Privacy-Preserving Distributed Event Corroboration

Janak J. Parekh
Thesis Defense
March 23, 2007
I can't imagine how difficult it must be to put together a thesis defense... How do you present years of work in less than an hour? All that data, all those results! It must be hard to parse through that much material... Though in my case, it's more like scraping the bottom of the barrel... and praying you got enough. Can't you make something up?

www.phdcomics.com
Outline

• Motivation and Problem Statement
• Model
• Privacy Preservation Techniques
• Privacy Preservation & Intrusion Detection
• Related Work
• Conclusion
Motivation

• 1999-2003: Developed KX (Kinesthetics Extreme), a software monitoring and repair architecture
• Software reliability \rightarrow autonomic computing
• Internet-scale, decentralized, event-driven
• Sensor and gauge model
• XUES (XML Universal Event Service): temporal-driven event processor
XUES

Source 1

Cloud
Source 2

Source 3

Event store (SQL database)

Event packager

Standardized event format (Smart Events)

Event distiller

Architectural gauges (from CMU)

Repair workflow (Workflakes)

Programmer/power user
XUES Applications

- **Service failure robustness, load balancing:** DARPA challenge problem to instrument, improve robustness of distributed GeoWorlds GIS/news visualization platform

- **QoS:** Internet-scale deployment in joint work with TILab, instrumenting instant-message platform

- **Spam detection** via temporal patterns
What about...

- Distributed service failure detection
- *Distributed intrusion detection*
- P2P QoS
- Distributed spam detection

Each of the above require information disclosure, and are subject to privacy policies.
Definitions

- *Events* are discrete, structured data objects generated at a specific point in time.
- Opaque, flat, and hierarchical.
- *Privacy-preserving transformation* $p(d)$, $d' = p(d)$, $d = p^{-1}(d')$ intractable.
- *Privacy policy* is a promise by an organization to originators and consumers of data.
XUES + Privacy

Event source
Events generated by X
Privacy layer
Obfuscated events
Correlator
Anonymized, obfuscated events
Correlated alerts (optional)

Event distribution middleware (pub-sub, P2P, etc.)
Problem Statement

Design an event processing methodology, appropriate event transformation techniques, and a distribution and corroboration architecture to process transformed events that:

- Supports Internet-scale collaboration;
- Approximates generalized event correlation for software reliability and network security;
- Enables information sharing between organizations whose privacy policies would ordinarily forbid such event-driven information exchange.
Requirements

- Event source anonymity and data privacy
- Varying levels and types of data privacy depending on application
- Event *corroboration*
- Temporal constraints
- Near real-time performance, scalable to large-scale distributed systems
Hypotheses

- The addition of *one-way data transformations* will enable effective corroboration despite organizational privacy-preserving requirements.

- A *typed event-driven framework* supporting a range of one-way (and two-way) data structures enables matching heterogeneous privacy-preservation requirements.
Corroboration Model

Given the non-privacy-preserving corroboration \(C_A(\mathcal{E}_B) = \mathcal{E}_A \cap \mathcal{E}_B = \{e_{A_1}, e_{A_2}, \ldots, e_{A_n}\} \cap \{e_{B_1}, e_{B_2}, \ldots, e_{B_n}\} \), we can devise both a privacy-preserving set \(\mathcal{E}' \)

\[\mathcal{E}' = \mathcal{P}(\mathcal{E}) = \{p(e_1), p(e_2), \ldots, p(e_n)\} \]

and/or a privacy-preserving model \(\mathcal{E}' = \mathcal{M}(\mathcal{E}) \)

with similarity metric \(S(e, \mathcal{E}') \rightarrow [0, 1] \).

Corroboration thus becomes:

\[
C'_A(\mathcal{E}'_B) = \begin{cases}
\{e_{A_i} \mid p(e_{A_i}) \in \mathcal{E}'_B\} & : \mathcal{E}' \text{ is a set} \\
\{e_{A_i} \mid S(e_{A_i}, \mathcal{E}') > \tau\} & : \mathcal{E}' \text{ is a model}
\end{cases}
\]
Infrastructure Model

• *Provide* event middleware consisting of:
 • Type modules
 • Transform modules
 • Corroboration modules

• *Utilize* event distribution infrastructure capable of:
 • Anonymity *(up to publisher)*
 • Typing
 • Ordering/Timestamping *(for constraints)*
 • End-to-end Encryption
Outline

• Motivation and Problem Statement
• Model
• Privacy Preservation Techniques
• Privacy Preservation & Intrusion Detection
• Related Work
• Conclusion
Data Privacy

• Goal: transform data before its publication in a form allowing corroboration

• *Insert* and verify → one-way data structure; whole-entity matching

• *Incremental analysis*, via feature extraction or *N*-grams, to allow partial matching in a one-way data structure

• *Model comparison/combination*
Techniques Used

<table>
<thead>
<tr>
<th>Technique</th>
<th>Applicability</th>
<th>Computation overhead</th>
<th>Space overhead</th>
<th>Privacy gain</th>
<th>Temporal corroboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hashing</td>
<td>General</td>
<td>Low</td>
<td>Large</td>
<td>Medium</td>
<td>Easy</td>
</tr>
<tr>
<td>Bloom filters</td>
<td>General</td>
<td>Low</td>
<td>Medium</td>
<td>Very good</td>
<td>Medium</td>
</tr>
<tr>
<td>Frequency transforms</td>
<td>Opaque/ non-feature-oriented</td>
<td>Very low</td>
<td>Large</td>
<td>Excellent</td>
<td>Hard</td>
</tr>
<tr>
<td>Z-Strings</td>
<td>Based on frequency transforms</td>
<td>Low</td>
<td>Small</td>
<td>Excellent</td>
<td>Easy</td>
</tr>
</tbody>
</table>
Examples

Example malicious code

Original content: 176 bits.

Exa, xam, amp, mpl, ple,
le□, e□m, □ma, mal, ali,
lic, ici, cio, iou, ous,
us□, s□c, □co, cod, ode

List of (unique) 3-grams in original string. A box represents a space; the underlined n-gram appears twice in the original alert. 20 n-grams take approximately 480 bits.

Frequency distribution; the most frequent character is a space (ASCII code 32). Size ≈ 8160 bits.

□aceilmoEdpsux

Z-String; the space (box) is the most frequent character. Non-appearing characters are removed. 15 characters = 120 bits.

Bloom filter of above n-grams. If three hash values are used, a minimum optimal size would be ~ 120 bits.
Temporal Corroboration

- How to corroborate against privacy-preserving models of events?
- Linear search through all models \rightarrow slow
- Merge all models \rightarrow saturation
- Merge & expire models \rightarrow no range queries
- Timestamp tree indices \rightarrow for discrete models
- Temporal clustering \rightarrow general, but slower
Temporal BFs

MRU Bloom filter (MRU BF)

Timestamp Bloom filter (TSBF)

- Merge, expiry, and (TSBF) range lookups
- Cost: memory overhead, lookup time (if saturated), privacy
Outline

• Motivation and Problem Statement
• Model
• Privacy Preservation Techniques
 • Privacy Preservation & Intrusion Detection
• Related Work
• Conclusion
Collaborative Intrusion Detection

- Increasing patterns of widespread scanning behavior across the Internet
- Existing COTS alerts have limited, single-site perspective and either are too noisy or miss slow/stealthy scans
- Goal: share intrusion alerts to gain global view on network threats
Hypotheses

A privacy-preserving architecture enables:

1. Participation of a broad group of contributors to detect slow scans/traffic patterns needed to build defenses;

2. Ability of contributors to exchange vulnerability-specific information for signature generation;

3. The ability of ad-hoc communication participants to determine each other’s communication profiles, and develop a trust model to determine exchange
Worminator overview

- Rewrite of XUES platform with privacy type support
- Processes IDS sensor alerts and applies privacy transforms
- Fully modular, supports heterogeneous data types, sensors, communication networks
- Near real-time event processing and corroborations
Implementation

- Written in about 20,000 lines of Java and Python code
- Performance tests using JDK 1.5 on dual-Xeon 3GHz with 4GB RAM
- IP-based alert exchange deployed at 3 commercial and 2 academic sites; collected ~ 9 million alerts
- Pluggable to support different sensor types; used Antura (misuse), PAYL and Anagram (in-house anomaly, 1-gram freq and n-gram BF, respectively)
IP-based corroboration

- Key questions:
 - Is it useful?
 - Can corroboration be done quickly?
 - Can it be done accurately?
 - Does it preserve privacy?

- Techniques used
 - Hash functions
 - Bloom filters
Alert intersection, IP/port

2-way corroboration

4-way corroboration
Overheads, IP/port

- Techniques all scale well computationally
- Hash functions usually use a fixed number of bits per alert, e.g., 160n
- Bloom filter memory use is significantly less

<table>
<thead>
<tr>
<th># entries</th>
<th># hash functions</th>
<th>Uncompressed # bits</th>
<th>Compressed # bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Size</td>
<td>Per Alert</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>131072</td>
<td>131072</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>131072</td>
<td>65536</td>
</tr>
<tr>
<td>100000</td>
<td>5</td>
<td>131072</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Corroboration FP, IP/port

Correlating sites

FP, percentage of correlated alerts

2-way

4-way

Hash set \(H_3\)

Bloom filter

Correlating sites

FP, percentage of correlated alerts
Brute-force FP, IP/port

~ 600k alerts

~ 20 alerts (sparse, noisy)

Hash set
Bloom filter
Temporal corroboration, IP/port

16-bit BFs

20-bit BFs

16-bit BFs

20-bit BFs

Space usage

Merge time

Expiry

33
Payload **corroboration**

- **Techniques used**: frequency distributions, Z-Strings, and **n-gram Bloom filters**

- **Major questions**:
 - How *efficient* are privacy transforms with payloads?
 - How *similar* are the different techniques at comparing packet content?
 - How well do the techniques *corroborate* alerts?
 - What kind of *signatures* can we generate?
 - What’s the comparative *privacy gain*?
Payload similarity

- High-level view of score similarities
- Most of the techniques are similar, except LCS (vulnerable to slight differences)
- ED and LCSeq very similar
- N-gram techniques not included (doesn’t compute similarity over entire packet datagram)

Similarity score, 80 random pairs of “good vs. good”
Cross-domain corroboration

Range of scores across multiple instances of the same worm (CR or CRII)

Range of scores across instances of different worms (CR vs. CRII), e.g., polymorphism

False positive score range; blue bar represents 99.9% percentile; white represents maximum score
Signature generation

Original CRII packet (first 300 bytes)

GET./default.ida?XX
Frequency-based approaches

- Characterize recovery likelihood R as the probability that someone can correctly guess the original content given the frequency distribution; for CRII, $R \approx 1/2^{8208}$

- Even smaller (intractable) for a Z-String

N-gram Bloom filter

- For a 2^{12}-bit BF and 5-grams, $R = (2^{12}/2^{565})m$, where m is the number of distinct n-grams recovered

- Surprisingly, a BF’s FPs do not measurably affect correlation; “unlucky coincidence rate” = $(1/2^{12})m$, where m, the number of incorrectly verified n-grams, grows small very quickly
Outline

• Motivation and Problem Statement
• Model
• Privacy Preservation Techniques
• Privacy Preservation & Intrusion Detection
• Related Work
• Conclusion
Related Work

• Event correlation (Rapide, DECS)
• Event distribution (Chord, Onion routing, Elvin, Siena, Gryphon, Astrolabe)
• Software monitoring (AProbe, Codebook, NESTOR)
• DIDS systems (EMERALD, GrlDS, DShield, DOMINO)
• Signature generation (Honeycomb, Earlybird, Autograph, Polygraph)
• Vulnerability signatures (VSEF, Nemean, Shield, Vigilante)
Related Work (II)

- Existing privacy-preserving collaboration approaches (Lincoln, Kissner, FTN, Concept Hierarchies)
- Focus primarily on IPs/“entity matches”, as opposed to our more generic approach
- No temporal corroboration
- Scalability and practicality vary
- Model sharing (JAM, BARTER)
- Privacy-preserving data mining, secure computation, ZKP
- Bloom filter-based indices, search keys
Outline

• Motivation and Problem Statement
• Model
• Privacy Preservation Techniques
• Privacy Preservation & Intrusion Detection
• Related Work
• Conclusion
Contributions

• Typed event-driven privacy-preserving corroboration framework, written in Java

• The use of a diverse array of existing data structures to support corroboration

• New data structures and strategies for temporal corroboration: MRU BF, TSBF and Z-String clustering

• Extensive evaluation of these techniques with real data
Accomplishments

- Publications (so far): [Parekh06], [Wang06], [Parekh05], [Locasto05], [Gross04], [Keromytis03], [Kaiser03], [Kaiser02], [Gross01]

- KX/XUES demoed, deployed in 3+ applications, Worminator demoed, deployed at 5+ sites

- Grant support, successful presentations and demos to DARPA, NSA, DHS, ARO

- Patent application filed on aspects of Worminator work
Future Work

- Wider-scale deployment, evaluation
- Polymorphic/obfuscated worm detection, mimicry attacks
- *Posture-based* [Knight02] aggregation/exchange policies
- Privacy-preserving language and matching capabilities
- “Application communities” peer-to-peer application monitoring
- Privacy-preserving model-based authentication
- ✴ Malicious insider/watermarking problem
- ✴ Evaluation of event distribution strategies
- ✴ Automated IDS attacker profiling
- ✴ Automatic event schema discovery/generation/processing
- ✴ Automatic event processing rule generation
Conclusions

• Effective privacy-preserving event corroboration is *practical*, and for a broad variety of applications

• Event corroboration in the intrusion domain can provide a useful global picture of threats, exploits, and trustworthy peers

• A *typed* framework provides access to a heterogeneous set of corroboration tools depending on the preferred scenario
(the end)
Two Good Ideas

• Demonstrably effective techniques to enable privacy-preserving event sharing, *including* temporal constraints, even when original alerts aren’t exchanged

• A framework to convince organizations to actually *share* information for distributed applications
Service failure detection

```xml
<state name="Start" timebound="-1" children="End" actions=""
   fail_actions=""/>
<attribute name="Service" value="*service"/>
<attribute name="Status" value="Started"/>
<attribute name="ipAddr" value="*ipaddr"/>
<attribute name="ipPort" value="*ipport"/>
<attribute name="time" value="*time"/>
</state>

<state name="End" timebound="15000" children="" actions="Debug"
   fail_actions="Crash">
<attribute name="Service" value="*service"/>
<attribute name="State" value="FINISHED_STATE"/>
<attribute name="ipAddr" value="*ipaddr"/>
<attribute name="ipPort" value="*ipport"/>
<attribute name="time" value="*time2"/>
</state>
```
Spam detection

```xml
<state name="a" timebound="-1" children="b">
  <attribute name="from" value="*1"/>
  <attribute name="messageID" value="*2"/>
</state>

<state name="b" timebound="100" count="1" children="" actions="A,B">
  <attribute name="from" value="*1"/>
  <attribute name="messageID" value="*2"/>
</state>
```
Privacy

• Many different forms; those explored in this thesis include
 • Data privacy: privacy of data semantics
 • Source anonymity: privacy of producer
 • Physical privacy *not* covered
 • Time privacy “optional”
Timestamping

- Ideal: created by producer upon event creation
 - Upper bound, upper/lower bound, exact
 - Implicit timestamp
 - At publication
 - At receipt; can lead to ordering errors
- No timestamping: pure intersection
Levels of anonymity

- Non-anonymous
- Anonymous but differentiable
- Anonymous but categorizable
- Fully anonymous (not supported; very difficult problem, e.g., Sybil attacks)
Bloom filters

• Classic hash-based data structure [Bloom60]
Incremental analysis

5-grams.

\[
S(e, \mathcal{E}') = \begin{cases}
\frac{\sum_{i=0}^{k} f(g_i)}{k} & : \mathcal{E}' \text{ is frequency-modeled} \\
\frac{\sum_{i=0}^{k} F(g_i)}{k} & : \mathcal{E}' \text{ is binary-modeled}
\end{cases}
\]

Similarity metric for a set of \(n \)-grams.
Frequency model distance metrics

- Event against model: simplified Mahalanobis distance
 \[D'_{Mah}(x, \mu) = \sum_{i=0}^{n-1} \frac{|x_i - \mu_i|}{(\sigma_i + \alpha)} \]

- Model vs. model: Manhattan distance
 \[D_{Man} = \sum_{i=0}^{n-1} |x_i - y_i| \]
IP Data Collected

<table>
<thead>
<tr>
<th>Site</th>
<th>Time (days)</th>
<th># Alerts</th>
<th># Alerts/Min.</th>
<th># Distinct IPs</th>
<th># Distinct IP/port pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic 1</td>
<td>314.87</td>
<td>3919604</td>
<td>8.64</td>
<td>86108</td>
<td>4576155</td>
</tr>
<tr>
<td>Academic 2</td>
<td>28.53</td>
<td>823631</td>
<td>20.04</td>
<td>28838</td>
<td>844288</td>
</tr>
<tr>
<td>Academic 3</td>
<td>164.56</td>
<td>2811553</td>
<td>11.86</td>
<td>45255</td>
<td>3605271</td>
</tr>
<tr>
<td>Academic 4</td>
<td>14.95</td>
<td>54518</td>
<td>2.53</td>
<td>2398</td>
<td>2541</td>
</tr>
<tr>
<td>Commercial 1</td>
<td>242.52</td>
<td>923482</td>
<td>2.64</td>
<td>119675</td>
<td>325283</td>
</tr>
<tr>
<td>Commercial 2</td>
<td>373.68</td>
<td>543979</td>
<td>1.01</td>
<td>60585</td>
<td>378062</td>
</tr>
</tbody>
</table>
Brute-forcing sparse BFs

(20 alerts per BF)

Hash set

Bloom filter
Sparse noisy sets/BFs, IP/port

Privacy Corroboration

Hash set (100% noise) Bloom filter (10% noise)
TSBF, MRU BF Expiry

16-bit BF

20-bit BF
Longitudinal study of IP scans

- Worminato’s goal is to enable precisely this type of analysis
- Three key *longitudes* analyzed
 - Over time
 - Over geographical, network space
 - By target

<table>
<thead>
<tr>
<th># Sites</th>
<th># Site/IPs</th>
<th>Avg Scan Len (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>307050</td>
<td>7.14</td>
</tr>
<tr>
<td>2</td>
<td>22250</td>
<td>10.86</td>
</tr>
<tr>
<td>3</td>
<td>10074</td>
<td>17.20</td>
</tr>
<tr>
<td>4</td>
<td>3228</td>
<td>29.86</td>
</tr>
<tr>
<td>5</td>
<td>245</td>
<td>70.77</td>
</tr>
</tbody>
</table>
Scan length distribution

5-site scanners
Stealthiness

<table>
<thead>
<tr>
<th>Source IP</th>
<th>Scan Length (days)</th>
<th># Alerts</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.185.246.34</td>
<td>257.73</td>
<td>7</td>
<td>3.144e-07</td>
</tr>
<tr>
<td>207.218.223.98</td>
<td>302.96</td>
<td>9</td>
<td>3.438e-07</td>
</tr>
<tr>
<td>61.129.45.54</td>
<td>302.12</td>
<td>10</td>
<td>3.831e-07</td>
</tr>
<tr>
<td>207.218.223.91</td>
<td>270.71</td>
<td>9</td>
<td>3.848e-07</td>
</tr>
<tr>
<td>207.218.223.89</td>
<td>271.16</td>
<td>11</td>
<td>4.695e-07</td>
</tr>
<tr>
<td>207.218.223.93</td>
<td>301.50</td>
<td>13</td>
<td>4.990e-07</td>
</tr>
<tr>
<td>66.150.8.18</td>
<td>199.92</td>
<td>10</td>
<td>5.789e-07</td>
</tr>
<tr>
<td>62.189.244.254</td>
<td>287.28</td>
<td>17</td>
<td>6.849e-07</td>
</tr>
<tr>
<td>61.172.250.90</td>
<td>234.36</td>
<td>14</td>
<td>6.914e-07</td>
</tr>
<tr>
<td>206.253.195.10</td>
<td>293.14</td>
<td>19</td>
<td>7.502e-07</td>
</tr>
</tbody>
</table>

Table 6.5: Top 10 stealthy scanners detected at 4 sites

<table>
<thead>
<tr>
<th>Source IP</th>
<th>Scan Length (days)</th>
<th># Alerts</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.218.223.92</td>
<td>300.14</td>
<td>12</td>
<td>4.628e-07</td>
</tr>
<tr>
<td>207.218.223.103</td>
<td>302.52</td>
<td>17</td>
<td>6.504e-07</td>
</tr>
<tr>
<td>69.7.175.21</td>
<td>293.50</td>
<td>41</td>
<td>1.617e-06</td>
</tr>
<tr>
<td>69.25.27.10</td>
<td>225.52</td>
<td>33</td>
<td>1.694e-06</td>
</tr>
<tr>
<td>161.170.254.232</td>
<td>299.29</td>
<td>51</td>
<td>1.972e-06</td>
</tr>
<tr>
<td>219.148.119.199</td>
<td>227.03</td>
<td>45</td>
<td>2.294e-06</td>
</tr>
<tr>
<td>66.151.55.10</td>
<td>303.12</td>
<td>62</td>
<td>2.367e-06</td>
</tr>
<tr>
<td>62.73.174.150</td>
<td>338.39</td>
<td>90</td>
<td>3.078e-06</td>
</tr>
<tr>
<td>64.41.241.171</td>
<td>338.39</td>
<td>90</td>
<td>3.078e-06</td>
</tr>
<tr>
<td>64.56.168.66</td>
<td>338.39</td>
<td>96</td>
<td>3.283e-06</td>
</tr>
</tbody>
</table>

Table 6.6: Top 10 stealthy scanners detected at 5 sites

Interestingly, the items *in italics* are all from the same subnet.
So, which addresses from 207.218.*?

<table>
<thead>
<tr>
<th>Source IP</th>
<th>#sites</th>
<th>#alerts</th>
<th>Scan len</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.218.223.92</td>
<td>5</td>
<td>12</td>
<td>300.14</td>
<td>ivhou-207-218-223-92.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.103</td>
<td>5</td>
<td>17</td>
<td>302.52</td>
<td>ivhou-207-218-223-103.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.89</td>
<td>4</td>
<td>11</td>
<td>271.16</td>
<td>ivhou-207-218-223-89.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.91</td>
<td>4</td>
<td>9</td>
<td>270.71</td>
<td>ivhou-207-218-223-91.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.93</td>
<td>4</td>
<td>13</td>
<td>301.50</td>
<td>ivhou-207-218-223-93.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.98</td>
<td>4</td>
<td>9</td>
<td>302.96</td>
<td>ivhou-207-218-223-98.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.94</td>
<td>3</td>
<td>10</td>
<td>300.44</td>
<td>ivhou-207-218-223-94.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.95</td>
<td>3</td>
<td>8</td>
<td>301.51</td>
<td>ivhou-207-218-223-95.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.97</td>
<td>3</td>
<td>8</td>
<td>63.06</td>
<td>ivhou-207-218-223-97.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.99</td>
<td>3</td>
<td>10</td>
<td>271.10</td>
<td>ivhou-207-218-223-99.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.102</td>
<td>3</td>
<td>10</td>
<td>297.12</td>
<td>ivhou-207-218-223-102.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.90</td>
<td>2</td>
<td>9</td>
<td>20.04</td>
<td>ivhou-207-218-223-90.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.101</td>
<td>2</td>
<td>5</td>
<td>270.55</td>
<td>ivhou-207-218-223-101.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.100</td>
<td>1</td>
<td>1</td>
<td>3.99</td>
<td>ivhou-207-218-223-100.ev1servers.net</td>
</tr>
<tr>
<td>207.218.223.132</td>
<td>1</td>
<td>4</td>
<td>2.12</td>
<td>ns1.rackshack.net</td>
</tr>
<tr>
<td>207.218.223.162</td>
<td>1</td>
<td>6</td>
<td>1.05</td>
<td>ns2.rackshack.net</td>
</tr>
</tbody>
</table>

Table 6.7: Subnet search results for 207.218.223.0/24
Subnet scanners
Source geography

2-site, by IP

4-site, by IP
Payload: Big picture

Signature distribution

"Normal" site traffic

Alert exchange

Training data

Testing data

Internet

Alerts and signatures

Alert exchange

Signature

Correlator

Privacy-preserving alerts

Sensor

Collaborative anomaly detector

Alerts and signatures

Site

Collaborative anomaly detector

Site

Servers
Bloom filter n-gram analysis

Alerts

5-gram

Hash functions

Site 1

Site 2

Site 3

Bloom Filter

Alert payload
Hash, freq performance
(full payloads)

Hashing, entire packet

Frequency transform, entire packet
N-gram performance

HTTP traffic, 60,000 packets

Hash set

Bloom filter
Payload corroboration

Site A

Example malicious code

Exa, xam, amp, mpl, ple, le-, e-m, ma, mal, ali, lic, ici, cio, iou, ous, us-, s-c, co, cod, ode

00000110101011011001110100110

Exa, xam, amp, mpl, ple, le-, e-m, ma, mal, cod, ode

Example mal*code

Site B

Example malcode

Exa, xam, amp, mpl, ple, le-, e-m, ma, mal, alc, lco, cod, ode

0000001011011010001001110000

Exa, xam, amp, mpl, ple, le-, e-m, ma, mal, cod, ode

Example malcode
Evaluating payload corroboration

- Three sets of randomly-sampled traffic
 - www1 and www2: Columbia webservers, 100 packets each
 - Malicious packet dataset, 56 packets
 - “Known ground truth”

- Evaluation
 - Similarity: arranged into three pairs (good vs. good, bad vs. bad, good vs. bad)
 - Corroboration: mix attack collection into real traffic, measure separation with 100% detection
Payload similarity: setup

• Arranged into three sets of pairs
 • 10,000 “good vs. good”
 • 1,540 “bad vs. bad”
 • 5,600 “good vs. bad” between www1 and the malicious dataset
• To compare the difference more precisely, normalize and compare scores
 • Compute similarity score vectors V_A, V_B
 • Match their medians
 • Scale ranges proportionally so min and max values match
 • Compute Manhattan distance between normalized vectors
• Each privacy-enabled technique is compared against Raw-LCSeq (baseline)
Payload similarity (II)

<table>
<thead>
<tr>
<th>Type</th>
<th>Raw-LCseq</th>
<th>Raw-LCS</th>
<th>Raw-ED</th>
<th>MD</th>
<th>ZStr-LCS</th>
<th>ZStr-LCSeq</th>
<th>ZStr-ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-G</td>
<td>0</td>
<td>.0948</td>
<td>.0336</td>
<td>.0669</td>
<td>.2079</td>
<td>.0794</td>
<td>.0667</td>
</tr>
<tr>
<td>B-B</td>
<td>0</td>
<td>.0508</td>
<td>.0441</td>
<td>.0653</td>
<td>.0399</td>
<td>.0263</td>
<td>.0669</td>
</tr>
<tr>
<td>G-B</td>
<td>0</td>
<td>.0251</td>
<td>.0241</td>
<td>.0110</td>
<td>.0310</td>
<td>.0191</td>
<td>.0233</td>
</tr>
</tbody>
</table>

Normalized similarity scores (lower is better)

- Unsurprisingly, Raw-ED closest to Raw-LCSeq
- *All* privacy-preserving methods are close when correlating pairs including attack traffic; may be leveraging difference between byte distributions
- Manhattan distance between packet freq distributions best
Cross-domain corroboration

- Goal: measure performance in identifying true alerts from false positives
 - Ideal: true positives have very high similarity scores, while false positives have very low scores
- Mix the collection of attacks into two hours of traffic from www and www1
 - Multiple, differently-fragmented instances of Code Red and Code Red II to simulate a real worm attack
- Mixed sets are run through PAYL and Anagram, with alerting threshold reduced so that 100% of attacks are detected, but with possibly higher FP rates
Cross-domain corroboration (II)

- Correlation of identical (non-polymorphic) attacks works accurately for all techniques
- Non-fragmented attacks score near 1
- Z-Strings (MD, LCseq, ED) and n-grams handle fragmentation well
- Polymorphism is hard to detect; only Raw-LCSeq and n-grams score well
- Overall, n-grams are particularly effective at eliminating false positives, and Bloom filters enable privacy preservation
Signature generation

• Each class of techniques can generate its own signature
• Raw packets: Exchange LCS/LCSeq
 • Not privacy-preserving
• Byte frequency/Z-Strings
 • Given the frequency distribution, Z-Strings generated by ordering from most to least frequent and dropping the least frequent
• N-grams
 • Robust to reordering or fragmentation
 • If position information is available, can “flatten” into a deployable string signature
Z-String Clustering

Technique comparison

Normal HTTP traffic, threshold = 4

CRII traffic, threshold = 4
Z-String Clustering

Cluster Delta technique

Normal HTTP traffic, threshold = 4

CRIII traffic, threshold = 4
Z-String Clustering

Manhattan Distance
Z-String Clustering

CRII Prevalence

25,000 packets

100,000 packets
Model corroboration

• Exchange and corroborate/combine the models themselves, instead of individual alerts

• Corroboration of models → comparison of traffic patterns

• Leverage privacy-preserving properties of models

• Useful in ad-hoc communications, e.g., MANET

• Key question: do different traffic patterns differ?
Model experiments

- Four models: #1 and #2 simple, #3 “more complex”, and #4 primarily malcode
- Examine Manhattan distances, alert incidence between models

Example centroids for models #1 and #4
Model distance

Manhattan distance

<table>
<thead>
<tr>
<th></th>
<th>model1/model2</th>
<th>model1/model3</th>
<th>model1/model4</th>
<th>model3/model4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist between payload lengths</td>
<td>0.4210</td>
<td>1.5201</td>
<td>1.8981</td>
<td>0.7898</td>
</tr>
<tr>
<td>Avg dist over first centroids</td>
<td>0.5946</td>
<td>0.7400</td>
<td>1.6368</td>
<td>1.6330</td>
</tr>
<tr>
<td>Avg dist over all centroids</td>
<td>0.4276</td>
<td>0.6112</td>
<td>1.5220</td>
<td>1.5096</td>
</tr>
</tbody>
</table>
Alert Indicidence

model 1 and model 2

<table>
<thead>
<tr>
<th>Total # packets</th>
<th># Content Packets</th>
<th>Model 1 #Alerts</th>
<th>Model 2 #Alerts</th>
<th>Model 1+2 #Alerts</th>
<th>Model 3 #Alerts</th>
<th>Model 1+3 #Alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>127023</td>
<td>10414</td>
<td>149</td>
<td>184</td>
<td>149</td>
<td>81</td>
<td>148</td>
</tr>
<tr>
<td>304182</td>
<td>21812</td>
<td>2705</td>
<td>2829</td>
<td>2672</td>
<td>1789</td>
<td>2613</td>
</tr>
<tr>
<td>276332</td>
<td>26294</td>
<td>9684</td>
<td>11128</td>
<td>9669</td>
<td>1138</td>
<td>9530</td>
</tr>
<tr>
<td>353897</td>
<td>36780</td>
<td>11201</td>
<td>3394</td>
<td>2187</td>
<td>2919</td>
<td>11040</td>
</tr>
</tbody>
</table>
Related work: Event Correlation, Event Systems

- Temporal event correlation/aggregation supporting arbitrary event types
- Rapide [Luckham96]: focus on software architecture simulation, monitoring
- SMARTS InCharge/DECS [Yemini96]: primarily network, distributed application management
- Publish/subscribe content-based routing systems providing simple event filtering/covering
 - ELVIN [Segall00]: simple single-message predicate matching
 - Siena [Carzaniga00]: adds minimal support for sequence matching
 - Gryphon [Banavar99]: event stream “interpretation” to reduce transmission overhead
DIDS/CIDS: Distributed/Collaborative Intrusion Detection System, multiple networks and sensor(s) at each network

- GrIDS [Staniford96]: Graph hierarchy-based aggregation, with centralized monitoring server
- EMERALD [Porras97]: Distributed, component-based intrusion monitoring
- Quicksand [Kruegel02]: Completely decentralized, specification language to specify patterns
- Indra [Janakiraman03]: Uses “pub-sub-on-P2P” infrastructure
- DOMINO [Yegneswaran04]: Decentralized hierarchy with summary exchange; aggregate analysis of DShield logs
Related work: Privacy-Preserving Collaboration

- Corroboration most commonly implemented using set membership algorithms/tests
- HotItem protocols [Kissner05]: Uses a Bloom filter implicitly; discusses theoretical capability to maintain “data” and “owner” privacy amongst malicious entities
- Hybrid approaches including hashing/set membership, randomized routing
 - [Lincoln04]: Hashing to scrub sensitive data, second key-based hash algorithm adds “noise” to prevent brute-force attacks
 - Friends Troubleshooting Network [Huang05]: build a recursive lookup P2P network that maintains anonymity; uses hashing, SMC, and random-walk routing for software diagnosis
Related work: Other Privacy-Preserving Computation

• Statistical transformation: useful for larger data exchange where such “summaries” are accurate
 • PAYL [Wang05]: 1-gram and Zipf frequency distributions of packet content
 • Anagram [Wang06]: N-gram binary modeling based on BFs

• Databases and data mining
 • Statistical databases ([Agrawal00], [Lindell02]: Aggregate statistics despite perturbation and individual restrictions
 • Privacy-preserving information sharing [Agrawal03]: Two-party equijoin, intersection, counts via commutative encryption
 • K-anonymity [Sweeney02]: Privacy via redundancy
 • Privacy-preserving BF-enabled queries [Bellovin04], secure indices [Bawa03, Goh04]
 • “Hippocratic databases” [Agrawal02]
Related work: Other Privacy-Preserving Computation

- **Secure multiparty communication** [Yao82]
 - [Du01] proposes general transformation architecture, including intrusion detection information; too slow to handle near real-time alert streams

- **Zero-Knowledge Proofs** [Goldwasser89, Goldreich94]
 - Like data-mining, traditionally between two parties; scaling up is extremely hard, and may leak information
 - [Dwork04] proposes a model for scaling, but requires clever timing constraints
 - Like SMC, doesn’t scale to the event volumes discussed here