each other as models. While this takes more time, as Bloom filters can be

significantly larger than any one single alert, the expectation is that this need not be

done at the same rate as network traffic or IDS alerts.

6.5.4 Corroboration Accuracy

As previously discussed, we first measure accuracy by computing a set of similarity

scores for every corroboration technique, 0 ≤ score ≤ 1, with a higher score implying

a more similar pair of alerts.

Raw packets and Z-Strings. For both of these alert types, our basket of string

comparisons can be used. For SE, the score is binary: 0 or 1, where 1 means equality.

206

For LCS and LCSeq, we use the percentage of the common LCS or LCSeq length

out of the total length of candidate strings: score = 2 ∗ C/(L1 + L2), where C is the

length of LCS/LCSeq and Li is the length of string i. For ED, larger values imply

dissimilarity; we normalize it as score = 1 −D/(L1 + L2), where D is the computed

edit distance and Li the same as LCS/LCSeq.

Frequency distributions. As mentioned before (equation 5.3), frequency distri-

butions are compared using Manhattan distance: M =
∑n

i=1 |xi − yi|, score =M/2.

Raw and BF n-grams. Since we no longer have full packet content, we instead

compute the percentage of common n-grams: score = 2 ∗Nc/(N1 +N2), where Nc is

the number of common n-grams and Ni the number of suspicious n-grams in alert i.

If a Bloom filter is used, a count may be kept with it or approximated by Nb/Nh, i.e.,

the number of bits set divided by the number of hash functions used.

Testing With Real Traffic

To compare the approaches, we randomly sampled HTTP packets from three

sources: clean packets collected from www and www1 (two heavily-trafficked

Columbia CS webservers), and malicious packets collected from a sample of attacks

(CodeRed, CodeRed II, WebDAV, Mirela, a phpBB forum attack, and an IIS buffer

overflow (MS03-022) exploit). These packets were paired off in three sets: 10,000

“good-vs-good” pairs from 100 packets of www and www1 traffic each, 1,540 “bad-

vs-bad” pairs formed in the cross-product of the 56 packet malicious dataset, and

5,600 “good-vs-bad” pairs of www1 and malicious packets. Similarity scores were

generated for all of the resulting pairs with all techniques, except SE, which is too

brittle to produce meaningful comparisons, and the n-gram analyses, which cannot

be compared over an entire packet.

Figure 6.84 visualizes a small random subset (80 pairs) of the scores generated

from the “good-vs-good” source. As figure 6.84 shows, the performance plots of the

207

methods appear similar, although their centers and scale values differ as the scores

are not normalized between the corroboration methods. On raw payloads, LCSeq

and ED bear very similar results, while comparisons on Z-Strings yield “flatter”

results, as less information is compared.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Si
m

ila
rit

y
Sc

or
e

Raw LCS

Zstr LCS

Raw LCSeq

Raw ED

Manhattan Distance

Zstr LCSeq

Zstr ED

Figure 6.84: Similarity score comparison of 80 random pairs of “good-vs-good”
alerts.

As a more complete experiment, normalized scores were generated and compared

for all of the pairs formed amongst the three datasets. To normalize the scores for a

comparison, we first compute similarity score vectors VA,VB for the same data over

two techniques A and B. The center of the two vectors are then aligned by shifting

the median of VA to match VB. Finally, VA’s range is scaled proportionally so that

its min and max values match VB’s. This normalization allows us to compute the

Manhattan Distance of the two vectors, distance =
∑n

i=1 |VAi − VBi |; smaller values

208

imply greater similarity between the two methods. Note that these scores are

relative and dependent on the data used; the normalized results are only useful

for comparing against a baseline, not as a source of absolute values or across

datasets. These pairs were tested with each technique, and the resulting scores were

normalized against and compared to the LCSeq score over raw packets. Table 6.32

shows the computed results.

Type Raw- Raw- MD ZStr- ZStr- ZStr-
LCS ED LCS LCSeq ED

G-G .0948 .0336 .0669 .2079 .0794 .0667
B-B .0508 .0441 .0653 .0399 .0263 .0669
G-B .0251 .0241 .0110 .0310 .0191 .0233

Table 6.32: Manhattan distance from Raw-LCSeq; lower is better.

Averaged over the three scores, Raw-ED is, unsurprisingly, closest to Raw-

LCSeq. When privacy-preserving methods are considered, Manhattan distance

performs the best overall, and particularly well for good-vs-bad comparison. All

of the privacy-preserving methods are close when corroborating pairs with attack

traffic; we conjecture that significantly different byte distributions enable effective

comparison even when some information is lost via privacy-preservation.

Cross-Domain Alert Corroboration

Next, we compare the techniques by examining their actual performance in iden-

tifying true alerts from false positives. Ideally, all false alerts are eliminated by a

small similarity score (i.e., the site that produced the alert was the only site that saw

this suspicious packet) while true alerts are identified with high similarity scores

(i.e., the attack has been launched against more than one site).

In this experiment, we first randomly mix the aforementioned collection of

attacks into two hours’ traffic from www and www1, respectively. Multiple instances

of attacks—4 for CodeRed and 3 for CodeRed II—are present to simulate a real-world

209

worm attack. The attacks are also fragmented differently, as CodeRed does in the

wild; for instance, CodeRed may fragment into a sequence of (1448, 1448, 1143) length

packets, (4, 375, 1460, 1460, 740) length packets, etc. Multiple instances also enable

testing corroboration between different attack types (e.g., CodeRed vs. CodeRed II).

Next, the two mixed traffic sets are each run through PAYL and Anagram with

previously-built models and with the alerting threshold lowered so that 100% of

the attacks are detected, but with higher (and comparable) false positive rates. The

resulting alert sets are corroborated against each other using each of the techniques;

the results are summarized in figure 6.85. For each method, the stacked bar

represents corroboration results for false positives. The shaded portion of the bar

represents the 99.9% percentile similarity score range, while the white represents

the worst-case (highest) score; in other words, while the worst-case FP score can be

high, the vast majority of false positives score relatively low.

The asterisk-marked (“*”) lines represent the range of similarity scores when

instances of the same worm are corroborated, and the open circle-marked (“o”)

lines represent scores across CodeRed and CodeRed II—a very simple measure of

polymorphism. The other worms, which were inserted without fragmentation, all

scored at or near 1, and so are not shown.18

We can draw several conclusions. First, corroboration of identical (non-

polymorphic) attacks works perfectly and accurately for all techniques. Most

of the techniques can also corroborate multiple instances of fragmented attacks; of

the privacy-preserving techniques, MD, LCSeq and ED on Z-Strings, and n-gram

analysis19 all perform well. (As intuition may suggest, ZStr-LCS is not particularly

effective.) Polymorphic worm detection is far harder—even in the case of CR vs.

CRII, only Raw-LCSeq and n-grams achieve promising results. N-gram analysis, in

18We could have artificially fragmented these worms to simulate the CodeRed experiment, but we
expect similar results.

19We do not distinguish between published raw n-grams and published BF-based n-grams here,
as they produce virtually identical results.

210

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Raw−L
CS

Raw−L
CSeq

Raw−E
D
Freq−M

D

ZStr−L
CS

ZStr−L
CSeq

ZStr−E
D

n−g
rams, n=5

Si
m

ila
rit

y
Sc

or
e

Student Version of MATLAB

Figure 6.85: Corroboration methods comparison.

particular, stands out; it produces accurate results and is particularly effective at

eliminating false positives, and the use of BFs enables privacy-preservation.

Signature Generation

Corroborating alerts across sites also enables the possibility of automatic signature

generation and deployment, once true alerts are identified. (We can also potentially

use the scores computed during similarity comparison as a “confidence” measure

in mitigation strategies to determine whether to deploy a signature.)

Raw packet-based signatures. Given the ability to share raw alerts, we can

exchange the LCS or LCSeq of highly similar packets. This has been the subject of

211

much recent work (§4.5), is not privacy-preserving, and we do not discuss it further

here.

Byte frequency/Z-Strings. Given the first packet of a CodeRed II attack in figure

6.86 and its byte distribution displayed in figure 6.87, we can generate a Z-String

by ordering the distribution by most frequent to least and dropping frequency

information. Figure 6.88 shows the first 20 bytes of the generated Z-String for the

distribution in figure 6.87, with nonprintable characters shown by their Unicode

values. Both frequency distributions and Z-Strings can be used as signatures.

GET./default.ida?XXX

XX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%u9090%u6858%ucbd3%u7801%u9090%u6858%u

cbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b

00%u531b%u53ff%u0078%u0000%u0

Figure 6.86: Raw packet of CRII; only the first 301 bytes are shown for brevity.

Figure 6.87: Frequency distribution for the CRII packet

212

88 0 255 117 48 85 116 37 232 100 100 106 69 133 137 80 254 1 56 51

Figure 6.88: First 20 bytes of the Z-String computed from the CRII packet.

N-Grams. N-grams are an intriguing approach to signature generation; n-grams

are position-independent, making them robust to reordering and fragmentation.

Additionally, if position information is kept, such a collection can be transformed into

a flat signature if desired. Figure 6.89 shows the results when a collection of 5-grams

based on the CodeRed II example packet are “flattened”, with “*” representing a

wildcard for signature matching. Compared to the original, figure 6.89 successfully

captures the malicious encoding and deemphasizes the padding “noise”. Results

with different n-gram sizes and another CRII packet are presented in an appendix

in [115].

* /def*ult.ida?XXXX*XXXX%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u

7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u53

1b%u53ff%u0078%u0000%u00=a HT*: 3379

Figure 6.89: Generated 5-gram signature from the CRII packet; only the first 172
bytes are shown for brevity.

6.5.5 Temporal Corroboration: Z-String Clustering

Section 6.4.6 discussed the performance of MRU BFs and TSBFs, and the same

analysis applies here for n-gram Bloom filters. However, temporal corroboration

with frequency distributions is far more complex. Unlike Bloom filters, which

can trivially be ANDed, frequency distributions cannot be merged without losing

data. The alternative, a linear scan, can become very expensive if every exchanged,

non-expired frequency distribution must be examined.

Alternatively, we can partition the set of frequency transforms into a number

of disjoint clusters based on transform similarity. While this will not completely

remove the linear-time scanning overhead, given a significant number of partitions,

213

we can still significantly reduce the work required. In order for this approach to

work, however, it must fulfill the following characteristics:

1. The partitioning of transforms into clusters must be fast;

2. The number of clusters should be small enough so that they are not specialized

around individual frequency distributions, but not so small that the degenerate

case, where a linear scan of a large partition is of the same order-of-magnitude

as scanning all of the partitions;

3. The overlap between clusters should be minimal to ensure that incoming

models are correctly thrown into the right clusters;

4. The number of clusters generated for a particular type of datum should be

minimized, so as to ensure that incoming models thrown into such clusters

will be rapidly corroborated.

While many clustering algorithms exist, we propose a simple, fast clustering

technique—the use of Z-Strings. A Z-String is an approximate representation of

a frequency distribution, and given the first few characters of a Z-String, we can

characterize the most prevalent aspects of a frequency distribution with a minimum

of computation effort. As shown in section 6.5.3, Z-String computation is fast, and

Z-Strings can be used as hash values to reduce the time of partition to the cost of

computing the Z-String.

Cluster Key Determination

The key question to this approach’s efficacy is effectively determining the number

of characters of a Z-String that should be used as a cluster key. If too many

characters are used, too many sparse clusters will be generated; if too few are used,

a degenerate situation will occur. Instead of empirically setting the string value,

214

we compute optimal cluster keys by thresholding the frequency distribution. Two

simple thresholds are a minimum threshold, i.e., eliminate all Z-String characters

whose frequency is less than an a priori threshold; and a delta threshold, i.e., eliminate

all Z-String characters after the “first derivative” frequency deltas are smaller than

a similar threshold. These two approaches are called the cluster and cluster delta

approach, respectively, in the experiments detailed here.

Clustering Performance

Given the desiderata above, two sets of data were evaluated to see how the techniques

perform in partitioning data into clusters. The first was 100,000 randomly-sampled

packets of www; the second was 100,000 packets from a Code Red II trace. Figures

6.90–6.102 show the results as these two traces are used to evaluate partitioning

performance.

First, figures 6.90–6.93 are semilog plots of clustering scores for all three

techniques—raw Z-Strings, Clusters, and Clusters Delta—at two different thresholds,

1 and 4 (i.e., restricting string length based on thresholding at 1 and 4, respectively),

and against a varying number of packets (ranging from 25,000–100,000).

The difference between the cardinality of raw Z-Strings, Clusters, and Clusters

Delta is remarkable. As the Y-axis is semilog, each tick represents an order-of-

magnitude difference. By this measure, Clusters Delta produce 1–2 orders of

magnitude less clusters than raw Z-Strings or regularly-thresholded Clusters. While

increasing the threshold to 4 decreases the difference between Clusters and Clusters

Delta, there is still at least one order of magnitude between the two. A homogeneous

trace, unsurprisingly, produces fewer clusters; in the case of Cluster Delta and the

CRII trace, the algorithm quickly computes around 100 clusters, even in the case of

100 packets. This strongly suggests that the Cluster Delta approach is producing

meaningful results.

215

20000 30000 40000 50000 60000 '0000 80000)0000 100000
+ pac0ets processed

100

1000

10000

100000

N
u

m
b

e
r

o
f

st
ri

n
>

s?
cl

u
st

e
rs

 >
e
n

e
ra

te
d

AStrs
Clusters
Clusters Delta

Figure 6.90: Z-String clustering on www,
threshold 1.

20000 30000 40000 50000 60000 70000 80000)0000 100000
+ pac0ets processed

100

1000

10000

100000

N
u

m
b

e
r

o
f

st
ri

n
>

s?
cl

u
st

e
rs

 >
e
n

e
ra

te
d

AStrs
Clusters
Clusters Delta

Figure 6.91: Z-String clustering on www,
threshold 4.

20000 30000 40000 50000 &0000 70000 80000)0000 100000
packets processed

10

100

1000

10000

100000

N
u

m
b

e
r

o
f

st
ri

n
g

s/
cl

u
st

e
rs

 g
e
n

e
ra

te
d

AStrs
Clusters
Clusters Delta

Figure 6.92: Z-String clustering for CRII,
threshold 1.

!"""" #"""" $"""" %"""" &"""" '"""" ("""")"""" *"""""
+ pac0ets processed

*"

*""

*"""

*""""

*"""""

N
8

m
:

e
r

o
f

st
ri

n
>

s?
cl

8
st

e
rs

 >
e
n

e
ra

te
d

AStrs
Cl8sters
Cl8sters Delta

Figure 6.93: Z-String clustering for CRII,
threshold 4.

In order to get a better idea of thresholds’ effects, figures 6.94–6.97 focus on

Cluster and Cluster Delta for varying thresholds and packets.

Once again, Cluster Delta fares far better, especially when CRII is concerned. It’s

also unsurprising that the CRII clustering algorithm converges faster, and higher

thresholds have less of an effect on the number of clusters generated.

One other interesting characteristic worth exploring is the length of the cluster

strings generated, as well as the average number of packets per cluster, as shown in

figure 6.98 and 6.99; the dashed lines represent the second Y-axis (number of items)

as opposed to the first Y-axis (Z-string length).

The results are as expected, although with one twist: in the CRII trace, the

average Z-String length actually decreases slightly with additional traffic. This may

be a sampling coincidence, i.e., the first 25,000 packets tended towards slightly

216

20000 30000 40000 50000 60000 '0000 80000)0000 100000
+ pac0ets processed

1000

10000

100000

N
u

m
b

e
r

o
f

st
ri

n
>

s?
cl

u
st

e
rs

 >
e
n

e
ra

te
d

TBresBold C 1
TBresBold C 2
TBresBold C 3
TBresBold C 4

Figure 6.94: Z-String clustering via Cluster on
www.

20000 30000 40000 50000 60000 70000 80000)0000 100000
+ pac0ets processed

100

1000

10000

N
u

m
b

e
r

o
f

st
ri

n
>

s?
cl

u
st

e
rs

 >
e
n

e
ra

te
d

TBresBold C 1
TBresBold C 2
TBresBold C 3
TBresBold C 4

Figure 6.95: Z-String clustering via Cluster
Delta on www.

20000 30000 40000 50000 60000 70000 80000)0000 100000
+ pac0ets processed

1000

10000

100000

N
u

m
b

e
r

o
f

st
ri

n
>

s?
cl

u
st

e
rs

 >
e
n

e
ra

te
d

TBresBold C 1
TBresBold C 2
TBresBold C 3
TBresBold C 4

Figure 6.96: Z-String clustering via Cluster
for CRII.

20000 30000 40000 50000 60000 '0000 80000)0000 100000
+ pac0ets processed

10

100

1000

N
u

m
b

e
r

o
f

st
ri

n
>

s?
cl

u
st

e
rs

 >
e
n

e
ra

te
d

TBresBold C 1
TBresBold C 2
TBresBold C 3
TBresBold C 4

Figure 6.97: Z-String clustering via Cluster
Delta for CRII.

longer Z-Strings, which then quickly corrected itself thereafter.

Now that Cluster Delta’s ability to generate clusters has been validated, we

would like to evaluate the actual distribution and relevance of the generated clusters.

We can do this via two means; first is the use of a distance metric to ensure each

cluster is cohesive (packets in a cluster are highly similar) and that clusters are only

loosely coupled (packets between clusters are not similar). Second, we can actually

test for the prevalence of worm bodies in clusters, with the optimal scenario being

that a minimum of clusters contain a particular segment of the worm.

Figure 6.100 tests the former with varying thresholds. The distance was computed

by randomly sampling up to 100 packets from each cluster, generating their

normalized frequency distributions, and computing distances pairwise, i.e., all

100 distributions were tested against each other in the current cluster and each of

217

20000 30000 40000 50000 60000 '0000 80000)0000 100000
+ pac0ets processed

1

10

7
8e

ra
9

e
 :

;S
tr

in
9

 l
e
n

9
t@

T@res@old B 1
T@res@old B 2
T@res@old B 3
T@res@old B 4

1

10

100

7
8e

ra
9

e
 n

u
m

b
e
r

o
f

it
e
m

s
in

 c
lu

st
e
r

500

Figure 6.98: Z-String Cluster Delta lengths on
www.

20000 30000 40000 50000 60000 70000 80000 90000 100000
+ pac0ets processed

1

10

7
8e

ra
9

e
 :

;S
tr

in
9

 l
e
n

9
t@

T@res@old B 1
T@res@old B 2
T@res@old B 3
T@res@old B 4

100

1000

7
8e

ra
9

e
 n

u
m

b
e
r

o
f

it
e
m

s
in

 c
lu

st
e
r

Figure 6.99: Z-String Cluster Delta lengths for
CRII.

those packets tested against the other samples in every other cluster. The resulting

Manhattan distances were averaged into each category, and are shown below. The

dashed line just plots the numbers of clusters generated, as per the second Y-axis.

1.0 1.$ 2.0 2.$ 3.0 3.$ 4.0
()res)old

0.3

0.4

0.$

0.6

0.1

0.8

0.3

1.0

A
5e

ra
g

e
 P

a
ir

;
is

e
 <

a
n

)
a
tt

a
n

 ?
is

ta
n

ce

<an)attan ?istance An
<an)attan ?istance Bet;

0

20

40

60

80

100

C
 C

lE
st

e
rs

 F
e
n

e
ra

te
d

Figure 6.100: Z-String Cluster Delta, Manhattan distance results.

The results are solid; there is a clear delineation between distributions within a

cluster and those between clusters. Unsurprisingly, the differences diminish as the

threshold increases, as fewer clusters imply that slightly more dissimilar distributions

218

are shoehorned into other clusters. Nevertheless, the average Manhattan distance

within clusters remains below .4, while the average Manhattan distance between

clusters stays above .8.

Given the good results for all thresholds distance-wise, is there a preferred

choice? While fewer clusters may cause slightly dissimilar distribution clusters to be

merged, intuition suggests that a reduced number of clusters increases the likelihood

that received frequency distributions are pigeonholed into the correct cluster. We

can test this via examining the prevalence of a unique packet (or substring thereof).

In the CRII case, the simplest example is a portion of the URL that triggers the

CRII buffer overflow (e.g., default.ida?XXXXX), and indeed, the results in figures

6.101–6.102 produce high prevalence and validates our intuition. Dashed lines

represent the average number of distributions in a cluster that match our specified

search string.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Threshold

1

10

100

1000

10000

#
 C

lu
st

e
rs

 O
cc

u
rr

in
g

 I
n

Clusters
Clusters Delta

1

10

100

1000

10000

A
vg

 #
 O

cc
u

rr
e
n

ce
s

P
e
r

C
lu

st
e
r

Figure 6.101: Z-String CRII prevalence, 25,000
packets.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
()res)old

1

10

100

1000

10000

100000

0
 C

lu
st

e
rs

 5
cc

u
rr

i8
9

 :
8

Clusters
Clusters ;elta

1

10

100

1000

10000

A
>9

 0
 5

cc
u

rr
e
8

ce
s

P
e
r

C
lu

st
e
r

Figure 6.102: Z-String CRII prevalence,
100,000 packets.

These results, in fact, serve as the strongest indicator that the clustering technique

works. When 25,000 packets are processed, Cluster Delta successfully converges

all of the CRII URL overflow distributions into a single cluster. The algorithm is

not fully successful with more packets, but still sorts the distributions down into 4

clusters. Additional heuristics, such as aggressively merging 1-clusters, may help

in reducing the number of clusters for a distribution of interest. Still, 4 clusters is

219

sufficient to ensure enough alerts are pigeonholed into each such that corroboration

can be done quickly as new distributions are received.

6.5.6 Privacy Gain

As is shown here, the analysis done in section 6.4.7 is not practical for payloads;

the cost of doing a brute-force analysis is clearly intractable with standard com-

putation hardware and techniques. Instead, as mentioned earlier, we can use a

probabilistic model as a first-order approximation to measure the relative privacy

and effectiveness of each privacy-preserving technique.

Frequency-Based Approaches

Recovery of the original text from its privacy-preserving encoding can be modeled

as follows: given a frequency distribution f = {(b0, π0), (b1, π1), ..., (bn−1, πn−1)}, where

n is the size of the alphabet, bi is the byte value with probability πi, and a target

length l, we construct the content of a packet p = {b0b0...b0b1b1...b1 · · · bn−1bn−1...bn−1},

with π0l copies of b0, π1l copies of b1, and so on.

We can now characterize the recovery likelihood R = 1/(l!/((π0l)!(π1l)!...(πn − 1l)!)),

where the denominator is simply the count of all permutations of p. This is an

effective estimate of the privacy of the frequency distribution, as it represents

the likelihood an attacker will be able to correctly guess the true content of the

original packets. This number is, additionally, vanishingly small. For the frequency

distribution of the CRII packet shown in figure 6.87, R ≈ 1/28208, well beyond

the scope of feasibility, despite the packet’s regularity thanks to the large padded

section.

The value of R for a Z-String is orders-of-magnitude smaller; not only do

permutations of a packet pi have to be computed, there are many such packets; since

no frequency information is stored, one must guess the frequencies for each of the

220

bytes bi in the packet. In short, effectively guessing the correct base packet pi and its

correct permutation is intractable.

N-Grams

We can consider the privacy of both a raw collection of n-grams and a corresponding

Bloom filter encoding. The raw collection is not very privacy-preserving; not only

can a byte sequence contain valuable information, significant n-gram collections

enable reassembly of much of the original packet, even without position information.

Given a 5-gram {b1b2b3b4b5} from packet p, one can search for the 5-gram {b2b3b4b5bx}

in the collection, where bx is any byte; if found, one can reasonably assume the

presence of the 6-gram {b1...b5bx} in packet p; since 2564, the number of “common”

4-grams contained in both two 5-grams, is much greater than a packet’s size, it is

highly unlikely that the common 4-gram happens to be a coincidence. Combined

with the fact that high-scoring alerts can contain nearly as many n-grams as the

original packet’s size, this is impractical from a privacy perspective.

Instead, as previously proposed, we insert the collection of n-grams into a Bloom

filter before publishing it. The size of the Bloom filter need not be much more

than the number of n-grams; we can pick a size, say 212 bits, which is more than

twice the size of any individual packet and not prone to significant false positives.

(This Bloom filter still takes substantially less memory than the n-gram collection

itself.) Given such an encoding, the only practical way of recovering the data is

to brute-force verify every possible n-gram against the Bloom filter. For example,

if we know that only 5-grams are contained in the Bloom filter, there are 2565

possible n-grams. Not only is testing all such n-grams computationally infeasible,

a brute-force attempt is likely to generate many, many false positives, since there

are 2565/212 possible n-grams for each set bit in the Bloom filter (assuming one

221

hash function20); the recovery likelihood R = (212/2565)m, where m is the number of

n-grams recovered, is again vanishingly small. This number grows even smaller if

multiple n-gram sizes are embedded in the same Bloom filter.

Interestingly, despite the number of possible n-grams for each bit of the Bloom

filter, corroborating such filters is not prone to significant misclassification. We can

characterize the “unlucky coincidence” rate = (2565/212

2565)m, that is, the likelihood that

we happen to incorrectly verify m possible n-grams, each represented by a particular

bit bi, out of all possible n-grams. This simplifies to (1
212)m, which rapidly grows

smaller with increasing m. In our experiments, we found that a similarity score

threshold of 0.1 produced good results; combined with the fact that the average

number of n-grams in a false positive alert is approximately 55, the probability of

miscorroborating a Bloom filter alert due to 5 unlucky coincidences is (1
212)5—not

a major concern. In short, testing multiple n-grams eliminates coincidences very

rapidly. Sizing the Bloom filter appropriately to avoid saturation is a far more

important issue.

Given the effectiveness of n-gram analysis, combined with its strong privacy

guarantees and compact size, we believe there is great promise for this form of

payload-based corroboration.

6.5.7 Conclusion

Content-based alert sharing holds great promise in being able to detect and track

attack behaviors that are difficult to monitor via pure IP-based intrusion detection.

In particular, content-based alerts generated by locally-trained payload anomaly

detectors reveals an opportunity to detect the early onset of zero-day worm or

targeted attacks.

We presented a comparative evaluation of alternative corroboration strategies

20Additional hash functions do not affect our analysis.

222

and accuracy measures using test data sets with known worm exploits, and included

a proposed estimate of the “privacy gain” each method affords. This is important

in approaching the problem analytically in order to help break down barriers to

collaboration. We find that cross-site and cross-domain privacy-preserving “suspect

payload” alert sharing is feasible and useful, particularly shown in the analysis of

Bloom filter-exchanged alerts encoding suspect anomalous n-grams.

6.6 Model-Driven Collaboration

The previous sections in this chapter have focused on the exchange of individual

alerts, or combinations thereof. While this is useful for purely alert-driven intrusion

detection, there are a number of specialized applications where this is an insufficient

approach—for example, environments where new communication partners are

constantly encountered, for which waiting for intrusion alerts or making meaningful

sense of them in a short time period is infeasible.

One such application is that of mobile ad-hoc networks (MANETs), which have

recently gained adoption in a broad variety of environments thanks to improvements

in wireless networking technology and the need for rapid mobile deployment.

However, MANETs pose unique security requirements and challenges. Since they

enable devices to enter and leave a network without previous authentication or

certification, a MANET node cannot be assumed to be trusted. Traditional security

approaches, like firewalls, do not extend well to MANETs, where both benign and

malicious parties have full access to communicate with peers. Additionally, the

limited processing power and battery life of these devices also prevent the adoption

of heavy-duty cryptographic techniques.

While traditional misuse-based IDSes may work in a MANET, the efficacy of

these techniques is in question. A traditional IDS might watch for packet dropouts

223

or unknown outsiders as a sign that an inbound communication may be malicious.

In a MANET however, both of these occurrences are commonplace amongst benign

nodes as well. Additionally, most MANET-based misuse detectors have focused

on routing-specific attacks, e.g. [148], at the cost of ignoring actual application

vulnerabilities.

Anomaly detection approaches hold out more promise, as they utilize learning

techniques to enable adaptation to the wireless environment and to the tasks and

communications being utilized in that environment. Anomaly detectors generate a

model of the observed data (traffic, behavior, etc.), and compare new data against

this model to check for anomalies. It is relatively simple to determine if peer

communications fit that model, and to establish policies ignoring data that is flagged

as malicious (e.g., [174, 172]). The model also acts as a profile of device behavior,

which can be utilized by peers to help determine its trustworthiness by comparing

their mutual models exchanged between the devices.

This concept extends the notion of mutual authentication; rather than proving

one’s trustworthiness via a certificate or a credential; here, MANET nodes are

authenticated by their behavior—a profile of how they typically interact. Other

nodes may validate the node by conformance to their own profiles, and to ensure

the new node subsequently behaves in conformance with their announced profile.

Early work in building anomaly detectors for MANETs was primarily focused

on header-level and routing-level features [64, 117, 142, 164]. Computing the

anomaly model for traffic payload or other rich feature sets is a time-consuming

and processor-heavy task, one that needs to be avoided in a battery-conscious,

reduced-communication environment. To solve this, we proposed the use of model

exchange in a MANET to provide a balance between the need for adaptation as a

device moves between different networks and the need to minimize computation

and traffic utilization. Any node should be able to obtain peers’ model(s) and

224

evaluate it against its own model of “normal” behavior. The node should be able

to either integrate the peer’s model with its own to get a better idea of legitimate

traffic being conducted on the network, or to flag the peer as suspicious if the profile

is significantly different than its own. Moreover, it should be able to do this form of

exchange without revealing any data deemed private—that is, we wish to separate

the notion of behavior from data. Finally, in order to ensure the peer is not lying

when it presents its model, the architecture allows for continuous validation of the

model—to ensure that subsequent received traffic matches the presented model.

We present this model, discuss scenarios in which it may be used, provide early

results about model integration and comparison, and provide a framework for

future implementation. While worms and similar malicious payloads have not

yet become prevalent on MANETs, it’s only a matter of time before such intrusion

detection techniques are necessary [24]. Note that this section of this chapter

represents early feasibility work, and does not aim to be a complete dissertation

on the subject. There are significant opportunities for future work, including an

actual model exchange implementation and deployment based on the Worminator

framework. These are discussed in section 7.3 and an implementation is underway.

6.6.1 Corroboration Model

Once again, we have a set of participants A,B,C, . . . ; each may correspond to an

entity of varying size, ranging from a standard intrusion detection node to a small

MANET entity, and the same multisensor-per-participant analysis discussed could

also be applied here. Each contain anomaly sensors IA,IB,IC, . . . that produce

modelsMA,MB,MC, These models may evolve over time, so we may choose to

express instances of these models as a function of time, i.e.,MAtα ,MBtβ ,MCtγ ,

The sensors may also generate events EA, . . . , but we ignore them here, choosing to

focus exclusively on the anomaly models themselves.

225

As discussed earlier in this thesis, models can be generated in one of several

ways:

• 1-gram frequency distributions compiled over aggregate traffic, i.e., A′ =

MF(ρ(A)t0−t1
), whereMF is the frequency transform over payloads ρ between

time t0 and t1, i.e.,MF(ρ(A)t0−t1
) =MF(bA0 , bA1 , . . . , bAk), bAi ∈ ρ(A) and t(bA0) ≥

t0, t(bAk) ≤ t1. The anomaly sensor PAYL is particularly designed for this

task; PAYL can compute multi-centroid models conditioned on length, i.e.,

MA = {c0, c1, . . . , cn}, ci = MF(ρ(A)0, ρ(A)1, . . . , ρ(A)k) and |ρ(A) j| = |ρ(A)k|. A

more complete discussion of PAYL can be found in section 6.3.2.

• Z-Strings, i.e., reduced frequency-modeled 1-gram alerts. These are not

explored, because they are far too coarse to effectively model large amounts of

content (as opposed to the previous section, where Z-Strings were used for

more limited individual payloads).

• Binary n-gram models, possibly inserted in Bloom filters. Much like how

frequency models can be generated by PAYL, binary n-gram models can be

generated by Anagram and compared. This approach is left for future work.

Once the models are exchanged, we can choose to either aggregate or differentiate

them, depending on the similarity of individual centroids. Both techniques are

discussed in detail later in this section.

6.6.2 Practical Model Distribution

In a MANET, we make the fundamental assumption that most nodes cannot (or

prefer not to) compute an anomaly model for payloads, due to the lack of traffic,

battery power, or computation ability. This requires the existence of a node that is

sufficiently powerful to perform anomaly model learning and can bootstrap the

226

MANET’s model set. Depending on the location of this node, several different

distribution models can be adopted:

• Use a server/desktop entity to generate the anomaly model. This is ideal for

situations where the MANET is running a replica or a lightweight version of

the desktop application (e.g., SMTP messaging or HTTP data transfer). In

these cases, training can be done on the desktop and the model distributed to

the MANET nodes when possible:

– If the MANET nodes have WAN connectivity, they can initiate download

requests to obtain the latest model from the server. (Some WAN topologies

now allow for “push” models, which could be leveraged to let the desktop

administer the download interval.) A hierarchical distribution can also

be accomplished, whereby a single MANET node downloads the data

over a potentially expensive WAN link and then utilizes the WLAN links

to distribute the updated model to neighboring nodes.

– Without WAN connectivity, MANET nodes can be initialized before

deployment. This is a natural arrangement for “syncable” handheld

devices (e.g., Palm/WinCE PDAs), which often have a cradle at the

office/base and allow one-touch synchronization. We call this mechanism

pre-charging. Ideally, the handheld device would contact the desktop

at a regular basis, but high-quality models can reduce this dependency.

Synchronization can also be accomplished with intermittent network

links.

• If a desktop cannot be deployed, a more powerful MANET node can be

deployed, with sufficient processing and/or battery power to perform anomaly

training. This “supernode” would listen promiscuously to all visible traffic on

227

the MANET, generate models, and distribute them to the (potentially weaker)

peers. This model is decentralized and does not require WAN connectivity.

However, the supernode does not see traffic that is not routed within its vicinity.

A workaround to enable broader model coverage would entail periodic traffic

reports from all nodes; these traffic samples should be sufficient to construct a

representative model.

• Use a precomputed anomaly model. This scenario is worst-case, but can

be practical in situations where the MANET’s behavior is well-defined and

follows a standard protocol definition. This is a variation on the first scenario,

but one where the regular synchronization requirement is dropped.

• Introduce node(s) from a different MANET who has been able to compute

an anomaly model. Much like the previous scenario, this works best when

MANET functionality is well-defined and compatible with the other MANET.

Degraded modes can also be adopted, i.e., in scenarios where anomaly models

are unavailable, mobile nodes can adopt a “defensive” posture and reject otherwise

accepted traffic. While model exchange imposes an additional restriction as

opposed to standalone misuse or anomaly detectors, we believe that the savings in

computation time and the benefits justify these requirements.

6.6.3 Case study: PAYL models

To verify our hypothesis, we examine the use of model exchange with PAYL. PAYL

has favorable characteristics for MANET model exchange; in particular, it uses

small-size models that can be easily exchanged, profiled and aggregated between

nodes (5̃0KB after compression, making it useable for low-bandwidth links). In this

section, we show the methods that can be used to accomplish the above mentioned

tasks. We will also show early experimental results that validate these methods.

228

Model aggregation

As mentioned earlier, PAYL models are composed of centroids that capture payload

byte distribution. With PAYL’s incremental learning technique [174], merging

models is as simple as averaging one model onto the other. If, for a specific payload

length, only one of the models contains one or more computed centroids, the

aggregate one will simply inherit these centroids.

This aggregation algorithm requires linear execution time (relative to the size of

the model), thus satisfying the computational limitations typical to MANETs. Also,

since PAYL models only contain statistical distributions, they can be distributed

without encryption, as sensitive content will not be revealed.

Model differentiation

We can differentiate models at multiple levels of detail; at the first level, we extract

the payload length distribution for the two models that we compare, and compute

the Manhattan distance [174] between them. If this distance is greater than a

significant threshold, we might conclude that the models display a significant

difference. If not, we perform the analysis at a higher level of detail and compare

based on the distance between each model’s centroids for any port and packet

length. This can be done either by considering only the predominant centroid for

each packet length, or all centroids contained in the model.

The advantage of performing a multi-level analysis is that negative answers for

divergent models can be returned very quickly, while in-depth comparisons will be

performed only for very similar models. As a result, this method can satisfy low

computational constraints.

6.6.4 Experimental results

229

In order to confirm the characteristics of the PAYL model differentiation and

aggregation, we have conducted a series of experiments on a set of four models,

which we name model1 through model4.

• model1 and model2 were generated on machines accepting similar, primarily

hypertext (i.e., ASCII/HTML) traffic (as both machines service the same

population).

• model3 was generated on a machine that sees a more complex traffic mix,

including more streaming video and audio.

• model4 was built out of mostly abnormal traffic populated with Code Red II,

an IIS WebDAV exploit, etc.

As an example, figure 6.103 displays two centroids built for the same payload

length and the same port in model1 and in model4.

Figure 6.103: First centroid for port 80, length 1058 for model1 (top) and model4
(bottom).

The differentiation methodology discussed above was used to perform compar-

isons between these models. It correctly decided that model1 and model2 are similar,

230

while model3 and model4 present significant differences relative to other models.

Numerical results reported by this method at various level of detail can be found in

table 6.33.

model1 model1 model1 model3
model2 model3 model4 model4

Dist btw payload lengths 0.4210 1.5201 1.8981 0.7898
Avg dist over first centroids 0.5946 0.7400 1.6368 1.6330
Avg dist over all centroids 0.4276 0.6112 1.5220 1.5096

Table 6.33: Manhattan distances between models by three metrics.

This table shows two different metrics for comparison (payload length distribu-

tions and payload content distributions). We observe that model1 is quite similar

to model2 with respect to their average payload length distributions and content

distributions. model4 clearly appears different than the other models for both length

and content distributions. However, while model1 and model3 are similar with

respect to their content distributions, there is a significant discrepancy between their

length distributions. This fact leads us to the conclusion that we need to explore

more ways of calculating similarity between the models. Our ongoing research is

focused on correlating these and other metrics for better performance.

After differentiating neighbor models, a MANET node could be ready to ag-

gregate its own model with ones that are similar to it. Aggregation was tested to

demonstrate that important information is not lost from the original, individual

models. We tested both the simple (unaggregated) models and the aggregated

models against the same data. Based on Table 6.34, we can observe that even if the

number of alerts is different for each simple model, the aggregated models do not

significantly shorten the spectrum of alerts that each simple model can generate.

The aggregated model shows similar behavior to the ones used to create it, which

implies that the aggregation method is reliable.

231

total # packets / model1 model2 model1+2
content packets # alerts # alerts #alerts

127023 149 184 149
10414

304182 2705 2829 2672
21812

276332 9684 11128 9669
26294

353897 11201 3394 2187
36780

Table 6.34: Testing PAYL using model1 and model2, and their aggregate.

In table 6.35, we observe that there is a significant difference between the number

of alerts generated by model1 and model3, leading us to conclude that the two are

not similar models. We plan to capture more data for similarity measurements in

future experiments.

total # packets / model1 model3 model1+3
content packets # alerts # alerts #alerts

127023 149 81 148
10414
304182 2705 1789 2613
21812
276332 9684 1138 9530
26294
353897 11201 2919 11040
36780

Table 6.35: Testing PAYL using model1 and model3, and their aggregate.

6.6.5 Privacy Gain

An alert/packet payload represented by its byte frequency distribution makes it

nearly impossible to reconstruct the actual payload except in degenerate cases—the

byte distribution contains byte values but no sequential information. As previously

discussed in section 6.5.6, R ≈ 1/28208 for an example worm packet.

232

Now, given that a model represents many such packets, the problem becomes far

more difficult. Despite PAYL’s use of payload length clustering, a single centroid

still may represent the frequency distribution over many thousands of packets. We

can safely assert, therefore, that unless every packet is identical, a curious entity

could only hope to glean general trends about packet content, as opposed to packets

themselves. The only such trend that is recoverable given a 1-gram distribution is

the relative frequency of individual ASCII values, essentially mirroring the analysis

of a Z-String in section 6.5.6, and is similarly intractable.

6.6.6 Conclusion

This section describes early work in the notion of model exchange as an effective

privacy-preserving anomaly-detection technique in certain applications, most

particularly that of mobile ad-hoc networks (MANETs), where a model can be

used to determine appropriate communication policies between mutually newly-

introduced nodes. An initial feasibility study of model exchange was conducted,

using the PAYL anomaly detector. Early results are promising, but there is further

research to be conducted, as discussed in the future work section (§7.3).

6.7 Summary

This chapter has presented a comprehensive application and analysis for corroboration—

collaborative intrusion detection, or CIDS. After introducing the corroboration

model, three applications were detailed with the potential of significantly improv-

ing the way intrusion detection alerts are generated—at the IP header-level, at

the payload level, and even at the traffic model level. Not only are all three tech-

niques practical, but also have fewer barriers to entry compared to existing DIDS

approaches, thanks to their use of privacy-preserving transforms. This enabled the

233

validation of the hypotheses introduced in section 6.1.1.

As adversaries grow more sophisticated in their scan and attack strategies,

a more comprehensive defense is needed. Collaborative intrusion detection is

a powerful tool against such adversaries, including those that do not generate

high-visibility events that can be easily caught by traditional means. Worminator’s

decentralized, privacy-preserving approach provides a natural vehicle for such

distributed intrusion detection applications, and its modular approach enables the

use of a broad variety of sensors and techniques. While many of these techniques

were described here, there are many venues for future research; if anything,

Worminator has laid the foundation for significant new possibilities in attacker and

defender profiling and data collection; several of these are discussed in section 7.3.

234

Chapter 7

Contributions, Future Work and

Conclusion

7.1 Thesis Contributions

The contributions of this thesis include the following:

1. A generalized approach to supporting privacy-preserving event corrobora-

tion. As discussed in section 4, most work in this field has been extremely

specialized. By building a more general framework, we expect to enable

the application of privacy-preserving mechanisms and collaboration to a

broader variety of fields. The techniques developed in this work are geared

towards such a general application, including the notion of “retrofitting” such

privacy-preserving techniques to legacy event correlators.

2. Additionally, this approach has been applied towards the development of a

practical collaborative intrusion detection system. The methods in this thesis

have been specifically geared for real-world solutions that establish privacy

requirements, and Worminator’s current and ongoing deployment is a key

example of the feasibility of the proposed approach.

235

3. Characterization of the effectiveness of privacy-preserving mechanisms: to

date, people have focused on proving the feasibility of privacy-preserving

computation, but less so the advantages/disadvantages of picking a particular

mechanism. The evaluation of the techniques in this thesis is a first significant

step towards developing and using metrics to determine appropriate solutions

based on the required application.

4. Development of fast corroboration data structures, including noisy Bloom

filters, MRU and Timestamp Bloom filters, frequency transforms, and Z-Strings.

Of these, the MRU and Timestamp BFs are completely new, and the application

of noisy BFs, frequency transforms, and Z-Strings to privacy preservation and

intrusion detection is novel. These data structures support a broad variety

of applications, including IP-based alert dissemination, anomalous payload

corroboration and signature generation, model corroboration, etc.

5. The Worminator IP results form a longitudinal study that will hopefully

serve as a useful baseline for evaluating collaborative intrusion detection (and,

perhaps, a helpful step forward for intrusion detection in general).

7.2 Research Accomplishments

In addition to the contributions listed above, the following practical accomplishments

have already been completed to date:

• Published papers, including [116], [173], [114], [88], [59], [71], [69], [68], [58],

and a poster presentation [113].

• Grant support by several agencies, including DARPA, NSA, DHS, and ARO.

The author was involved in the writing of two phases of DHS grants, as well

236

as the ARO grant. Finally, successful demonstrations have been conducted for

DARPA, DHS and ARO as partial fulfillment of grants’ requirements.

• Successful application of the XUES platform to a DARPA challenge problem,

demonstrated during DARPA DASADA [32] Demo Days in June, 2002.

• Successful deployment of Worminator to 5+ sites [112], demonstration of

Worminator to program managers at NSF, DHS, ARO and others.

• Patent applications filed on aspects of Worminator work.

7.3 Future Work

As the focus of this thesis has been a generalized framework for privacy-preserving

event corroboration, there are numerous interesting future work possibilities. I

briefly describe two categories of future work: immediate applications of the model

and Worminator platform, as well as possible new directions for this area of research.

7.3.1 Immediate Future Applications

First, the most immediate extension is to deploy Worminator on a wider scale. The

techniques described in this thesis, and specifically the payload-based techniques,

are specifically designed to be deployed at many enclaves to increase the correlation

power and confidence provided by sensors at different sites with different content

flows. However, encouraging peers to participate in anything but simple IP-based

misuse alerts is challenging. We are integrating the work reported in this paper with

a new and substantially different content exchange and sharing network known

as DNAD-2 (Distributed Network Anomaly Detection) and seek collaborators to

share their respective suspicious content detected by whatever local sensors may be

available to them.

237

Additionally, the payload work in section 6.5 can be extended to support

polymorphic/obfuscated worm detection and mimicry attack. While n-gram

analysis has the potential of detecting polymorphic worms, e.g., [37], it becomes

significantly harder as polymorphic worm engines launch mimicry attacks [168, 77]

to mask themselves, such attacks are generally site-specific. Intersecting n-gram BFs

across sites may provide the opportunity to identify even the few bytes of invariant

common “code” that appear anywhere in such attacks. Having more BFs that can

correlate these short regions increases the confidence in having found the correct

snippets. High-entropy regions, such as those containing polymorphic or obfuscated

code, would likely not be correlated. Another technique would be to apply n-gram

analysis to host intrusion detection (HIDS), such as system call sequences.

Given the techniques in this thesis, another important area of research is to

develop aggregation/exchange policies. Currently, Bloom filters are exchanged

when they reach a particular “fill” threshold or when a certain amount of time has

elapsed since the previous filter was sent. To minimize communication overhead

and improve latency, one of several optimization techniques could be adopted, e.g.,

a posture-like approach [76] to communication: if nodes are deemed as being under

threat, they may choose to communicate more frequently (e.g., 1 second latency)

than when nodes are idle (once or twice a minute).

While many of the techniques discussed here have a broad variety of applications,

mapping a technique to an application requires additional semantics. Therefore, one

may choose to develop a privacy-preserving policy language for Worminator. The

language would most likely be designed in XML, as an extension of the W3C P3P

standard [167]. Each privacy-preserving data structure would then have associated

metadata, enabling automatic matching between policies and implementations.

As mentioned in chapter 2, one application of privacy-preserving software

monitoring is the building of an “Application Communities” [33] peer-to-peer

238

framework. The fundamental idea behind Application Communities is to accept

software monoculture and to leverage it. Early work [89] has demonstrated the

possibility of distributing the task of detecting faults in instrumented code, which

typically runs orders-of-magnitude slower than native code, thereby reducing the

effect on any one individual instance. Worminator could be adapted to serve as a

privacy-preserving infrastructure; in fact, several of this thesis’ committee members

submitted a grant proposal to DARPA to explore this possibility.

While this thesis introduces a first-order privacy analysis, further discussion may

optionally include an information-theoretic analysis. A more general approach

to comparing correlation techniques is to measure the comparative information

gain each correlation technique provides. However, this requires an accurate

characterization of the distribution of packet content, which is both protocol and site

content flow-specific. Additionally, information gain does not necessarily translate

to correlation ability: as the results show, it is possible to correlate alerts reasonably

well with significantly less information.

Finally, while the work in section 6.6 introduced the basic concept, there are

multiple directions in which privacy-preserving model correlation can be extended.

Site anomaly models need not just be restricted to frequency models, e.g. given

two Bloom filters that represent anomaly models for Anagram, we can do a bitwise

AND of the two Bloom filters to estimate the number of common “good” n-grams,

or a bitwise OR of the two Bloom filters to aggregate and update the respective

models. Other anomaly models may also be useable, such as those computed by

the PAD algorithm [146]. Further discussion of this concept, as well as an extensive

protocol to exchange and authorize peers based on their content models, is beyond

the scope of this thesis; see [47] for an application of this approach to enhance access

control.

239

7.3.2 Future Directions

Unlike the aforementioned items, the following focus on longer-term research

directions based off of the work done in this thesis.

First, section 5.5 detailed several potential subversion approaches to the proto-

cols and techniques described in this thesis. Ideally, a framework should incorporate

as many mitigation strategies as possible to minimize the possibility of subversion.

It is important to note that “complete security” does not exist; rather, the goal is to

stay at least one step ahead of the attacker in the security race and to ensure that

practical privacy is achieved.

Another major area of research beyond the scope of this thesis, but still of

interest, is the evaluation of current event distribution strategies and integration

of other distribution strategies underlying publish/subscribe infrastructures. We

have continued to study methods for low cost alert distribution and propagation.

We have done some exploratory work in this field [88], and work is ongoing on

developing a complete decentralized-yet-secure exchange model.

Ideally, the techniques described here can enable the development of a solution

for automatically profiling scanners and attackers. Preliminary work done in our

longitudinal study demonstrates there are unique scanner profiles—the worm-

infested home computer connected to a cable modem, the targeted attacker that

has gained access to full class C (/24) subnets to distribute his behavior, the very

long-term stealthy scanner, etc. A logical extension of this platform, to improve

autonomic response mechanisms, would be to cluster this data and assign threat

levels based on the resulting profile.

One can derive a more general event typing and versioning framework from

the models presented with XUES and Worminator. Our work in [114] discusses

mechanisms to support more flexible type discovery and versioning via the use of

semantically-discovering XML processing toolkits. More specifically, if a recipient

240

receives XML messages that it does not understand, a protocol can be established

to: discover the appropriate syntactic (schema) rules, and process the data into an

intermediate form that can be processed. Our toolkits, known as FleXML and tag

processors, respectively add these functionalities to XML parsers. This work could be

extended to privacy-preserving types and corresponding transforms; the retrofitting

model discussed in section 5.4 may also be of use to integrate with existing event

type systems.

One extension of much intrusion detection work, including the Worminator

work here, is the notion of proactive response. We envision developing metrics for

ranking the threat level for particular “verticals”, or groups of organizations. The

deployment of collaborative distributed intrusion detection allows an organization

to take mitigation and preemptive threat responses without having been directly

attacked.

Finally, it may be desirable to have automated development of rules or gauges

as to desired versus undesired behavior. Right now, pre-defined collections of

events, such as software failures or a preponderance of suspicious scans, conveys

significance. However, the ability to automatically parse system and behavioral

models and generate important patterns or behaviors for detection purposes would

be desirable. We are also considering a wider range of application domains. One

particularly intriguing application area is autonomic service survivability in the

face of insider and outsider security attacks, to coordinate what would otherwise be

isolated, independently operating security mechanisms, as we proposed in [71].

7.4 Conclusion

In this thesis, I introduced the notion of privacy-preserving decentralized event cor-

roboration, with the primary goal of enabling collaboration between peers whose

241

privacy policies typically prevent data disclosure. In doing so, I introduced several

new ideas and methodologies:

• A generalized, type- and temporally-driven event correlation/corroboration

model;

• A robust model for event corroboration with a heterogeneous set of privacy-

and anonymity-preserving transforms;

• Extensive evaluation of the privacy-preserving transforms and practical

implementation techniques to make them feasible for a broad variety of

applications;

• Introduction of three significant new applications in the field of Collaborative

Intrusion Detection (CIDS).

As the future work above demonstrates, this thesis enables the beginning of

new research fields, especially in intrusion detection and network security, and it

lays down the framework for enabling a new set of collaborative approaches to

distributed security and application resiliency. Ultimately, I hope the work done

here improves and extends the domain of collaborating applications and peers,

spurs the development of new languages for expressing such policies, and ultimately

encourages effective Internet-scale collaboration and participation amongst a broad

variety of organizations.

242

Chapter 8

Bibliography

[1] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information Sharing
Across Private Databases. In SIGMOD, 2003.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hippocratic Databases.
In VLDB, 2002.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order Preserving
Encryption for Numeric Data. In ACM SIGMOD, Paris, France, 2004.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-Preserving Data Mining. In ACM
SIGMOD, 2000.

[5] Kostas G. Anagnostakis, Michael B. Greenwald, Sotiris Ioannidis, Angelos D. Keromytis, and
Dekai Li. A Cooperative Immunization System for an Untrusting Internet. In IEEE International
Conference on Networks, 2003.

[6] Stanford Program Analysis and Verification Group. Rapide website, 1999. http://pavg.
stanford.edu.

[7] Apache Project. SpamAssassin. http://spamassassin.apache.org/.

[8] Robert Balzer and Neil M. Goldman. Mediating Connectors: A Non-ByPassable Process
Wrapping Technology. In DARPA Information Survivability Conference and Exposition, volume 2,
pages 361–368, Hilton Head, SC, 2000.

[9] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert E. Strom, Daniel C. Sturman, and Wei
Tao. Information Flow Based Event Distribution Middleware. In Middleware Workshop at the
International Conference on Distributed Computing Systems, 1999.

[10] Mayank Bawa, Roberto J. Bayardo Jr., and Rakesh Agrawal. Privacy-Preserving Indexing of
Documents on the Network. In VLDB, 2003.

[11] Scott Bekker. Microsoft Error Reporting Drives Bug Fixing Efforts. ENT News, 2002. http:
//entmag.com/news/article.asp?EditorialsID=5532.

[12] Steven M. Bellovin and William R. Cheswick. Privacy-Enhanced Searches Using Encrypted
Bloom Filters, 2004.

[13] Bernhardt, Thomas. Esper. http://esper.codehaus.org/.

[14] Burton H. Bloom. Space/time trade-offs in Hash Coding with Allowable Errors. Communications
of the ACM, 13(7):422–426, 1970.

[15] George Candea, Emre Kiciman, Steve Zhang, Pedram Keyani, and Armando Fox. JAGR: An
Autonomous Self-Recovering Application Server. In Autonomic Computing Workshop, 2003.

http://pavg.stanford.edu
http://pavg.stanford.edu
http://spamassassin.apache.org/
http://entmag.com/news/article.asp?EditorialsID=5532
http://entmag.com/news/article.asp?EditorialsID=5532
http://esper.codehaus.org/

243

[16] Carnegie Mellon University ABLE Group. Acme Architectural Description Language. http:
//www-2.cs.cmu.edu/∼acme/.

[17] Carnegie Mellon University ABLE Group. AcmeStudio Development Environment. http:
//www-2.cs.cmu.edu/∼acme/AcmeStudio/AcmeStudio.html.

[18] Carnegie Mellon University ABLE Group. DASADA Gauge Infrastructure. http://www.cs.
cmu.edu/∼able/rainbow/gaugeinf.html.

[19] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving Scalability and
Expressiveness in an Internet-Scale Event Notification Service. In Principles of Distributed
Computing, 2000.

[20] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and Evaluation of a
Wide-Area Event Notification Service. ACM Transactions on Computer Systems, 19(3):332–383,
2001.

[21] Francis Chang, Wu-chang Feng, and Kang Li. Approximate Caches for Packet Classification.
In IEEE INFOCOM, 2004.

[22] Chase, Timothy. ISC SANS Intrusion Mailing List: UDP Traffic on Ports 33435-8, TCP on 2082
and 2745. http://lists.sans.org/pipermail/intrusions/2004-August/008268.html.

[23] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In International Workshop on Design
Issues in Anonymity and Unobservability, 2001.

[24] Robert G. Cole, Nam Phamdo, Moheeb A. Rajab, and Andreas Terzis. Requirements on Worm
Mitigation Technologies in MANETS. In Workshop on Principles of Advanced and Distributed
Simulation, 2005.

[25] Evan Cooke, Farnam Jahanian, and Danny McPherson. The Zombie Roundup: Understanding,
Detecting and Disrupting Botnets. In USENIX SRUTI Workshop, Cambridge, MA, 2005.

[26] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao Zhang,
and Paul Barham. Vigilante: End-to-End Containment of Internet Worms. In ACM SOSP,
2005.

[27] Murilo Coutinho, Robert Neches, Alejandro Bugacov, Ke-Thia Yao, Vished Kumar, In-Young
Ko, and Ragy Eleish. GeoWorlds: A Geographically Based Information System for Situation
Understanding and Management. In International Workshop on TeleGeoProcessing (TeleGeo 99),
Lyon, France, 1999.

[28] Frederic Cuppens and Alexandre Miege. Alert Correlation in a Cooperative Intrusion Detection
Framework. In IEEE Security and Privacy, 2002.

[29] Frederic Cuppens and Rodolphe Ortalo. LAMBDA: A Language to Model a Database for
Detection of Attacks. In RAID, 2000.

[30] David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet Propagation Using Time Zones. In
Network and Distributed System Security Symposium (NDSS), San Diego, CA, 2006.

[31] R. Danyliw, J. Meijer, and Y. Demchenko. The Incident Object Description Exchange
Format Data Model and XML Implementation, 2005. http://tools.ietf.org/wg/inch/
draft-ietf-inch-iodef/draft-ietf-inch-iodef-04.txt.

[32] DARPA. DASADA Program. http://www.rl.af.mil/tech/programs/dasada/

program-overview.html.

[33] DARPA. Application Communities Proposer Information Pamphlet/BAA, 2005. http:
//www.darpa.mil/ipto/Solicitations/open/05-51 PIP.htm.

[34] Julie Smith David, David Schuff, and Robert St. Louis. Managing Your Total IT Cost of
Ownership. Communications of the ACM, 45(1):101–106, 2002.

http://www-2.cs.cmu.edu/~acme/
http://www-2.cs.cmu.edu/~acme/
http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www.cs.cmu.edu/~able/rainbow/gaugeinf.html
http://www.cs.cmu.edu/~able/rainbow/gaugeinf.html
http://lists.sans.org/pipermail/intrusions/2004-August/008268.html
http://tools.ietf.org/wg/inch/draft-ietf-inch-iodef/draft-ietf-inch-iodef-04.txt
http://tools.ietf.org/wg/inch/draft-ietf-inch-iodef/draft-ietf-inch-iodef-04.txt
http://www.rl.af.mil/tech/programs/dasada/program-overview.html
http://www.rl.af.mil/tech/programs/dasada/program-overview.html
http://www.darpa.mil/ipto/Solicitations/open/05-51_PIP.htm
http://www.darpa.mil/ipto/Solicitations/open/05-51_PIP.htm

244

[35] H. Debar, D. Curry, and B. Feinstein. The Intrusion Detection Message Ex-
change Format, 2005. http://tools.ietf.org/wg/idwg/draft-ietf-idwg-idmef-xml/
draft-ietf-idwg-idmef-xml-14.txt.

[36] I. DeBare. Programmers in the Driver’s Seat: Companies Clamor for Year 2000 Programmers.
Dr. Dobb’s Journal, Spring 1998 1998.

[37] Theo Detristan, Tyll Ulenspiegel, Yann Malcom, and Mynheer von Underduk. Polymorphic
Shellcode Engine Using Spectrum Analysis, 2003.

[38] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lockwood. Deep
Packet Inspection using Parallel Bloom Filters. In IEEE Symposium on High Performance
Interconnects (HOTI), 2003.

[39] John R. Douceur. The Sybil Attack. In International Workshop on Peer-to-Peer Systems, 2002.

[40] Wenliang Du and Mikhail Atallah. Secure Multi-Party Computation Problems and Their
Applications: A Review and Open Problems. In New Security Paradigms Workshop, 2001.

[41] Alexander Dupuy, Soumitra Sengupta, Ouri Wolfson, and Yechiam Yemini. NETMATE: A
Network Management Environment. IEEE Network, 5(2):35–43, 1991.

[42] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent Zero-Knowledge. Journal of the ACM,
51(6):851–898, 2004.

[43] EPIC. Privacy, 2005. http://www.epic.org/privacy/.

[44] Justin R. Erenkrantz. Handling Hierarchical Events In An Internet-Scale Service. Technical
report, UCI, 2001. http://www.ucf.ics.uci.edu/∼jerenk/siena-xml/SienaPaper.html.

[45] Li Fan, Pei Cao, Jussara Almeida, and Andrei Broder. Summary Cache: A Scalable Wide-Area
Web Cache Sharing Protocol. In ACM SIGCOMM, 1998.

[46] Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris. Introducing Tarzan, a Peer-
to-Peer Anonymizing Network Layer. In International Workshop on Peer-to-Peer Systems,
2002.

[47] Vanessa Frias-Martinez and Salvatore J. Stolfo. BARTER: Profile Model Exchange for Behavior-
based Access Control. Technical report, Columbia University, 2006. Submitted to conference.

[48] A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing era. IBM Systems
Journal, 2003.

[49] David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing System Dependability
through Architecture-Based Self-Repair. In Workshop on Architecting Dependable Systems,
Ottawa, Canada, 2003.

[50] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural Description of
Component-Based Systems. In Foundations of Component-Based Systems, pages 47–67. Cambridge
University Press, 2000.

[51] Peter W. Gill. Probing for a Continual Validation Prototype. Technical report, Worces-
ter Polytechnic Institute, 2001. MS Thesis. http://www.wpi.edu/Pubs/ETD/Available/
etd-0826101-235008/.

[52] Eu-Jin Goh. Secure Indexes. Technical report, Stanford University, 2004.

[53] Oded Goldreich and Yair Oren. Definitions and Properties of Zero-Knowledge Proof Systems.
Journal of Cryptology, 7(1):1–32, 1994.

[54] David Goldschlag, Michael Reed, and Paul Syverson. Onion Routing for Anonymous and
Private Internet Connections. Communications of the ACM, 43(2):39–41, 1999.

[55] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive-
Proof Systems. In ACM Symposium on Theory of Computing, Providence, RI, 1989.

http://tools.ietf.org/wg/idwg/draft-ietf-idwg-idmef-xml/draft-ietf-idwg-idmef-xml-14.txt
http://tools.ietf.org/wg/idwg/draft-ietf-idwg-idmef-xml/draft-ietf-idwg-idmef-xml-14.txt
http://www.epic.org/privacy/
http://www.ucf.ics.uci.edu/~jerenk/siena-xml/SienaPaper.html
http://www.wpi.edu/Pubs/ETD/Available/etd-0826101-235008/
http://www.wpi.edu/Pubs/ETD/Available/etd-0826101-235008/

245

[56] Li Gong. JXTA: A Network Programming Environment. IEEE Internet Computing, 5(3):88–95,
2001.

[57] Antone Gonsalves. IBM Releases Blueprint For Automated Computing. TechWeb, 2003.
http://www.techweb.com/wire/26801207.

[58] Philip Gross, Suhit Gupta, Gail Kaiser, Gaurav S. Kc, and Janak J. Parekh. An Active Events
Model for Systems Monitoring. In Working Conference on Complex and Dynamic Systems
Architectures, Brisbane, Australia, 2001.

[59] Philip Gross, Janak J. Parekh, and Gail Kaiser. Secure ”Selecticast” for Collaborative Intrusion
Detection Systems. In International Workshop on Distributed Event-Based Systems, Edinburgh,
UK, 2004.

[60] The Open Group. Universal Unique Identifier, 1997. http://www.opengroup.org/

onlinepubs/9629399/apdxa.htm.

[61] Heineman, George T. and Calnan, Paul and Kurtz, Ben. Active Interface Development
Environment (AIDE). http://www.cs.wpi.edu/∼heineman/dasada/.

[62] Joseph L. Hellerstein, Dawn M. Tilbury, Sujay Parekh, and Yixin Diao. Feedback Control of
Computing Systems. Wiley, 2004.

[63] Qiang Huang, Helen J. Wang, and Nikita Borisov. Privacy-Preserving Friends Troubleshooting
Network. In NDSS, San Diego, CA, 2005.

[64] Yi-an Huang and Wenke Lee. A Cooperative Intrusion Detection System for Ad Hoc Networks.
In ACM Workshop on Security in Ad Hoc and Sensor Networks, Fairfax, VA, 2003.

[65] IANA. Internet Port Numbers. http://www.iana.org/assignments/port-numbers.

[66] IEEE. Autonomic Computing Workshop: Fifth Annual International Workshop on Active
Middleware Services. http://www.caip.rutgers.edu/ams2003/.

[67] Ramaprabhu Janakiraman, Marcel Waldvogel, and Qi Zhang. Indra: A peer-to-peer approach
to network intrusion detection and prevention. In WETICE, 2003.

[68] Gail Kaiser, Philip Gross, Gaurav S. Kc, Janak J. Parekh, and Giuseppe Valetto. An Approach
to Autonomizing Legacy Systems. In Workshop on Self-Healing, Adaptive and Self-MANaged
Systems, New York, NY, 2002.

[69] Gail Kaiser, Janak J. Parekh, Philip Gross, and Giuseppe Valetto. Kinesthetics eXtreme: An
External Infrastructure for Monitoring Distributed Legacy Systems. In Autonomic Computing
Workshop, Seattle, WA, 2003.

[70] Gail Kaiser, Adam Stone, and Steve Dossick. A Mobile Agent Approach to Lightweight
Process Workflow. In International Process Technology Workshop, 1999.

[71] Angelos D. Keromytis, Janak J. Parekh, Philip Gross, Gail Kaiser, Vishal Misra, Jason Nieh,
Dan Rubenstein, and Salvatore J. Stolfo. A Holistic Approach to Service Survivability. In ACM
Workshop on Survivable and Self-Regenerative Systems, Fairfax, VA, 2003.

[72] Hyang-Ah Kim and Brad Karp. Autograph: Toward Automated, Distributed Worm Signature
Detection. In USENIX Security Symposium, San Diego, CA, 2004.

[73] Lea Kissner. Thesis Proposal: Privacy Preserving Distributed Information Sharing. PhD thesis,
CMU, 2005.

[74] Lea Kissner. Privacy-Preserving Distributed Information Sharing. PhD thesis, Carnegie Mellon
University, 2006.

[75] Lea Kissner and Dawn Song. Privacy-Preserving Set Operations. In CRYPTO, 2005.

http://www.techweb.com/wire/26801207
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm
http://www.cs.wpi.edu/~heineman/dasada/
http://www.iana.org/assignments/port-numbers
http://www.caip.rutgers.edu/ams2003/

246

[76] John Knight, Dennis Hembigner, Alexander L. Wolf, Antonio Carzaniga, Jonathan Hill,
Premkumar Devanbu, and Michael Gertz. The Willow Architecture: Comprehensive Surviv-
ability for Large-Scale Distributed Applications. In Dependable Systems and Networks (DSN),
2002.

[77] Oleg Kolesnikov, David Dagon, and Wenke Lee. Advanced Polymorphic Worms: Evading
IDS by Blending in with Normal Traffic, 2006.

[78] Alexander V. Konstantinou, Danilo Florissi, and Yechiam Yemini. Towards Self-Configuring
Networks. In DARPA Active NEtworks Conference and Exposition, pages 143–156, San Francisco,
CA, 2002.

[79] Alexander V. Konstantinou and Yechiam Yemini. Programming Systems for Autonomy. In
Autonomic Computing Workshop, pages 186–195, 2003.

[80] Christian Kreibich and Jon Crowcroft. Honeycomb - Creating Intrusion Detection Signatures
Using Honeypots. In ACM Workshop on Hot Topics in Networks, Boston, MA, 2003.

[81] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni Vigna.
Polymorphic Worm Detection Using Structural Information of Executables. In Symposium on
Recent Advances in Intrusion Detection, Seattle, WA, 2005.

[82] Christopher Kruegel, Thomas Toth, and Clemens Kerer. Decentralized Event Correlation for
Intrusion Detection. In International Conference on Information Security and Cryptology, 2002.

[83] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communica-
tions of the ACM, 21(7):558–565, 1978.

[84] LANDesk Software. LANDesk Management Software. http://www.landesksoftware.com/.

[85] Zhenkai Liang and R. Sekar. Fast and Automated Generation of Attack Signatures: A Basis for
Building Self-Protecing Servers. In ACM Conference on Computer and Communications Security,
Alexandria, VA, 2005.

[86] Patrick Lincoln, Phillip Porras, and Vitaly Shmatikov. Privacy-Preserving Sharing and
Correlation of Security Alerts. In USENIX Security, 2004.

[87] Yehuda Lindell and Benny Pinkas. Privacy Preserving Data Mining. Cryptology, 15(3):177–206,
2002.

[88] Michael E. Locasto, Janak J. Parekh, Angelos D. Keromytis, and Salvatore J. Stolfo. Towards
Collaborative Security and P2P Intrusion Detection. In IEEE Information Assurance Workshop,
West Point, NY, 2005.

[89] Michael E. Locasto, Stelios Sidiroglou, and Angelos D. Keromytis. Application Communities:
Using Monoculture for Dependability. In HotDep, 2005.

[90] Michael E. Locasto, Stelios Sidiroglou, and Angelos D. Keromytis. Software Self-Healing Using
Collaborative Application Communities. In Internet Society (ISOC) Symposium on Network and
Distributed Systems Security, pages 95–106, San Diego, CA, 2006.

[91] Michael E. Locasto, Ke Wang, Angelos D. Keromytis, and Salvatore J. Stolfo. FLIPS: Hybrid
Adaptive Intrusion Prevention. In Symposium on Recent Advances in Intrusion Detection, Seattle,
WA, 2005.

[92] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley/Pearson Education, Indianapolis, 1st edition,
2002.

[93] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and Walter
Mann. Specification and Analysis of System Architecture Using Rapide. IEEE Transactions on
Software Engineering, 21(4):336–355, 1995.

http://www.landesksoftware.com/

247

[94] David C. Luckham and James Vera. An Event-Based Architecture Definition Language. IEEE
Transactions on Software Engineering, 21(9):717–734, 1995.

[95] LURHQ Threat Intelligence Group. Windows Messenger Popup Spam on UDP Port 1026.
http://www.lurhq.com/popup spam.html.

[96] John Markoff. Attack of the Zombie Computers Is Growing Threat. New York Times, January 7
2007. http://www.nytimes.com/2007/01/07/technology/07net.html.

[97] Bill McCarty. Botnets: Big and Bigger. IEEE Security and Privacy, 1(4):87–90, 2003.

[98] David L. Mills. RFC 958: Network Time Protocol (NTP), 1985. http://www.faqs.org/rfcs/
rfc958.html.

[99] Naftaly H. Minsky. On Conditions for Self-Healing in Distributed Software Systems. In
Autonomic Computing Workshop, 2003.

[100] Michael Mitzenmacher. Compressed Bloom Filters. IEEE Transactions on Networking, 10(5):604–
612, 2002.

[101] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet Quarantine:
Requirements for Containing Self-Propagating Code. In INFOCOM, 2003.

[102] James Newsome, David Brumley, and Dawn Song. Vulnerability-Specific Execution Filtering
for Exploit Prevention on Commodity Software. In Network and Distributed Security Symposium
(NDSS), San Diego, CA, 2006.

[103] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically Generating Signatures
for Polymorphic Worms. In IEEE Security and Privacy, Oakland, CA, 2005.

[104] Peng Ning, Yun Cui, and Douglas Reeves. Constructing Attack Scenarios Through Correlation
of Intrusion Alerts. In ACM Conference on Computer and Communications Security, Washington,
DC, 2002.

[105] NIST. FIPS 180-1: Secure Hash Standard (SHA-1), 1995. http://www.itl.nist.gov/
fipspubs/fip180-1.htm.

[106] OC Systems. AProbe: A New Approach for Testing Web Applications. http://www.ocsystems.
com/aprobe web testing.html.

[107] OC Systems. Improving Availability of Enterprise Applications with RootCause. http:
//www.ocsystems.com/rootcause white paper.html.

[108] US Department of Health and Human Services. HIPAA, 2005. http://www.hhs.gov/ocr/
hipaa/.

[109] US Department of Labor/OSHA. SIC Division Structure, 2005. http://www.osha.gov/pls/
imis/sic manual.html.

[110] Ruoming Pang and Vern Paxson. A High-Level Programming Environment for Packet Trace
Anonymization and Transformation. In ACM SIGCOMM, 2003.

[111] Janak J. Parekh. Candidacy Exam, 2003.

[112] Janak J. Parekh. Worminator homepage, 2005. http://worminator.cs.columbia.edu.

[113] Janak J. Parekh. Worminator (poster). In Symposium on Recent Advances in Intrusion Detection,
Seattle, WA, 2005.

[114] Janak J. Parekh, Gail Kaiser, Philip Gross, and Giuseppe Valetto. Retrofitting Autonomic
Capabilities onto Legacy Systems. Journal on Cluster Computing, 9(2):141–159, 2006.

[115] Janak J. Parekh, Ke Wang, and Salvatore J. Stolfo. Privacy-Preserving Payload-Based Correlation
for Accurate Malicious Traffic Detection. Technical report, Columbia University Dept. of CS,
2006. http://mice.cs.columbia.edu/getTechreport.php?techreportID=409.

http://www.lurhq.com/popup_spam.html
http://www.nytimes.com/2007/01/07/technology/07net.html
http://www.faqs.org/rfcs/rfc958.html
http://www.faqs.org/rfcs/rfc958.html
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.ocsystems.com/aprobe_web_testing.html
http://www.ocsystems.com/aprobe_web_testing.html
http://www.ocsystems.com/rootcause_white_paper.html
http://www.ocsystems.com/rootcause_white_paper.html
http://www.hhs.gov/ocr/hipaa/
http://www.hhs.gov/ocr/hipaa/
http://www.osha.gov/pls/imis/sic_manual.html
http://www.osha.gov/pls/imis/sic_manual.html
http://worminator.cs.columbia.edu
http://mice.cs.columbia.edu/getTechreport.php?techreportID=409

248

[116] Janak J. Parekh, Ke Wang, and Salvatore J. Stolfo. Privacy-Preserving Payload-Based Correlation
for Accurate Malicious Traffic Detection. In Large-Scale Attack Detection, Workshop at SIGCOMM,
Pisa, Italy, 2006.

[117] Anand Patwardhan, Jim Parker, Anupam Joshi, Michaela Iorga, and Tom Karygiannis. Secure
Routing and Intrusion Detection in Ad-Hoc Networks. In Third IEEE International Conference
on Pervasive Computing and Communications, 2005.

[118] Vern Paxson. BRO: A System for Detecting Network Intruders in Real Time. 1998.

[119] Paul Pazandak and David Wells. ProbeMeister: Distributed Runtime Software Instrumentation.
In First International Workshop on Unanticipated Software Evolution, 2002.

[120] Dan Phung, Giuseppe Valetto, and Gail Kaiser. Adaptive Internet Interactive Team Video. In
International Conference on Advances in Web-Based Learning (ICWL), Hong Kong, China, 2005.

[121] Phillip Porras and Peter G. Neumann. EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances. In National Information Systems Security Conference, 1997.

[122] Honeynet Project and Research Alliance. Know your Enemy: Tracking Botnets, 3/13/05 2005.
http://www.honeynet.org/papers/bots/.

[123] Vaclav Rajlich, Norman Wilde, Michelle Buckellew, and Henry Page. Software Cultures and
Evolution. IEEE Computer, 34(9):24–28, September 2001 2001.

[124] M.V. Ramakrishna, E. Fu, and E. Bahcekapili. A Performance Study of Hashing Functions.
1994.

[125] IBM Research. Autonomic Computing. http://www.research.ibm.com/autonomic.

[126] Research and Education Networking Information Sharing and Analysis Center. http://www.
ren-isac.net/.

[127] Retrologic Systems. Retroguard. http://www.retrologic.com/.

[128] Seth Robertson, Eric V. Siegel, Matt Miller, and Salvatore J. Stolfo. Surveillance Detection in
High Bandwidth Environments. In DARPA Information Survivability Conference and Exposition
(DISCEX), 2003.

[129] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. Technical report.

[130] Antony Rowstron and Peter Druschel. Pastry: Scalable, Distributed Object Location and Rout-
ing for Large-Scale Peer-to-Peer Systems. In IFIP/ACM International Conference on Distributed
Systems, Heidelberg, Germany, 2001.

[131] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. SCRIBE: The
design of a large-scale event notification infrastructure. In COST264 Workshop on Networked
Group Communication, 2001.

[132] Elizabeth M. Royer and Chai-Keong Toh. A Review of Current Routing Protocols for Ad Hoc
Mobile Wireless Networks. IEEE Personal Communications, 6(2):46–55, 1999.

[133] SANS Institute. Intrusion Detection FAQ: What is host-based intrusion detection? http:
//www.sans.org/resources/idfaq/host based.php.

[134] Lambert Schaelicke, Matthew R. Geiger, and Curt J. Freeland. Improving the Database Logging
Performance of the Snort Network Intrusion Detection Sensor. Technical report, University of
Notre Dame, 2002.

[135] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps. Content-Based
Routing with Elvin4. In Australian UNIX and Open Systems User Group Winter Conference
(AUUG2K), 2000.

[136] Sendmail, Inc. Sendmail Mail Filter API. http://www.sendmail.com/partner/resources/
development/milter api/.

http://www.honeynet.org/papers/bots/
http://www.research.ibm.com/autonomic
http://www.ren-isac.net/
http://www.ren-isac.net/
http://www.retrologic.com/
http://www.sans.org/resources/idfaq/host_based.php
http://www.sans.org/resources/idfaq/host_based.php
http://www.sendmail.com/partner/resources/development/milter_api/
http://www.sendmail.com/partner/resources/development/milter_api/

249

[137] Sendmail, Inc. Sendmail Mail Server. http://www.sendmail.org/.

[138] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated Worm
Fingerprinting. In 6th Symposium on Operating Systems Design and Implementation (OSDI ’04),
San Francisco, CA, 2004.

[139] Stuart Staniford-Chen, Steven Cheung, R. Crawford, and M. Dilger. GrIDS - A Graph Based
Intrusion Detection System for Large Networks. In National Information Computer Security
Conference, Baltimore, MD, 1996.

[140] Stuart Staniford-Chen, Vern Paxson, and Nicholas Weaver. How to 0wn the Internet in Your
Spare Time. In USENIX Security, 2002.

[141] Malgorzata Steinder and Adarshpal Sethi. Probabilistic Event-Driven Fault Diagnosis Through
Incremental Hypothesis Updating. In International Symposium on Integrated Network Management,
2003.

[142] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko, R. Balupari, C-Y.
Tseng, T. Bowen, Karl N. Levitt, and Jeff Rowe. A General Cooperative Intrusion Detection
Architecture for MANETs. In Workshop on Information Assurance. IEEE, 2005.

[143] Roy Sterritt, Mary Shapcott, Kenny Adamson, and Edwin Curran. High Speed Network
First-Stage Alarm Correlator. In International Conference on Intelligent Systems and Control, 2000.

[144] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications. In SIGCOMM, San Diego,
2001. ACM.

[145] Salvatore J. Stolfo. Worm and Attack Early Warning: Piercing Stealthy Reconnaissance. IEEE
Security and Privacy, 2004.

[146] Salvatore J. Stolfo, Frank Apap, Eleazar Eskin, Katherine Heller, Shlomo Hershkop, Andrew
Honig, and Krista Svore. A Comparative Evaluation of Two Algorithms For Windows Registry
Anomaly Detection. Journal of Computer Security, 13(4):659–693, 2005.

[147] Salvatore J. Stolfo, Andreas L. Prodromidis, Shelley Tselepis, Wenke Lee, Dave W. Fan, and
Philip Chan. JAM: Java Agents for Meta-Learning over Distributed Databases. In International
Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, 1997.

[148] Dhanant Subhadrabandhu, Saswati Sarkar, and Farooq Anjum. Efficacy of Misuse Detec-
tion in Adhoc Networks. In IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (SECON), 2004.

[149] Sun. Java Management Extensions (JMX). http://java.sun.com/products/

JavaManagement/.

[150] Sun. Jini Technology. http://www.sun.com/software/jini/.

[151] Sun. Java Message Specification, 2002. http://java.sun.com/products/jms/.

[152] Latanya Sweeney. k-Anonymity: A Model for Protecting Privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[153] Inc. Symantec. Symantec Internet Security Threat Report, Trends for January 06-June 06.
Technical report, 2006.

[154] System Management ARTS. http://www.smarts.com.

[155] Yong Tang and Shigang Chen. Defending Against Internet Worms: A Signature-Based
Approach. In IEEE Infocom, Miami, FL, 2005.

[156] The Workflow Management Coalition. http://www.wfmc.org.

[157] Johannes Ullrich. DShield home page, 2005. http://www.dshield.org.

http://www.sendmail.org/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/JavaManagement/
http://www.sun.com/software/jini/
http://java.sun.com/products/jms/
http://www.smarts.com
http://www.wfmc.org
http://www.dshield.org

250

[158] Risto Vaarandi. SEC - Simple Event Correlator, 2005. http://simple-evcorr.sourceforge.
net/.

[159] Giuseppe Valetto. Orchestrating the Dynamic Adaptation of Distributed Software with Process
Technology. PhD thesis, Columbia University, 2004.

[160] Giuseppe Valetto and Gail Kaiser. Using Process Technology to Control and Coordinate
Software Adaptation. In International Conference on Software Engineering, 2003.

[161] Giuseppe Valetto, Gail Kaiser, and Gaurav S. Kc. A Mobile Agent Approach to Process-based
Dynamic Adaptation of Complex Software Systems. In Eighth European Workshop on Software
Process Technology, 2001.

[162] Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A Robust and
Scalable Technology for Distributed System Monitoring, Management, and Data Mining. ACM
Transactions on Computer Systems, 2003.

[163] Ved Prakash, Vipul. Vipul’s Razor. http://razor.sourceforge.net/.

[164] Giovanni Vigna, Sumit Gwalani, Kavitha Srinivasan, Elizabeth M. Belding-Royer, and
Richard A. Kemmerer. An Intrusion Detection Tool for AODV-based Ad hoc Wireless
Networks. In Computer Security Applications Conference, 2004.

[165] W3C. Extensible Markup Language (XML). http://www.w3.org/XML.

[166] W3C. XML Path Language (XPath). http://www.w3.org/TR/xpath.

[167] W3C. Platform for Privacy Preferences (P3P) Project, 2005. http://www.w3.org/P3P/.

[168] David Wagner and Paolo Soto. Mimicry Attacks on Host-Based Intrusion Detection Systems.
In ACM CCS, 2002.

[169] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. Shield: Vulnerability-
Driven Network Filters for Preventing Known Vulnerability Exploits. In ACM SIGCOMM,
2004.

[170] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang. Automatic
Misconfiguration Troubleshooting with PeerPressure. In OSDI, San Francisco, 2004.

[171] Ke Wang. Network Payload-based Anomaly Detection and Content-based Alert Correlation. PhD
thesis, Columbia University, 2006.

[172] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous Payload-based Worm Detection
and Signature Generation. In Symposium on Recent Advances in Intrusion Detection, Seattle, WA,
2005.

[173] Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. Anagram: A Content Anomaly Detector
Resistant to Mimicry Attack. In Symposium on Recent Advances in Intrusion Detection, Hamburg,
Germany, 2006.

[174] Ke Wang and Salvatore J. Stolfo. Anomalous Payload-based Network Intrusion Detection. In
Symposium on Recent Advances in Intrusion Detection, Sophia Antipolis, France, 2004.

[175] Alexander Wise, Aaron G. Cass, Barbara S. Lerner, Eric K. McCall, Leon J. Osterweil, and
Stanley M. Sutton Jr. Using Little-JIL to Coordinate Agents in Software Engineering. In 15th
IEEE International Conference on Automated Software Engineering, Grenoble, France, 2000.

[176] Dingbang Xu and Peng Ning. Privacy-Preserving Alert Correlation: A Concept Hierarchy
Based Approach. In 21st Annual Computer Security Applications Conference, Tucson, AZ, 2005.

[177] Andrew C. Yao. Protocols for Secure Computations. In IEEE Symposium on Foundations of
Computer Science, 1982.

[178] Andrew C. Yao. Theory and Application of Trapdoor Functions. In Foundations of Computer
Science (FOCS), Chicago, IL, 1982.

http://simple-evcorr.sourceforge.net/
http://simple-evcorr.sourceforge.net/
http://razor.sourceforge.net/
http://www.w3.org/XML
http://www.w3.org/TR/xpath
http://www.w3.org/P3P/

251

[179] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global Intrusion Detection in the DOMINO
Overlay System. In NDSS, 2004.

[180] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha. An Architecture for
Generating Semantics-Aware Signatures. In USENIX Security Symposium, 2005.

[181] Shaula Alexander Yemini, Shmuel Kliger, Eyal Mozes, Yechiam Yemini, and David Ohsie.
High Speed and Robust Event Correlation. IEEE Communications, 1996.

[182] Yuanyuan Zhao and Robert E. Strom. Exploiting Event Stream Interpretation in Publish-
Subscribe Systems. In Principles of Distributed Computing, 2001.

252

Appendix A

Event Packager and Event Distiller

Rulesets

A.1 Event Packager

A.1.1 Event Packager Rule Language

The full Event Packager documentation may be found at http://www.psl.cs.

columbia.edu/xues/EventPackager.html.

A.1.2 Event Packager Example

Figure A.1 shows a configuration that subscribes to one event bus (Siena) for events

which have the attribute-value pair (“TestAttribute”, “TestValue”), stores the results

in a SQL database, and finally copies the results to another event bus. The references

to the Console are needed if console-level control is desired of the Event Packager;

it perceives the user console to be yet another source (and, potentially, a sink) for

events.

http://www.psl.cs.columbia.edu/xues/EventPackager.html
http://www.psl.cs.columbia.edu/xues/EventPackager.html

253

A.2 Event Distiller

The full Event Distiller documentation may be found at http://www.psl.cs.

columbia.edu/xues/EventDistiller.html; I present an abbreviated description

here.

A.2.1 Event Distiller Rule Language

• <rulebase xmlns="http://www.psl.cs.columbia.edu/2001/01

/DistillerRule.xsd">

This line is the top-level XML rulebase declaration, and is required.

• <rule name="rule name">

This is the top-level rule declarator, is declared within ruleBase, and is repeated

at the beginning of each rule. The following parameters may be supplied:

– name (required): Rule names are used primarily for disambiguation at

this time; they are not referred elsewhere.

– position (optional): the position where this rule is inserted, starting with 0.

The position specifies the priority of this rule in receiving events: higher

priority rules (smaller numbers) receive events first. This is useful in the

case of event absorption on the part of a state (see the absorb attribute in

state).

– instantiation (optional): the criterion for instantiating this rule. Legal

values are: 0, 1, 2. ‘0’ means the rule will only be instantiated once. ‘1’

means there will always be only one instance at any given time, so a new

instance is created as the previous succeeds or one times out. ‘2’ means a

new instance is created whenever a previous instance starts (i.e., receives

its first event), so that there will always be one instance listening for the

starting event(s).

http://www.psl.cs.columbia.edu/xues/EventDistiller.html
http://www.psl.cs.columbia.edu/xues/EventDistiller.html

254

• <states>

This declarator, contained in a rule, signifies the beginning of state declarations

(of which there may be many). Note: There can be only one “states” declaration

in a rule.

• <state name="state name" timebound="milliseconds"

children="CSV-list of children names"

actions="CSV-list of actions" fail_actions="CSV-list of actions"

absorb="boolean value" count="integer value">

This is the beginning of declarator for a single state in the state-list (pattern) to

be matched for this rule. A number of parameters are supplied alongside the

rule declarator:

– name (required): specifies the state name. This name should not conflict

with other state names within this rule.

– timebound (required): specifies the timebound in which this event can

happen relative to the previous event. For the first event, the timebound

is generally set to -1 (e.g. no time limit); for subsequent timebounds it is

recommended, although not required, that the timebound be positive.

If the first state of a rule has positive timebound, it is measured against

the time at which the rule is created.(Note that timebound is not precise

- a fudge factor is present in the Event Distiller to take care of race

conditions.)

– children (optional): specifies (in a comma-delimited list, no spaces) states

that can follow this particular state.

– actions (optional): specifies the notification(s) to be sent out when this

state is matched. Usually, this is intended for the last state in a rule, which

would signify as the “rule matching”, but intermediate notifications can

be sent out.

255

– fail actions (optional): specifies the notification(s) to be sent out if this

state times out while waiting for input. Unlike actions, this is intended for

each state, so a different notification may be sent out for a failure at any

given point in the state machine. Note that if a rule allows multiple paths

between states (so that at one given time multiple states are subscribed),

failure notifications for one of the states that timed out will be sent, only

if all currently subscribed states time out.

– absorb (optional): Whether this state will absorb the events that match it.

If this is set to true, when an event matches this state, the event will not

be passes on to any other state currently subscribed. If this field is not

specified, a default value of ‘false’ will be used.

– count (optional): the number of times this event will need to be matched

before it passes. A default value of ‘1’ is used if this field is not specified.

If the value specified is greater than ‘1’ (say, n, children and actions will

only apply to the nth time that the state is matched; while fail actions, if

specified, will apply at all times. The special value ‘-1’ indicates that the

event may occur any number of times (within the specified timebound),

until one of the children is matched, thus terminating the loop.

• <attribute name="attribute name" value="attribute value"

op="comparison operator" type="value type" />

Declarator for an attribute-value pair required in this particular state. Note

that there may be many attributes per state, and they are ANDed together in

the filter that matches incoming notifications to this state. Since there are no

embedded tags within this tag, you can use the compact end-tag notation (e.g.

“/>”). The comparison operator is a string representation of the operator to be

used for matching the value. For instance, you would specify op=“>” to match

all values greater than the one that the specified value. The default operator is

256

the equality operator. Type needs to be specified since some operators only

make sense for certain types; the default type is the string type. Note that the

value field here is matched using a string-equals comparison, unless a special

wildcard-binding notation is used (see below).

• </state>

</states>

• <actions>

This declarator, contained in a rule, signifies the beginning of action declara-

tions (of which there may be many). Note: There can be only one “actions”

declaration in a rule.

• <notification name="notification name">

This is the beginning of the notification (action) declarator. There is one

parameter, name, which corresponds to the actions and fail actions references

above. It is strongly recommended that this name be one contiguous phrase

without whitespace or punctuation to avoid conflicts in the CSV-lists referenced

above.

• <attribute name="attribute name" value="attribute value" />

Declarator for an attribute-value pair to be included in this particular notifica-

tion. Note that there may be many attributes per notification. Since there are

no embedded tags within this tag, you can use the compact end-tag notation.

If you use wildcard-binding above, you may use the same wildcard-binding

tag here - it will be substituted with the actual bound value (again, see below).

• </notification>

</actions>

</rule>

</rulebase>

257

A.2.2 Event Distiller Example

Figure A.2 presents an extended view of the aforementioned rules, including the

corresponding notifications if the pattern is matched.

In this case, we allocated 15 seconds for the method to complete, and in the case

of a crash, both static and dynamic (i.e., wildcard-bound) data were reported (note

that we abbreviated a few URLs for readability).

258

1 <EventPackagerConfiguration>

2 <Inputters>

3 <Inputter Name="SienaInput1" Type="psl.xues.ep.input.SienaInput"

4 SienaReceivePort="7890">

5 <SienaFilter Name="TestFilter1">

6 <SienaConstraint AttributeName="TestAttribute" Op="="

7 ValueType="String" Value="TestValue" />

8 </SienaFilter>

9 </Inputter>

10 <Inputter Name="ConsoleInput1" Type="psl.xues.ep.input.ConsoleInput"/>

11 </Inputters>

12 <Outputters>

13 <Outputter Name="SienaOutput1" Type="psl.xues.ep.output.SienaOutput"

14 SienaReceivePort="7891" />

15 <Outputter Name="NullOutput1" Type="psl.xues.ep.output.NullOutput" />

16 </Outputters>

17 <Transforms>

18 <Transform Name="Store1" Type="psl.xues.ep.transform.StoreTransform"

19 StoreName="HSQLDB1" />

20 </Transforms>

21 <Stores>

22 <Store Name="HSQLDB1" Type="psl.xues.ep.store.JDBCStore"

23 DBType="hsqldb" DBDriver="org.hsqldb.jdbcDriver"

24 DBName="xues" DBTable="xues" Username="sa" Password=""/>

25 </Stores>

26 <Rules>

27 <Rule Name="TestRule1">

28 <Inputs><Input Name="SienaInput1" /></Inputs>

29 <Transforms><Transform Name="Store1" /></Transforms>

30 <Outputs><Output Name="SienaOutput1" /></Outputs>

31 </Rule>

32 <Rule Name="ConsoleRule">

33 <Inputs><Input Name="ConsoleInput1" /></Inputs>

34 <Outputs><Output Name="NullOutput1" /></Outputs>

35 </Rule>

36 </Rules>

37 </EventPackagerConfiguration>

Figure A.1: Event Packager example.

259

1 <rulebase xmlns="http://www.psl.cs.columbia.edu/2001/01/

2 DistillerRule.xsd">

3

4 <rule name="ActiveEvent">

5 <states>

6 <state name="Start" timebound="-1" children="End" actions=""

7 fail_actions="">

8 <attribute name="Service" value="*service"/>

9 <attribute name="Status" value="Started"/>

10 <attribute name="ipAddr" value="*ipaddr"/>

11 <attribute name="ipPort" value="*ipport"/>

12 <attribute name="time" value="*time"/>

13 </state>

14 <state name="End" timebound="15000" children="" actions="Debug"

15 fail_actions="Crash">

16 <attribute name="Service" value="*service"/>

17 <attribute name="State" value="FINISHED_STATE"/>

18 <attribute name="ipAddr" value="*ipaddr"/>

19 <attribute name="ipPort" value="*ipport"/>

20 <attribute name="time" value="*time2"/>

21 </state>

22 </states>

23 <actions>

24 <notification name="Crash">

25 <attribute name="Notification_Type" value="GW_Alarm"/>

26 <attribute name="Message" value="Dead_Service"/>

27 <attribute name="KX_Reaction_Type" value="Workflow"/>

28 <attribute name="KX_Reaction_Spec" value="Disable_Service"/>

29 <attribute name="Timestamp" value="*time"/>

30 <attribute name="Service" value="*service"/>

31 <attribute name="Name" value="gwHostAdapter"/>

32 <attribute name="IPaddress" value="*ipaddr"/>

33 <attribute name="port" value="*ipport"/>

34 <attribute name="serviceURI" value="http://www.isi.edu/..."/>

35 <attribute name="schemaURI" value="http://www.isi.edu/..."/>

36 </notification>

37 <notification name="Debug">

38 <attribute name="GWFinish" value="Yes"/>

39 <attribute name="Timestamp" value="*time2"/>

40 </notification>

41 </actions>

42 </rule>

43

44 </rulebase>

Figure A.2: Event Distiller example.

260

Appendix B

Well-Known Ports

I briefly list here port values and their corresponding services. This information

is used in the analysis in section 6.4.8. A more complete list can be obtained via

/etc/serviceson a UNIX machine, viaC:\WINDOWS\SYSTEM32\DRIVERS\ETC\PORTS

on a Windows machine, or via IANA [65].

Port Transport Service
22 TCP ssh
25 TCP SMTP
53 UDP DNS
80 TCP HTTP
113 TCP & UDP ident protocol
135 TCP Windows RPC
137 UDP NetBIOS Name Service (Windows name lookup)
139 TCP NetBIOS Session Layer (Windows file sharing)
443 TCP HTTPS (SSL)
445 TCP Microsoft (Windows) Domain Services
1026 UDP Windows Messenger Service [95]
1027 UDP - (additional Messenger port)
1028 UDP - (additional Messenger port)
1080 TCP & UDP SOCKS proxy protocol
1433 TCP & UDP Microsoft SQL
1434 TCP & UDP Microsoft SQL (monitor)
3128 TCP Squid HTTP proxy
8080 TCP HTTP (popular alternate port)
33435+ UDP Van Jacobsen traceroute

	List of Figures
	List of Tables
	Introduction
	Definitions
	Problem Statement
	Requirements
	Hypotheses
	Thesis Outline

	Middleware Event Monitoring
	Background
	Architecture
	Event Packager: Adapting Events from Sensors to Gauges
	Event Distiller: Recognizing Event Sequences
	Example Applications
	Service Failures
	Load Balancing
	Quality of Service
	Spam Detecting and Blocking

	Summary
	Privacy Preservation

	Model
	Event Model
	Corroboration
	Pluggable, Event Type-Driven Middleware
	Publish/Subscribe Event Infrastructure
	Distribution and Timestamping

	Related Work
	Event Correlation
	Event Distribution
	Software Monitoring Middleware and Autonomic Computing
	Distributed Intrusion Detection
	Signature Generation and Exchange
	Privacy-Preserving Sanitization and Collaboration
	Other Privacy-Preserving Computation
	Privacy-Preserving Databases and Data Mining

	Other Privacy-Preserving Techniques

	Privacy Preservation
	Data Privacy
	Techniques and Privacy Gain
	Aggregate Matching
	Incremental/N-gram Analysis
	Temporal Corroboration with Models
	Model Combination and Comparison
	Varying Privacy Considerations

	Privacy-Preservation Techniques and Transforms
	Hashing
	Bloom Filters
	Frequency Transforms
	Z-Strings

	Anonymity and Publish-Subscribe Distribution
	Event Model
	Authentication
	Malicious TTPs
	Anonymity-Supporting Distribution Architectures
	Routing Options: Channel, Content-Based, Destination-Based

	Retrofitting Privacy onto Legacy Event Systems
	Rewriting Events
	Retrofitting Event Distribution Systems
	Retrofitting Event Correlators

	Potential Attacks
	Pollution
	Watermarking
	Collusion
	Mimicry

	Summary

	Privacy and Intrusion Detection
	Collaborative Intrusion Detection
	Hypotheses
	Requirements

	Worminator Overview
	Architecture
	Implementation and Deployment

	Sensors
	Misuse Detection
	Anomaly Detection

	IP-Based Collaboration and Scan Detection
	Corroboration Methodology
	Evaluation and Test Data
	Performance and Scalability
	Space and Transmission Requirements
	Corroboration Accuracy
	Temporal Corroboration
	Privacy Gain
	Longitudinal Study of Scan Behavior
	Conclusion

	Payload-Based Collaboration and Signature Generation
	Corroboration Methodology
	Evaluating Corroboration
	Performance and Scalability
	Corroboration Accuracy
	Temporal Corroboration: Z-String Clustering
	Privacy Gain
	Conclusion

	Model-Driven Collaboration
	Corroboration Model
	Practical Model Distribution
	Case study: PAYL models
	Experimental results
	Privacy Gain
	Conclusion

	Summary

	Contributions, Future Work and Conclusion
	Thesis Contributions
	Research Accomplishments
	Future Work
	Immediate Future Applications
	Future Directions

	Conclusion

	Bibliography
	Event Packager and Event Distiller Rulesets
	Event Packager
	Event Packager Rule Language
	Event Packager Example

	Event Distiller
	Event Distiller Rule Language
	Event Distiller Example

	Well-Known Ports

