
Privacy-Preserving
Distributed Event
Corroboration

Janak J. Parekh
Thesis Defense
March 23, 2007

1

2

Outline

• Motivation and Problem Statement

• Model

• Privacy Preservation Techniques

• Privacy Preservation & Intrusion Detection

• Related Work

• Conclusion

3

Motivation
• 1999-2003: Developed KX (Kinesthetics

Extreme), a software monitoring and
repair architecture

• Software reliability → autonomic
computing

• Internet-scale, decentralized, event-driven

• Sensor and gauge model

• XUES (XML Universal Event Service):
temporal-driven event processor

KX

XUES

4

XUESSource 1

Cloud

Source 2 Source 3

Event store

(SQL database)

Event

packager

Event

distiller

Architectural

gauges

(from CMU)

Repair workflow

(Workflakes)

Standardized

event format

(Smart Events) Programmer/

power user

5

XUES Applications

• Service failure robustness, load balancing:
DARPA challenge problem to instrument,
improve robustness of distributed
GeoWorlds GIS/news visualization platform

• QoS: Internet-scale deployment in joint
work with TILab, instrumenting instant-
message platform

• Spam detection via temporal patterns

6

What about...

• Distributed service failure detection

• Distributed intrusion detection

• P2P QoS

• Distributed spam detection

Each of the above require information
disclosure, and are subject to privacy policies

7

Definitions

• Events are discrete, structured data objects
generated at a specific point in time

• Opaque, flat, and hierarchical

• Privacy-preserving transformation p(d),
d’ = p(d), d = p-1(d’) intractable

• Privacy policy is a promise by an organization to
originators and consumers of data

8

XUES + Privacy
Site X

data1=A

data2=B

Site Z

Event source

data1=A

data2=B

...

0101010010

0110111010

1010011010

0101010010

0110111010

1010011010

?

Site Y

Event source

data1=A

data2=B

...

0101010010

0110111010

1010011010

0101010010

0110111010

1010011010

?

Event source

data1=A

data2=B

...

Events generated by X

0101010010

0110111010

1010011010

Obfuscated events

P
ri
v
a
c
y
 l
a
y
e
r

Event distribution
middleware

(pub-sub, P2P, etc.)

0101010010

0110111010

1010011010

Anonymized,

 obfuscated events
Correlator

data1=A

data2=B
?

Correlated alerts

(optional)

data1=A

data2=B
data1=A

data2=B

data1=A

data2=B
data1=A

data2=B

9

Problem Statement
Design an event processing methodology, appropriate
event transformation techniques, and a distribution
and corroboration architecture to process
transformed events that:

• Supports Internet-scale collaboration;

• Approximates generalized event correlation for
software reliability and network security;

• Enables information sharing between organizations
whose privacy policies would ordinarily forbid
such event-driven information exchange.

10

Requirements

• Event source anonymity and data privacy

• Varying levels and types of data privacy
depending on application

• Event corroboration

• Temporal constraints

• Near real-time performance, scalable to large-
scale distributed systems

11

Hypotheses

• The addition of one-way data transformations
will enable effective corroboration despite
organizational privacy-preserving
requirements

• A typed event-driven framework supporting a
range of one-way (and two-way) data
structures enables matching heterogeneous
privacy-preservation requirements

12

Outline

• Motivation and Problem Statement

• Model

• Privacy Preservation Techniques

• Privacy Preservation & Intrusion Detection

• Related Work

• Conclusion

13

Event Model
Globally-unique ID
Base event type
Event source
Creation time
Preferred encoding
Event generator
Version number

Abstract Event

Single Event Event ModelEarliest event time
Latest event time

Event Set

Bloom filter

Timestamp
Bloom filter

MRU Bloom
filter

Frequency
Distribution

* 1 *1

Hash Set

Z-String

14

Corroboration Model
Given the non-privacy-preserving corroboration

we can devise both a privacy-preserving set

and/or a privacy-preserving model
with similarity metric

Corroboration thus becomes:

46 CHAPTER 3. MODEL

preserving corroboration if E′ is a event set:

C∗A(E′B) = P(EA) ∩ E′B = {e′A1 , e
′
A2 , . . . , e

′
An} ∩ {e′B1 , e

′
B2 , . . . , e

′
Bn} =

{e′A∩B1 , e
′
A∩B2 , . . . , e

′
A∩Bn}

While this is technically correct, and is certainly privacy-preserving, it is also

not useful: we are given a set of privacy-transformed events in return. These events,

by definition, are irreversible to the original objects, so we cannot make anything

meaningful of them (apart from |E′|). Additionally, this approach clearly does not

work for a model E′. What we actually want is the following, a special form of

intersection that selects the raw objects from A’s local event list that match the set or

model:

C′A(E′B) =

{eAi | p(eAi) ∈ E′B} : E′ is a set

{eAi | S(eAi ,E′) > τ} : E′ is a model

C′ is the key privacy-preserving corroboration operation. In the case of model

exchange, τ is an empirically-set threshold. I describe appropriate thresholds for the

applications discussed in chapter 6. The set of privacy and model transformation

functions p,M used in this thesis are discussed in section 5.1.

3.3 Pluggable, Event Type-Driven Middleware

Given a standardized, type-driven event model and a corroboration scheme, I now

discuss the key pieces of the software framework.

• Type modules. Each of the above types are translated into first-class objects.

The system in chapter 6 implement these types as a collection of Java interfaces

and classes. In addition, translation facilities are written to support conversion

from one event format to another as necessary and when possible. For example,

3.2. CORROBORATION 45

provided; for example, if A was the subscriber and B was the (only) publisher, we

denote that as

CA(EB) = EA ∩ EB = {eA1 , eA2 , . . . , eAn} ∩ {eB1 , eB2 , . . . , eBn}

yielding EA∩B = {eA∩B1 , eA∩B2 , . . . , eA∩Bn}.2

However, since each event e may contain sensitive data, we would like to develop

a privacy-preserving corroborator C′A(E′B,E′C, . . .), where E′ either:

• Is a set of privacy-transformed events e′. This presumes the presence of a privacy

transform p(e) = e′, and by extension, E′ = P(E) = {p(e1), p(e2), . . . , p(en)}.

• Is a privacy-preserving model of events e1, e2, . . . , en. This presumes the presence

of a model creation function M(E), where E′ = M(E), and a similarity metric

S(e,E′) → [0, 1] which determines whether or not an individual event e

conforms to the model (and returns a score ranging from 0 to 1, where 0 implies

an event completely dissimilar and 1 completely conformant).

As the above implies, E′ may not actually be a set of events, unlike E; a model,

while incorporating information about the corresponding set, does not have to

explicitly reference each event individually. E′ is deliberately overloaded to connote

the fact that either representation may be published, depending on the privacy

technique used, and they are distributed in the same fashion and using the same

event type structure as discussed in section 3.1.

Given this pair of transforms, we can now write out a first attempt at privacy-
2Note that the indices i on events eA∩Bi do not correspond to the events from individual sets. We

could redefine the terminology as eAi∩Bj , but this is not critical for our notation, and so choose the
simpler approach.

,

3.2. CORROBORATION 45

provided; for example, if A was the subscriber and B was the (only) publisher, we

denote that as

CA(EB) = EA ∩ EB = {eA1 , eA2 , . . . , eAn} ∩ {eB1 , eB2 , . . . , eBn}

yielding EA∩B = {eA∩B1 , eA∩B2 , . . . , eA∩Bn}.2

However, since each event e may contain sensitive data, we would like to develop

a privacy-preserving corroborator C′A(E′B,E′C, . . .), where E′ either:

• Is a set of privacy-transformed events e′. This presumes the presence of a privacy

transform p(e) = e′, and by extension, E′ = P(E) = {p(e1), p(e2), . . . , p(en)}.

• Is a privacy-preserving model of events e1, e2, . . . , en. This presumes the presence

of a model creation function M(E), where E′ = M(E), and a similarity metric

S(e,E′) → [0, 1] which determines whether or not an individual event e

conforms to the model (and returns a score ranging from 0 to 1, where 0 implies

an event completely dissimilar and 1 completely conformant).

As the above implies, E′ may not actually be a set of events, unlike E; a model,

while incorporating information about the corresponding set, does not have to

explicitly reference each event individually. E′ is deliberately overloaded to connote

the fact that either representation may be published, depending on the privacy

technique used, and they are distributed in the same fashion and using the same

event type structure as discussed in section 3.1.

Given this pair of transforms, we can now write out a first attempt at privacy-
2Note that the indices i on events eA∩Bi do not correspond to the events from individual sets. We

could redefine the terminology as eAi∩Bj , but this is not critical for our notation, and so choose the
simpler approach.

3.2. CORROBORATION 45

provided; for example, if A was the subscriber and B was the (only) publisher, we

denote that as

CA(EB) = EA ∩ EB = {eA1 , eA2 , . . . , eAn} ∩ {eB1 , eB2 , . . . , eBn}

yielding EA∩B = {eA∩B1 , eA∩B2 , . . . , eA∩Bn}.2

However, since each event e may contain sensitive data, we would like to develop

a privacy-preserving corroborator C′A(E′B,E′C, . . .), where E′ either:

• Is a set of privacy-transformed events e′. This presumes the presence of a privacy

transform p(e) = e′, and by extension, E′ = P(E) = {p(e1), p(e2), . . . , p(en)}.

• Is a privacy-preserving model of events e1, e2, . . . , en. This presumes the presence

of a model creation function M(E), where E′ = M(E), and a similarity metric

S(e,E′) → [0, 1] which determines whether or not an individual event e

conforms to the model (and returns a score ranging from 0 to 1, where 0 implies

an event completely dissimilar and 1 completely conformant).

As the above implies, E′ may not actually be a set of events, unlike E; a model,

while incorporating information about the corresponding set, does not have to

explicitly reference each event individually. E′ is deliberately overloaded to connote

the fact that either representation may be published, depending on the privacy

technique used, and they are distributed in the same fashion and using the same

event type structure as discussed in section 3.1.

Given this pair of transforms, we can now write out a first attempt at privacy-
2Note that the indices i on events eA∩Bi do not correspond to the events from individual sets. We

could redefine the terminology as eAi∩Bj , but this is not critical for our notation, and so choose the
simpler approach.

3.2. CORROBORATION 45

provided; for example, if A was the subscriber and B was the (only) publisher, we

denote that as

CA(EB) = EA ∩ EB = {eA1 , eA2 , . . . , eAn} ∩ {eB1 , eB2 , . . . , eBn}

yielding EA∩B = {eA∩B1 , eA∩B2 , . . . , eA∩Bn}.2

However, since each event e may contain sensitive data, we would like to develop

a privacy-preserving corroborator C′A(E′B,E′C, . . .), where E′ either:

• Is a set of privacy-transformed events e′. This presumes the presence of a privacy

transform p(e) = e′, and by extension, E′ = P(E) = {p(e1), p(e2), . . . , p(en)}.

• Is a privacy-preserving model of events e1, e2, . . . , en. This presumes the presence

of a model creation function M(E), where E′ = M(E), and a similarity metric

S(e,E′) → [0, 1] which determines whether or not an individual event e

conforms to the model (and returns a score ranging from 0 to 1, where 0 implies

an event completely dissimilar and 1 completely conformant).

As the above implies, E′ may not actually be a set of events, unlike E; a model,

while incorporating information about the corresponding set, does not have to

explicitly reference each event individually. E′ is deliberately overloaded to connote

the fact that either representation may be published, depending on the privacy

technique used, and they are distributed in the same fashion and using the same

event type structure as discussed in section 3.1.

Given this pair of transforms, we can now write out a first attempt at privacy-
2Note that the indices i on events eA∩Bi do not correspond to the events from individual sets. We

could redefine the terminology as eAi∩Bj , but this is not critical for our notation, and so choose the
simpler approach.

3.2. CORROBORATION 45

provided; for example, if A was the subscriber and B was the (only) publisher, we

denote that as

CA(EB) = EA ∩ EB = {eA1 , eA2 , . . . , eAn} ∩ {eB1 , eB2 , . . . , eBn}

yielding EA∩B = {eA∩B1 , eA∩B2 , . . . , eA∩Bn}.2

However, since each event e may contain sensitive data, we would like to develop

a privacy-preserving corroborator C′A(E′B,E′C, . . .), where E′ either:

• Is a set of privacy-transformed events e′. This presumes the presence of a privacy

transform p(e) = e′, and by extension, E′ = P(E) = {p(e1), p(e2), . . . , p(en)}.

• Is a privacy-preserving model of events e1, e2, . . . , en. This presumes the presence

of a model creation function M(E), where E′ = M(E), and a similarity metric

S(e,E′) → [0, 1] which determines whether or not an individual event e

conforms to the model (and returns a score ranging from 0 to 1, where 0 implies

an event completely dissimilar and 1 completely conformant).

As the above implies, E′ may not actually be a set of events, unlike E; a model,

while incorporating information about the corresponding set, does not have to

explicitly reference each event individually. E′ is deliberately overloaded to connote

the fact that either representation may be published, depending on the privacy

technique used, and they are distributed in the same fashion and using the same

event type structure as discussed in section 3.1.

Given this pair of transforms, we can now write out a first attempt at privacy-
2Note that the indices i on events eA∩Bi do not correspond to the events from individual sets. We

could redefine the terminology as eAi∩Bj , but this is not critical for our notation, and so choose the
simpler approach.

.

15

Infrastructure Model
• Provide event middleware consisting of:

• Type modules
• Transform modules
• Corroboration modules

• Utilize event distribution infrastructure capable of:

• Anonymity (up to publisher)
• Typing
• Ordering/Timestamping (for constraints)
• End-to-end Encryption

16

Outline

• Motivation and Problem Statement

• Model

• Privacy Preservation Techniques

• Privacy Preservation & Intrusion Detection

• Related Work

• Conclusion

17

Data Privacy
• Goal: transform data before its publication

in a form allowing corroboration

• Insert and verify → one-way data
structure; whole-entity matching

• Incremental analysis, via feature extraction
or N-grams, to allow partial matching in a
one-way data structure

• Model comparison/combination

...jihgfedcba

18

Techniques Used

Technique Applicability
Computation

overhead
Space

overhead Privacy gain
Temporal

corroboration

Hashing General Low Large Medium Easy

Bloom
filters General Low Medium Very good Medium

Frequency
transforms

Opaque/
non-feature-oriented Very low Large Excellent Hard

Z-Strings
Based on frequency

transforms Low Small Excellent Easy

19

Example
malicious code

Exa, xam, amp, mpl, ple,
le□, e□m, □ma, mal, ali,
lic, ici, cio, iou, ous,
us□, s□c, □co, cod, ode

Original content: 176 bits.

Frequency distribution; the most frequent character
is a space (ASCII code 32). Size ≈ 8160 bits.

List of (unique) 3-grams in original string. A
box represents a space; the underlined n-

gram appears twice in the original alert. 20
n-grams take approximately 480 bits.

0000011010101101001101100110101101010…01010011101010101111000

Bloom filter of above n-grams. If three hash values are used, a minimum optimal size would be ~ 120 bits.

□aceilmoEdpsux
Z-String; the space (box) is the most frequent

character. Non-appearing characters are removed.
15 characters = 120 bits.

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Student Version of MATLAB

Examples

20

Temporal Corroboration

• How to corroborate against privacy-preserving
models of events?

• Linear search through all models → slow

• Merge all models → saturation

• Merge & expire models → no range queries

• Timestamp tree indices → for discrete models

• Temporal clustering → general, but slower

21

Temporal BFs

t
2

t
1

t
3

t
0

t
2

t
1

t
3

t
5

t
6

t
5

t
6

t
0

• Merge, expiry, and (TSBF) range lookups

• Cost: memory overhead, lookup time (if
saturated), privacy

t3t6t6t0t3

Timestamp Bloom filter (TSBF)

MRU Bloom filter (MRU BF)

22

Outline

• Motivation and Problem Statement

• Model

• Privacy Preservation Techniques

• Privacy Preservation & Intrusion Detection

• Related Work

• Conclusion

23

Collaborative Intrusion Detection

• Increasing patterns of widespread scanning
behavior across the Internet

• Existing COTS alerts have limited, single-
site perspective and either are too noisy or
miss slow/stealthy scans

• Goal: share intrusion alerts to gain global
view on network threats

24

Hypotheses
A privacy-preserving architecture enables:

1. Participation of a broad group of contributors to
detect slow scans/traffic patterns needed to
build defenses;

2. Ability of contributors to exchange vulnerability-
specific information for signature generation;

3. The ability of ad-hoc communication participants
to determine each other’s communication
profiles, and develop a trust model to determine
exchange

25

Worminator overview

• Rewrite of XUES platform with privacy type
support

• Processes IDS sensor alerts and applies privacy
transforms

• Fully modular, supports heterogeneous data
types, sensors, communication networks

• Near real-time event processing and
corroboration

26

Implementation
• Written in about 20,000 lines of Java and Python

code

• Performance tests using JDK 1.5 on dual-Xeon
3GHz with 4GB RAM

• IP-based alert exchange deployed at 3 commercial
and 2 academic sites; collected ~ 9 million alerts

• Pluggable to support different sensor types; used
Antura (misuse), PAYL and Anagram (in-house
anomaly, 1-gram freq and n-gram BF, respectively)

27

IP-based corroboration

• Key questions:

• Is it useful?

• Can corroboration be done quickly?

• Can it be done accurately?

• Does it preserve privacy?

• Techniques used

• Hash functions

• Bloom filters

28

Alert intersection, IP/port

!"
#!
$#
!%
#&
"

!"
#!
$#
!%
#&
$

!"
#!
$#
&
$#
&
"

!"
#!
%#
&
$#
&
"

!$
#!
%#
&
"#
!"

!$
#!
%#
&
$#
!"

!$
#!
%#
&
$#
&
"

!$
#&
$#
&
"#
!"

!%
#!
$#
&
"#
!"

!%
#!
$#
&
$#
!"

!%
#!
$#
&
$#
&
"

!%
#&
$#
&
"#
!"

&
"#
!$
#!
%#
!"

&
"#
!$
#!
%#
&
$

&
"#
!$
#&
$#
!"

&
"#
!%
#&
$#
!"

&
$#
!$
#!
%#
!"

&
$#
!$
#!
%#
&
"

&
$#
!$
#&
"#
!"

&
$#
!%
#&
"#
!"

'()*+,(-)*.+*/)*0

1

21

"11

"21

$11

$21

%11

%21

311

321

4
5
6
7
*
.,
8
9,
(-
)*
.+
*
/
)*
0
,:
;*
.)
+

1<11

1<1$

1<13

1<1=

1<1>

1<"1

1<"$

1<"3

?
*
./
*
-
):
@
*
,8
9,
9(
.+
),
+
()
*
A+
,:
;*
.)
+
,(
-
)*
.+
*
/
)*
0

!"
#!
$

!"
#!
%

!"
#&
"

!"
#&
$

!$
#!
"

!$
#!
%

!$
#&
"

!$
#&
$

!%
#!
"

!%
#!
$

!%
#&
"

!%
#&
$

&
"#
!"

&
"#
!$

&
"#
!%

&
"#
&
$

&
$#
!"

&
$#
!$

&
$#
!%

&
$#
&
"

'()*+,(-)*.+*/)*0

1

2111

"1111

"2111

$1111

$2111

3
4
5
6
*
.,
7
8,
(-
)*
.+
*
/
)*
0
,9
:*
.)
+

1;1

1;2

";1

";2

$;1

$;2

%;1

%;2

<;1

<;2

=
*
./
*
-
)9
>
*
,7
8,
8(
.+
),
+
()
*
?+
,9
:*
.)
+
,(
-
)*
.+
*
/
)*
0

2-way corroboration 4-way corroboration

!"
#!
$#
!%
#&
"

!"
#!
$#
!%
#&
$

!"
#!
$#
&
$#
&
"

!"
#!
%#
&
$#
&
"

!$
#!
%#
&
"#
!"

!$
#!
%#
&
$#
!"

!$
#!
%#
&
$#
&
"

!$
#&
$#
&
"#
!"

!%
#!
$#
&
"#
!"

!%
#!
$#
&
$#
!"

!%
#!
$#
&
$#
&
"

!%
#&
$#
&
"#
!"

&
"#
!$
#!
%#
!"

&
"#
!$
#!
%#
&
$

&
"#
!$
#&
$#
!"

&
"#
!%
#&
$#
!"

&
$#
!$
#!
%#
!"

&
$#
!$
#!
%#
&
"

&
$#
!$
#&
"#
!"

&
$#
!%
#&
"#
!"

'()*+,(-)*.+*/)*0

1

2111

"1111

"2111

$1111

$2111

3
4
5
6
*
.,
7
8,
(-
)*
.+
*
/
)*
0
,9
:*
.)
+

1;1

1;2

";1

";2

$;1

$;2

%;1

%;2

<;1

<;2

=
*
./
*
-
)9
>
*
,7
8,
8(
.+
),
+
()
*
?+
,9
:*
.)
+
,(
-
)*
.+
*
/
)*
0

29

Overheads, IP/port

! "!!!!! #!!!!! $!!!!! %!!!!! &!!!!!!

'()*+,-./-01+,23

!4!

!45

&4!

&45

"4!

"45

6
7)

+
-8
3
+
9
.
:
;
3
<

'.:+
=>?"!
=>?"#
@AB&
AC

entries
hash

functions
Uncompressed # bits Compressed # bits

Size Per Alert Size Per Alert

1 5 131072 131072 182 182

2 10 131072 65536 212 106

100000 5 131072 1.31 96361 .96

• Techniques all scale
well computationally

• Hash functions usually
use a fixed number of
bits per alert, e.g., 160n

• Bloom filter memory
use is significantly less

30

Corroboration FP, IP/port

A1,A
2

A1,A
3

A1,C
1

A1,C
2

A2,A
1

A2,A
3

A2,C
1

A2,C
2

A3,A
1

A3,A
2

A3,C
1

A3,C
2
C1,A

1

C1,A
2

C1,A
3

C1,C
2

C2,A
1

C2,A
2

C2,A
3

C2,C
1

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

1
2
3
4
5
6
7
8
9
10

!1#!
2

!1#!
3

!1#&
1

!1#&
2

!2#!
1

!2#!
3

!2#&
1

!2#&
2

!3#!
1

!3#!
2

!3#&
1

!3#&
2

&1#!
1

&1#!
2

&1#!
3

&1#&
2

&2#!
1

&2#!
2

&2#!
3

&2#&
1

&'((elati./ 1ite1

030

032

034

036

036

130

7
8

9

e
(:

e
.

ta
/

e
 '

;
:'

((
e
la

te
<

 a
le

(t
1

6
16
24
32
40
46

A1,A
2,C

1,A
3

A1,C
2,A

2,A
3

A1,C
2,A

2,C
1

A1,C
2,C

1,A
3

A2,A
1,C

1,A
3

A2,C
2,A

1,A
3

A2,C
2,A

1,C
1

A2,C
2,C

1,A
3

A3,A
2,A

1,C
1

A3,C
2,A

1,C
1

A3,C
2,A

2,A
1

A3,C
2,A

2,C
1

C1,A
2,A

1,A
3

C1,C
2,A

1,A
3

C1,C
2,A

2,A
1

C1,C
2,A

2,A
3

C2,A
1,C

1,A
3

C2,A
2,A

1,A
3

C2,A
2,A

1,C
1

C2,A
2,C

1,A
3

Correlating sites

0.0

0.2

0.4

0.6

0.8

1.0

F
P

,
p

e
rc

e
n

ta
g

e
 o

f
co

rr
e
la

te
d

 a
le

rt
s

8
16
24
32
40
48

Hash set (H3) Bloom filter

2-way

4-way

31

Brute-force FP, IP/port

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

#,
$#
,*
,.
?-

*

#*****

,*****

-*****

.*****

"******

@
8
A
6
)
7
24
52
<
=)
7
(>

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

"
#
$
,
?
-
@
.
A
"*

*

#*****

,*****

-*****

.*****

"******

B
8
C
6
)
7
24
52
<
=)
7
(> ~ 600k

alerts

~ 20
alerts

(sparse,
noisy)

Bloom filterHash set

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

"
#
$
,
?
-
@
.
A
"*

*

#*

,*

-*

.*

"**

B
8
C
6
)
7
24
52
<
=)
7
(>

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

#,
$#
,*
,.
?-

*

#*

,*

-*

.*

"**

@
8
A
6
)
7
24
52
<
=)
7
(>

32

Temporal corroboration, IP/port

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!

'()*+,-./01,.02.+013()/042.5+,642-+7

!

&

"

8

#

9

$

:
0;
,
.5
<
=
7

<>?.=@
A:=@

&!!!!

"!!!!

8!!!!

#!!!!

9!!!!

$!!!!

B!!!!

C
3
1
D
,
E.
4
F.
=
@
.G
D
0/
+
G.
+
,
/

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!

'()*+,-./01,.02.+013()/042.5+,642-+7

!

"

#

$

%

&!

&"

8
09
,
.5
:
;
7

:<=.;>
?8;>

!

@!!!!

&!!!!!

&@!!!!

"!!!!!

"@!!!!

A!!!!!

A@!!!!

B
3
1
C
,
D.
4
E.
;
>
.F
C
0/
+
F.
+
,
/

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!

'()*+,-./01,.02.+013()/042.5+,642-+7

!

8

&!

&8

"!

9
:
.1

,
;<
,
./
01

,
.5
1
+
,
6
7

=>?.9:
@A9:

&!!!!

"!!!!

B!!!!

#!!!!

8!!!!

$!!!!

C!!!!

D
3
1
E
,
;.
4
F.
9
:
.G
E
0/
+
G.
+
,
/

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!

'()*+,-./01,.02.+013()/042.5+,642-+7

$!

$8

9!

98

%!

%8

:!

;
<
.1

,
=>
,
./
01

,
.5
1
+
,
6
7

?@A.;<
BC;<

!

8!!!!

&!!!!!

&8!!!!

"!!!!!

"8!!!!

D!!!!!

D8!!!!

E
3
1
F
,
=.
4
G.
;
<
.H
F
0/
+
H.
+
,
/

16-bit BFs 20-bit BFs

Sp
ac

e
us

ag
e

M
er

ge
 t

im
e

Expiry
33

• Techniques used: frequency distributions, Z-Strings,
and n-gram Bloom filters

• Major questions:

• How efficient are privacy transforms with payloads?

• How similar are the different techniques at
comparing packet content?

• How well do the techniques corroborate alerts?

• What kind of signatures can we generate?

• What’s the comparative privacy gain?

Payload corroboration

34

• High-level view of
score similarities

• Most of the
techniques are
similar, except LCS
(vulnerable to slight
differences)

• ED and LCSeq very
similar

• N-gram techniques
not included (doesn’t
compute similarity
over entire packet
datagram)

Similarity score, 80 random pairs
of “good vs. good”

Payload similarity

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Raw!
LCS

Raw!
LCSeq

Raw!
ED

Freq!
MD

ZStr!
LCS

ZStr!
LCSeq

ZStr!
ED

n!
grams, n

=5

S
im

ila
ri
ty

 S
c
o

re

Student Version of MATLAB

False positive score range;
blue bar represents 99.9%
percentile; white represents
maximum score

Range of scores
across multiple
instances of the same
worm (CR or CRII)

Range of scores across
instances of different
worms (CR vs. CRII),
e.g., polymorphism

Cross-domain corroboration

36

Original CRII packet (first 300 bytes)

88 0 255 117 48 85 116 37
232 100 100 106 69 133 137
80 254 1 56 51

Z-String (first 20 bytes, ASCII values)

Byte frequency distribution

* /def*ult.ida?XXXX*XXXX%u9090%
u6858%ucbd3%u7801%u9090%u6858%u
cbd3%u7801%u9090%u6858%ucbd3%u7
801%u9090%u9090%u8190%u00c3%u00
03%u8b00%u531b%u53ff%u0078%u000
0%u00=a HT*: 3379

Flattened 5-grams (first 172 bytes; “*” implies wildcard)

GET./default.ida?XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX%u9090%u6858%u
cbd3%u7801%u9090%u6858%ucbd3%u7801%u
9090%u6858%ucbd3%u7801%u9090%u9090%u
8190%u00c3%u0003%u8b00%u531b%u53ff%u
0078%u0000%u0

Signature generation

37

• Frequency-based approaches

• Characterize recovery likelihood R as the probability that
someone can correctly guess the original content given
the frequency distribution; for CRII, R ≈ 1/28208

• Even smaller (intractable) for a Z-String

• N-gram Bloom filter

• For a 212-bit BF and 5-grams, R = (212/2565)m, where m is
the number of distinct n-grams recovered

• Surprisingly, a BF’s FPs do not measurably affect
correlation; “unlucky coincidence rate” = (1/212)m, where
m, the number of incorrectly verified n-grams, grows
small very quickly

Payload privacy gain

38

Outline

• Motivation and Problem Statement

• Model

• Privacy Preservation Techniques

• Privacy Preservation & Intrusion Detection

• Related Work

• Conclusion

39

Related Work

• Event correlation (Rapide, DECS)

• Event distribution (Chord, Onion routing, Elvin, Siena,
Gryphon, Astrolabe)

• Software monitoring (AProbe, Codebook, NESTOR)

• DIDS systems (EMERALD, GrIDS, DShield, DOMINO)

• Signature generation (Honeycomb, Earlybird, Autograph,
Polygraph)

• Vulnerability signatures (VSEF, Nemean, Shield, Vigilante)

40

• Existing privacy-preserving collaboration approaches
(Lincoln, Kissner, FTN, Concept Hierarchies)

• Focus primarily on IPs/“entity matches”, as opposed to
our more generic approach

• No temporal corroboration

• Scalability and practicality vary

• Model sharing (JAM, BARTER)

• Privacy-preserving data mining, secure computation, ZKP

• Bloom filter-based indices, search keys

Related Work (II)

41

Outline

• Motivation and Problem Statement

• Model

• Privacy Preservation Techniques

• Privacy Preservation & Intrusion Detection

• Related Work

• Conclusion

42

Contributions
• Typed event-driven privacy-preserving

corroboration framework, written in Java

• The use of a diverse array of existing data
structures to support corroboration

• New data structures and strategies for
temporal corroboration: MRU BF, TSBF and
Z-String clustering

• Extensive evaluation of these techniques with
real data

43

• Publications (so far): [Parekh06], [Wang06], [Parekh05],
[Locasto05], [Gross04], [Keromytis03], [Kaiser03],
[Kaiser02], [Gross01]

• KX/XUES demoed, deployed in 3+ applications,
Worminator demoed, deployed at 5+ sites

• http://worminator.cs.columbia.edu

• Grant support, successful presentations and demos to
DARPA, NSA, DHS, ARO

• Patent application filed on aspects of Worminator work

Accomplishments

44

http://worminator.cs.columbia.edu
http://worminator.cs.columbia.edu

• Wider-scale deployment, evaluation

• Polymorphic/obfuscated worm detection, mimicry attacks

• Posture-based [Knight02] aggregation/exchange policies

• Privacy-preserving language and matching capabilities

• “Application communities” peer-to-peer application
monitoring

• Privacy-preserving model-based authentication
✴ Malicious insider/watermarking problem
✴ Evaluation of event distribution strategies
✴ Automated IDS attacker profiling
✴ Automatic event schema discovery/generation/processing
✴ Automatic event processing rule generation

Future Work

45

Conclusions
• Effective privacy-preserving event

corroboration is practical, and for a broad
variety of applications

• Event corroboration in the intrusion domain
can provide a useful global picture of threats,
exploits, and trustworthy peers

• A typed framework provides access to a
heterogeneous set of corroboration tools
depending on the preferred scenario

46

(the end)

47

Two Good Ideas

• Demonstrably effective techniques to enable
privacy-preserving event sharing, including
temporal constraints, even when original alerts
aren’t exchanged

• A framework to convince organizations to
actually share information for distributed
applications

48

Service failure detection

2.5. EXAMPLE APPLICATIONS 29

websites (e.g., www.bbc.co.uk)—for news items that it then maps to locations in the

GIS system—is subject to frequent glitches (DDoS, server failure, etc.), requiring

restart of the GeoWorlds service that is trying to access the external website, possibly

substituting an alternative news site.

Using WPI’s AIDE (Active Interface Development Environment) sensor technol-

ogy [58], we were able to automatically instrument the GeoWorlds Java source code,

and in particular the mechanism that dealt with request-to-service dispatch, with

sensors that would monitor the start and end of method calls that were relevant

to contacting external services. The Event Distiller incorporated rules to monitor

a variety of method calls, making sure that a “termination” call matched up with

each “initiation” call within an appropriate timebound (ranging from seconds to

a minute). AIDE reports method calls in an XML format; these calls were then

translated to a simple attribute/value set via the FleXML Metaparser and fed into

the Event Distiller.

1 <state name="Start" timebound="-1" children="End" actions=""

2 fail_actions="">

3 <attribute name="Service" value="*service"/>

4 <attribute name="Status" value="Started"/>

5 <attribute name="ipAddr" value="*ipaddr"/>

6 <attribute name="ipPort" value="*ipport"/>

7 <attribute name="time" value="*time"/>

8 </state>

9

10 <state name="End" timebound="15000" children="" actions="Debug"

11 fail_actions="Crash">

12 <attribute name="Service" value="*service"/>

13 <attribute name="State" value="FINISHED_STATE"/>

14 <attribute name="ipAddr" value="*ipaddr"/>

15 <attribute name="ipPort" value="*ipport"/>

16 <attribute name="time" value="*time2"/>

17 </state>

Figure 2.4: Failure Detection Pattern

Figure 2.4 shows an example of a simple event pattern used to perform such 49

Spam detection

34 CHAPTER 2. MIDDLEWARE EVENT MONITORING

and Message-ID) were captured by sensors, encapsulated into events by the Event

Packager, and sent to the Event Distiller. The Event Distiller rules (figure 2.5) would

trigger if multiple (3+) messages containing the same source and Message-ID were

received, by one or more recipients in the administrative domain, within a very

short timespan (less than 10 seconds). Once detection occurred, a mobile agent

effector was dispatched to reconfigure the Sendmail MTA in the target network to

block all further messages from that source address by rewriting the configuration

file and sending a hangup signal (SIGHUP) to Sendmail to reload its configuration.

1 <state name="a" timebound="-1" children="b">

2 <attribute name="from" value="*1"/>

3 <attribute name="messageID" value="*2"/>

4 </state>

5 <state name="b" timebound="100" count="1" children="" actions="A,B"

6 fail_actions="F" absorb="true">

7 <attribute name="from" value="*1"/>

8 <attribute name="messageID" value="*2"/>

9 </state>

Figure 2.5: Sample Pattern to Detect Repeated Emails

This solution worked for simple spam—i.e., one message sent by a spammer to

sufficient people in the same organization would verifiably get caught and future

communication from that spammer would be blocked. Of course, the organizational

newsletter might also be blocked. While this technique is superseded by better

spam-specific technologies, such as SpamAssassin [7], which uses dynamic rules and

Bayesian learning to distinguish more “stealthy” spam, this example demonstrates

the broad utility of our Event Distiller’s timebound-based pattern matching, in

this case with email-specific semantics. In essence, we were able to add (limited)

autonomic behavior to Sendmail.

50

Privacy

• Many different forms; those explored in this
thesis include

• Data privacy: privacy of data semantics

• Source anonymity: privacy of producer

• Physical privacy not covered

• Time privacy “optional”

51

Timestamping

• Ideal: created by producer upon event
creation

• Upper bound, upper/lower bound,exact

• Implicit timestamp

• At publication

• At receipt; can lead to ordering errors

• No timestamping: pure intersection

52

Levels of anonymity

• Non-anonymous

• Anonymous but differentiable

• Anonymous but categorizable

• Fully anonymous (not supported; very
difficult problem, e.g., Sybil attacks)

53

Bloom filters

• Classic hash-based data structure [Bloom60]

000001000010010000001010Bloom Filter

Hash

Functions

Input Data

54

Incremental analysis

...jihgfedcba

5-grams.

Similarity metric for a set of n-grams.

78 CHAPTER 5. PRIVACY PRESERVATION

question. See figure 5.1. The set of n-grams in the data structure can be either kept

sorted by feature (i.e., enabling frequency analysis) or flattened (i.e., enabling binary

analysis). The latter allows for fairly efficient space coding via a Bloom filter, as

discussed in section 6.5, and produces surprisingly good results (specifically, for

network payload events).

...jihgfedcba

Figure 5.1: 5-grams computed over opaque data
The first three 5-grams are shown. There are b − 4 distinct 5-grams in this data, where b is

the number of bytes.

The resulting privacy-enhanced event set is equivalent to a model over the

original event(s), and the similarity metric of an event e with k n-grams against

model E′ may be computed as

S(e,E′) =

k∑
i=0

f (gi)

k : E′ is frequency-modeled
k∑

i=0
F (gi)

k : E′ is binary-modeled

(5.1)

where gi is the ith n-gram in event e, f (gi) is the normalized frequency of n-gram gi

in E′, f (g) ∈ [0, 1], and F (gi) is a binary function returning 1 if n-gram gi is in E′

and 0 if not.

In fact, many types of events can be broken down into n-grams and inserted

into a single model, which can then be seen as a characterization of event flow. Given

such a model, not only can similar events be corroborated at other sites (given

appropriate thresholding), but new events can be checked to see how closely they

fit the characterization of event flows. Detection of events which differ, or which

are anomalous, is a key mechanism used in network traffic anomaly detection, as I

55

Frequency model
distance metrics

• Event against model: simplified Mahalanobis
distance

• Model vs. model: Manhattan distance

94 CHAPTER 5. PRIVACY PRESERVATION

s1, s2, . . . , sk, where k is the total unique number of segments and each segment si has

a occurrence frequency amongst all events e1, . . . , en. (Note that a segment may occur

many times in any individual event; we are more concerned with the total occurrence

frequency over the set E.) These scores are normalized, i.e., f (si) ∈ [0, 1],
∑

i f (si) = 1

where f (si) is the frequency of segment si amongst all segments, and stored against

index i.

Computing the similarity metric S(e,E′) can be done in one of several different

ways, depending on segment size and the number of segments. For small and

relatively few distinct segments, e.g., the 1-gram distribution of byte payloads, we

can use a statistical distance metric, i.e., S(e,E′) = D(M(e),E′). One such statistical

metric is the simplified Mahalanobis distance [170]

D′Mah(x, µ) =
n−1∑

i=0

(|xi − µi|/(σi + α)), (5.2)

where σi is the standard deviation, and α is a smoothing factor to avoid dividing by

zero (with higher α values implying less of a confidence about the model).

However, even the simplified Mahalanobis distance is expensive for larger

segments, such as higher-order n-grams, as computations are done over very sparse

event vectors. Instead, we use the more approximate similarity metric defined in

equation 5.1, which looks for the frequency prevalence of each n-gram gi amongst

all n-grams k in an arbitrary event e.

The memory overhead of a frequency transform varies based on how much

data is inserted into the model. Given double-precision frequencies per segment,

a frequency transform could use 64 bits per segment; for the 1-gram payload

distributions in chapter 6, one frequency model would be 2KB. This is large if the

model is used for a single event with relatively few features; if event rates are high,

combining events may be desirable.

5.2. PRIVACY-PRESERVATION TECHNIQUES AND TRANSFORMS 95

The last important consideration is that frequency transforms are not a useful

technique where feature precision is required, i.e., the ability to determine if a

particular feature X corroborates between an incoming event and the model. As a

consequence, a frequency model is not a very good privacy-preserving transform

when the event contains little data or data that is not easily separable into a large

number of features, e.g., if it is very tightly structured in the first place. On the other

hand, events that are largely opaque can be arbitrarily broken into small features,

which in turn provide sufficient data for a rich frequency distribution.

As this implies, selection of the appropriate mechanism is highly application-

dependent. The privacy gain accomplished via a frequency distribution depends

on the feature size, as the problem is reduced to a permutation problem. Given

sufficiently small and diverse features, the number of permutations grows large

and makes events transformed into frequency distributions nearly unrecoverable.

Frequency Model Comparison and Combination

Frequency models can, of course, be compared against each other as opposed to

just purely against events. The overarching consideration here is to make such

comparisons fast to enable rapid determination of similar models, and for our

applications, we use the Manhattan distance metric

DMan =
n−1∑

i=0

|xi − yi|, (5.3)

which is reasonably accurate for our applications and requires only linear time in

the length of the model (and is essentially constant-time for the short models used

in chapter 6).

Given sufficiently similar models, there are various applications of merging or

combining models, which can be done via a straightforward averaging of the features

56

IP Data Collected
Site Time (days) # Alerts # Alerts/Min. # Distinct

IPs
Distinct

IP/port pairs

Academic 1 314.87 3919604 8.64 86108 4576155

Academic 2 28.53 823631 20.04 28838 844288

Academic 3 164.56 2811553 11.86 45255 3605271

Academic 4 14.95 54518 2.53 2398 2541

Commercial 1 242.52 923482 2.64 119675 325283

Commercial 2 373.68 543979 1.01 60585 378062

57

Brute-forcing sparse BFs
(20 alerts per BF)

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

"
#
$
,
?
-
@
.
A
"*

*

#*

,*

-*

.*

"**

B
8
C
6
)
7
24
52
<
=)
7
(>

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

#,
$#
,*
,.
?-

*

#*

,*

-*

.*

"**

@
8
A
6
)
7
24
52
<
=)
7
(>

Bloom filterHash set

58

Sparse noisy sets/BFs, IP/port

Bloom filter (10% noise)Hash set (100% noise)

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

"
#
$
,
?
-
@
.
A
"*

*

#*

,*

-*

.*

"**

B
8
C
6
)
7
24
52
<
=)
7
(>

!" !# !$ %
"

%
#

&'()

+

*+#

*+,

*+-

*+.

"+*

/
0
12
3
24
52
6
7
8
()
95
4
7
:
)
;
2<
=)
7
(>

#,
$#
,*
,.
?-

*

#*

,*

-*

.*

"**

@
8
A
6
)
7
24
52
<
=)
7
(>

!"
#!
$#
%
"#
!&

!"
#%
$#
!$
#!
&

!"
#%
$#
!$
#%
"

!"
#%
$#
%
"#
!&

!$
#!
"#
%
"#
!&

!$
#%
$#
!"
#!
&

!$
#%
$#
!"
#%
"

!$
#%
$#
%
"#
!&

!&
#!
$#
!"
#%
"

!&
#%
$#
!"
#%
"

!&
#%
$#
!$
#!
"

!&
#%
$#
!$
#%
"

%
"#
!$
#!
"#
!&

%
"#
%
$#
!"
#!
&

%
"#
%
$#
!$
#!
"

%
"#
%
$#
!$
#!
&

%
$#
!"
#%
"#
!&

%
$#
!$
#!
"#
!&

%
$#
!$
#!
"#
%
"

%
$#
!$
#%
"#
!&

%'(()*+,-./01-,)1

232

23$

234

235

236

"32

7
8
#0
9
)
(:
)
.
,+
/
)
0'
;0
:
'
((
)
*+
,)
<
0+
*)
(,
1

6
"5
$4
&$
42
46

!"
#!
$#
%
"#
!&

!"
#%
$#
!$
#!
&

!"
#%
$#
!$
#%
"

!"
#%
$#
%
"#
!&

!$
#!
"#
%
"#
!&

!$
#%
$#
!"
#!
&

!$
#%
$#
!"
#%
"

!$
#%
$#
%
"#
!&

!&
#!
$#
!"
#%
"

!&
#%
$#
!"
#%
"

!&
#%
$#
!$
#!
"

!&
#%
$#
!$
#%
"

%
"#
!$
#!
"#
!&

%
"#
%
$#
!"
#!
&

%
"#
%
$#
!$
#!
"

%
"#
%
$#
!$
#!
&

%
$#
!"
#%
"#
!&

%
$#
!$
#!
"#
!&

%
$#
!$
#!
"#
%
"

%
$#
!$
#%
"#
!&

%'(()*+,-./01-,)1

232

23$

234

235

236

"32

7
8
#0
9
)
(:
)
.
,+
/
)
0'
;0
:
'
((
)
*+
,)
<
0+
*)
(,
1

"
$
&
4
=
5
>
6
?
"2

Pr
iv

ac
y

C
or

ro
bo

ra
tio

n

59

TSBF, MRU BF Expiry

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!

'()*+,-./01,.02.+013()/042.5+,642-+7

!

8

&!

&8

"!

"8

'
9
*
0:
;
./
01

,
.5
1
+
,
6
7

<=>.?@
AB?@

&!!!!

"!!!!

C!!!!

#!!!!

8!!!!

$!!!!

D!!!!

E
3
1
F
,
:.
4
G.
?
@
.H
F
0/
+
H.
+
,
/

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!

'()*+,-./01,.02.+013()/042.5+,642-+7

!

"!

#!

$!

%!

&!!

'
8
*
09
:
./
01

,
.5
1
+
,
6
7

;<=.>?
@A>?

!

B!!!!

&!!!!!

&B!!!!

"!!!!!

"B!!!!

C!!!!!

CB!!!!

D
3
1
E
,
9.
4
F.
>
?
.G
E
0/
+
G.
+
,
/

16-bit BF 20-bit BF

60

Longitudinal study of IP scans

• Worminato’s goal is to
enable precisely this
type of analysis

• Three key longitudes
analyzed

• Over time

• Over geographical,
network space

• By target

Sites # Site/IPs Avg Scan Len
(days)

1 307050 7.14

2 22250 10.86

3 10074 17.20

4 3228 29.86

5 245 70.77

61

Scan length distribution
5-site scanners

0 50 100 150 200 250
Feb 2005

Apr 2005

Jun 2005

Jul 2005

Sep 2005

Oct 2005

Dec 2005

Feb 2006

Mar 2006

62

Stealthiness
164 CHAPTER 6. PRIVACY AND INTRUSION DETECTION

Scan Length
Source IP (days) # Alerts St
61.185.246.34 257.73 7 3.144e-07
207.218.223.98 302.96 9 3.438e-07
61.129.45.54 302.12 10 3.831e-07
207.218.223.91 270.71 9 3.848e-07
207.218.223.89 271.16 11 4.695e-07
207.218.223.93 301.50 13 4.990e-07
66.150.8.18 199.92 10 5.789e-07
62.189.244.254 287.28 17 6.849e-07
61.172.250.90 234.36 14 6.914e-07
206.253.195.10 293.14 19 7.502e-07

Table 6.5: Top 10 stealthy scanners detected at 4 sites

Scan Length
Source IP (days) # Alerts St
207.218.223.92 300.14 12 4.628e-07
207.218.223.103 302.52 17 6.504e-07
69.7.175.21 293.50 41 1.617e-06
69.25.27.10 225.52 33 1.694e-06
161.170.254.232 299.29 51 1.972e-06
219.148.119.199 227.03 45 2.294e-06
66.151.55.10 303.12 62 2.367e-06
62.73.174.150 338.39 90 3.078e-06
64.41.241.171 338.39 90 3.078e-06
64.56.168.66 338.39 96 3.283e-06

Table 6.6: Top 10 stealthy scanners detected at 5 sites

one “customer” (be it a legitimate customer whose machines were subverted against

their knowledge, or an illegitimate customer using the machines as a scanning

source). The likelihood that these hosts were legitimately present at 5 disparate

sites is extremely unlikely, especially since several of the sites have absolutely no

relationship with each other.

Further discussion about subnet analysis can be found later in this subsection.

164 CHAPTER 6. PRIVACY AND INTRUSION DETECTION

Scan Length
Source IP (days) # Alerts St
61.185.246.34 257.73 7 3.144e-07
207.218.223.98 302.96 9 3.438e-07
61.129.45.54 302.12 10 3.831e-07
207.218.223.91 270.71 9 3.848e-07
207.218.223.89 271.16 11 4.695e-07
207.218.223.93 301.50 13 4.990e-07
66.150.8.18 199.92 10 5.789e-07
62.189.244.254 287.28 17 6.849e-07
61.172.250.90 234.36 14 6.914e-07
206.253.195.10 293.14 19 7.502e-07

Table 6.5: Top 10 stealthy scanners detected at 4 sites

Scan Length
Source IP (days) # Alerts St
207.218.223.92 300.14 12 4.628e-07
207.218.223.103 302.52 17 6.504e-07
69.7.175.21 293.50 41 1.617e-06
69.25.27.10 225.52 33 1.694e-06
161.170.254.232 299.29 51 1.972e-06
219.148.119.199 227.03 45 2.294e-06
66.151.55.10 303.12 62 2.367e-06
62.73.174.150 338.39 90 3.078e-06
64.41.241.171 338.39 90 3.078e-06
64.56.168.66 338.39 96 3.283e-06

Table 6.6: Top 10 stealthy scanners detected at 5 sites

one “customer” (be it a legitimate customer whose machines were subverted against

their knowledge, or an illegitimate customer using the machines as a scanning

source). The likelihood that these hosts were legitimately present at 5 disparate

sites is extremely unlikely, especially since several of the sites have absolutely no

relationship with each other.

Further discussion about subnet analysis can be found later in this subsection.

Interestingly, the items in italics are all from the
same subnet

63

So, which addresses
from 207.218.*?

6.4. IP-BASED COLLABORATION AND SCAN DETECTION 165

Source IP #sites #alerts Scan len Hostname
207.218.223.92 5 12 300.14 ivhou-207-218-223-92.ev1servers.net
207.218.223.103 5 17 302.52 ivhou-207-218-223-103.ev1servers.net
207.218.223.89 4 11 271.16 ivhou-207-218-223-89.ev1servers.net
207.218.223.91 4 9 270.71 ivhou-207-218-223-91.ev1servers.net
207.218.223.93 4 13 301.50 ivhou-207-218-223-93.ev1servers.net
207.218.223.98 4 9 302.96 ivhou-207-218-223-98.ev1servers.net
207.218.223.94 3 10 300.44 ivhou-207-218-223-94.ev1servers.net
207.218.223.95 3 8 301.51 ivhou-207-218-223-95.ev1servers.net
207.218.223.97 3 8 63.06 ivhou-207-218-223-97.ev1servers.net
207.218.223.99 3 10 271.10 ivhou-207-218-223-99.ev1servers.net
207.218.223.102 3 10 297.12 ivhou-207-218-223-102.ev1servers.net
207.218.223.90 2 9 20.04 ivhou-207-218-223-90.ev1servers.net
207.218.223.101 2 5 270.55 ivhou-207-218-223-101.ev1servers.net
207.218.223.100 1 1 3.99 ivhou-207-218-223-100.ev1servers.net
207.218.223.132 1 4 2.12 ns1.rackshack.net
207.218.223.162 1 6 1.05 ns2.rackshack.net

Table 6.7: Subnet search results for 207.218.223.0/24

Geographic Analysis

Given multiple-site corroboration, we can do some analysis to see if there is any

correlation between multiple-site scanners and geographic tendencies, by both the

number of scanning sources and the number of alerts generated by IDS sensors.

A combination of DNS and WHOIS data was used to determine the geographic

distribution of IP addresses. Figures 6.58–6.62 show the results of this analysis. The

country codes shown are the ISO codes used by WHOIS. Countries with less than

1% of alerts or IPs are not shown, and are instead lumped into “Other”.

The trend from 1-site to 4-site is clear: as more sites’ alerts are corroborated, the

geographic distribution takes an increasingly international bent; most notable is

the shift from the US being the primary source of alerts to China. Part of this is

due to the fact that corroboration eliminates most of the false positives observed at

local networks; for example, most false positives in CUCS would be attributable

to machines on the same LAN. This is already visible in the second chart in figure

6.58, where the US actually has significantly more alerts than actual IP space. By

64

Subnet scanners

0 200 400 600 800 1000

Subnet #

20

21

22

23

24

25

26

27

28
#

 a
d

d
r
e
s
s
e
s
 i

n
 s

u
b

n
e
t

1 sites
2 sites
3 sites
4 sites
5 sites

65

Source geography

US

29.45%
CN

24.86%

FR

1.87%

JP

9.97%

EU

3.97%

TW

2.33%

KR

4.06%

AU

1.68%

CA

1.99%

PL

1.16%

GB

1.18%

IT

1.27%

DE

1.02%

BR

1.03%

HK

1.20%

BE

1.30% Other

11.67%

CN

51.80%

US

29.00%

JP

3.59%

CA

1.86%

AU

2.35%

TW

1.49%

KR

1.49%
Other

8.43%

2-site, by IP 4-site, by IP

66

Signature distribution

Alert
exchange

Testing data

Internet

Alerts

Sensor

Model

Privacy-

preserving alerts

Correlator

Collaborative anomaly detector

Training data
"Normal"
site traffic

Collaborative

anomaly detector

Collaborative

anomaly detector

Alerts and
signatures

Site

Signature

Site

Site

Servers

Payload: Big picture

67

Bloom filter n-gram analysis

Bloom Filter

Alert payload

...jihgfedcba

5-gram

Alerts

Hash
functions

Site 1

Site 2 Site 3

0001000010010000001010

68

Hash, freq performance
(full payloads)

! "!!!! #!!!! $!!!! %!!!! &!!!!!

'()*+,-./-0123+45

!

"

#

$

%

&!

&"

&#

&$

&%

6
7)

+
-8
5
+
2
.
9
:
5
;

'.9+
<=>&
=?'@
=?

! "!!!! #!!!! $!!!! %!!!! &!!!!!
!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

>
A
+
,1
B
+
-0
1
2
3
+
4-
C+
9
B
4D

! "!!!! #!!!! $!!!! %!!!! &!!!!!

'()*+,-./-0123+45

!6!!

!6!7

!6&!

!6&7

!6"!

8
9)

+
-:
5
+
2
.
;
<
5
=

'.;+
>15?2.<+
@,+A
BC4,

! "!!!! #!!!! $!!!! %!!!! &!!!!!
!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

D
E
+
,1
F
+
-0
1
2
3
+
4-
G+
;
F
4?

Hashing, entire packet Frequency transform,
entire packet

69

N-gram performance
HTTP traffic, 60,000 packets

! " # $ % & ' ()

*+,-./01234

(

5

!

"

#

$

%

&

6
2/

4
07
1
4
8
9
:
;
1
<

=>
=>>?>@
ABC(
B!
B!>?>@

! " # $ % & ' ()

*+,-./01234

)

5

"

$

&

()

(5

("

($

6
2/

4
07
1
4
8
9
:
;
1
<

*9:4
=>?(
>!
>!@A@B
>!C!
>!@A@BC!

Hash set Bloom filter

70

Example
malicious code

Example
malcode

Site A Site B

Exa, xam, amp, mpl, ple,
le□, e□m, □ma, mal, ali,
lic, ici, cio, iou, ous,
us□, s□c, □co, cod, ode

Exa, xam, amp, mpl, ple,
le□, e□m, □ma, mal, alc,

lco, cod, ode

0000011010101101001101100110 0000001011011101000100110000

Exa, xam, amp, mpl,
ple, le□, e□m, □ma,

mal, cod, ode

Exa, xam, amp, mpl,
ple, le□, e□m, □ma,

mal, cod, ode

Example mal*code Example malcode

Payload corroboration

71

• Three sets of randomly-sampled traffic

• www1 and www2: Columbia webservers, 100 packets
each

• Malicious packet dataset, 56 packets

• “Known ground truth”

• Evaluation

• Similarity: arranged into three pairs (good vs. good,
bad vs. bad, good vs. bad)

• Corroboration: mix attack collection into real traffic,
measure separation with 100% detection

Evaluating payload corroboration

72

• Arranged into three sets of pairs
• 10,000 “good vs. good”
• 1,540 “bad vs. bad”
• 5,600 “good vs. bad” between www1 and the malicious

dataset
• To compare the difference more precisely, normalize and

compare scores
• Compute similarity score vectors VA, VB

• Match their medians
• Scale ranges proportionally so min and max values match
• Compute Manhattan distance between normalized

vectors
• Each privacy-enabled technique is compared against Raw-

LCSeq (baseline)

Payload similarity: setup

73

Type Raw-
LCseq

Raw-
LCS

Raw-
ED

MD ZStr-
LCS

ZStr-
LCSeq

ZStr-
ED

G-G 0 .0948 .0336 .0669 .2079 .0794 .0667
B-B 0 .0508 .0441 .0653 .0399 .0263 .0669
G-B 0 .0251 .0241 .0110 .0310 .0191 .0233

• Unsurprisingly, Raw-ED closest to Raw-LCSeq

• All privacy-preserving methods are close when correlating
pairs including attack traffic; may be leveraging difference
between byte distributions

• Manhattan distance between packet freq distributions best

Normalized similarity scores (lower is better)

Payload similarity (II)

74

• Goal: measure performance in identifying true alerts from
false positives

• Ideal: true positives have very high similarity scores,
while false positives have very low scores

• Mix the collection of attacks into two hours of traffic from
www and www1

• Multiple, differently-fragmented instances of Code Red
and Code Red II to simulate a real worm attack

• Mixed sets are run through PAYL and Anagram, with
alerting threshold reduced so that 100% of attacks are
detected, but with possibly higher FP rates

Cross-domain corroboration

75

• Correlation of identical (non-polymorphic)
attacks works accurately for all techniques

• Non-fragmented attacks score near 1

• Z-Strings (MD, LCseq, ED) and n-grams handle
fragmentation well

• Polymorphism is hard to detect; only Raw-LCSeq
and n-grams score well

• Overall, n-grams are particularly effective at
eliminating false positives, and Bloom filters enable
privacy preservation

Cross-domain corroboration (II)

76

• Each class of techniques can generate its own signature

• Raw packets: Exchange LCS/LCSeq

• Not privacy-preserving

• Byte frequency/Z-Strings

• Given the frequency distribution, Z-Strings generated
by ordering from most to least frequent and dropping
the least frequent

• N-grams

• Robust to reordering or fragmentation

• If position information is available, can “flatten” into a
deployable string signature

Signature generation

77

Z-String Clustering
Technique comparison

!"""" #"""" $"""" %"""" &"""" '"""" ("""")"""" *"""""

+,-./0123,-45/13316

*""

*"""

*""""

*"""""

7
8
9
:
1
4,
5
;,
3
24
<=
>
3
?/
@8
3
21
43
,>
1
=
1
4.
21
6

AB243
C@832143
C@832143,D1@2.

!"""" #"""" $"""" %"""" &"""" '"""" ("""")"""" *"""""

+,-./0123,-45/13316

*"

*""

*"""

*""""

*"""""

7
8
9
:
1
4,
5
;,
3
24
<=
>
3
?/
@8
3
21
43
,>
1
=
1
4.
21
6

AB243
C@832143
C@832143,D1@2.

CRII traffic,
threshold = 4

Normal HTTP traffic,
threshold = 4

78

Z-String Clustering
Cluster Delta technique

!"""" #"""" $"""" %"""" &"""" '"""" ("""")"""" *"""""

+,-./0123,-45/13316

*

*"

7
8
1
4.
9
1
,:
;<
24
=>
9
,?
1
>
9
2@

A@413@5?6,B,*
A@413@5?6,B,!
A@413@5?6,B,#
A@413@5?6,B,$

*""

*"""

7
8
1
4.
9
1
,>
C
D
E
1
4,
5
F,
=2
1
D
3
,=
>
,/
?C
3
21
4

!"""" #"""" $"""" %"""" &"""" '"""" ("""")"""" *"""""

+,-./0123,-45/13316

*

*"

7
8
1
4.
9
1
,:
;<
24
=>
9
,?
1
>
9
2@

A@413@5?6,B,*
A@413@5?6,B,!
A@413@5?6,B,#
A@413@5?6,B,$

*

*"

*""

7
8
1
4.
9
1
,>
C
D
E
1
4,
5
F,
=2
1
D
3
,=
>
,/
?C
3
21
4

500

CRII traffic,
threshold = 4

Normal HTTP traffic,
threshold = 4

79

Z-String Clustering
Manhattan Distance

!"# !"$ %"# %"$ &"# &"$ '"#

()*+,)-./

#"&

#"'

#"$

#"0

#"1

#"2

#"3

!"#

4
5
+
*6
7
+
89
6
:*
;
:,
+
8<

6
=
)
6
>>
6
=
8?
:,
>6
=
@
+

<6=)6>>6=8?:,>6=@+8A=
<6=)6>>6=8?:,>6=@+8B+>;

#

%#

'#

0#

2#

!##

C
8D
.E
,
>+
*,
8F
+
=
+
*6
>+
/

80

Z-String Clustering
CRII Prevalence

!"# !"$ %"# %"$ &"# &"$ '"#

()*+,)-./

!

!#

!##

!###

!####

0
12
.3
,
4+
*,
15
6
6
3
**
78
9
1:
8

2.3,4+*,
2.3,4+*,1;+.4<

!

!#

!##

!###

!####

=
>
9
10
15
6
6
3
**
+
8
6
+
,
1?
+
*1
2
.3
,
4+
*

!"# !"$ %"# %"$ &"# &"$ '"#

()*+,)-./

!

!#

!##

!###

!####

!#####

0
12
.3
,
4+
*,
15
6
6
3
**
78
9
1:
8

2.3,4+*,
2.3,4+*,1;+.4<

!

!#

!##

!###

!####

=
>
9
10
15
6
6
3
**
+
8
6
+
,
1?
+
*1
2
.3
,
4+
*

25,000 packets 100,000 packets

81

Model corroboration

• Exchange and corroborate/combine the models
themselves, instead of individual alerts

• Corroboration of models → comparison of
traffic patterns

• Leverage privacy-preserving properties of
models

• Useful in ad-hoc communications, e.g., MANET

• Key question: do different traffic patterns differ?

82

Model experiments

• Four models: #1 and
#2 simple, #3 “more
complex”, and #4
primarily malcode

• Examine Manhattan
distances, alert
incidence between
models

Example centroids for models
#1 and #4

83

Model distance
Manhattan distance

model1
model2

model1
model3

model1
model4

model3
model4

Dist between
payload lengths 0.4210 1.5201 1.8981 0.7898

Avg dist over
first centroids 0.5946 0.7400 1.6368 1.6330

Avg dist over
all centroids 0.4276 0.6112 1.5220 1.5096

84

Alert indicidence
model1 and model2

Total #
packets

Content
Packets

Model 1
#Alerts

Model 2
#Alerts

Model 1+2
#Alerts

Model 3
#Alerts

Model 1+3
#Alerts

127023 10414 149 184 149 81 148

304182 21812 2705 2829 2672 1789 2613

276332 26294 9684 11128 9669 1138 9530

353897 36780 11201 3394 2187 2919 11040

85

• Temporal event correlation/aggregation supporting arbitrary
event types
• Rapide [Luckham96]: focus on software architecture

simulation, monitoring
• SMARTS InCharge/DECS [Yemini96]: primarily network,

distributed application management
• Publish/subscribe content-based routing systems providing

simple event filtering/covering
• ELVIN [Segall00]: simple single-message predicate matching
• Siena [Carzaniga00]: adds minimal support for sequence

matching
• Gryphon [Banavar99]: event stream “interpretation” to

reduce transmission overhead

Related work: Event Correlation,
Event Systems

86

DIDS/CIDS: Distributed/Collaborative Intrusion Detection
System, multiple networks and sensor(s) at each network

• GrIDS [Staniford96]: Graph hierarchy-based aggregation,
with centralized monitoring server

• EMERALD [Porras97]: Distributed, component-based
intrusion monitoring

• Quicksand [Kruegel02]: Completely decentralized,
specification language to specify patterns

• Indra [Janakiraman03]: Uses “pub-sub-on-P2P”
infrastructure

• DShield (Ullman, http://www.dshield.org): Volunteer DIDS
• DOMINO [Yegneswaran04]: Decentralized hierarchy with

summary exchange; aggregate analysis of DShield logs

Related work: Distributed
Intrusion Detection (DIDS)

87

• Corroboration most commonly implemented using set
membership algorithms/tests
• HotItem protocols [Kissner05]: Uses a Bloom filter

implicitly; discusses theoretical capability to maintain “data”
and “owner” privacy amongst malicious entities

• Hybrid approaches including hashing/set membership,
randomized routing
• [Lincoln04]: Hashing to scrub sensitive data, second key-

based hash algorithm adds “noise” to prevent brute-force
attacks

• Friends Troubleshooting Network [Huang05]: build a
recursive lookup P2P network that maintains anonymity;
uses hashing, SMC, and random-walk routing for software
diagnosis

Related work: Privacy-
Preserving Collaboration

88

• Statistical transformation: useful for larger data exchange where such
“summaries” are accurate
• PAYL [Wang05]: 1-gram and Zipf frequency distributions of packet

content
• Anagram [Wang06]: N-gram binary modeling based on BFs

• Databases and data mining
• Statistical databases ([Agrawal00], [Lindell02): Aggregate statistics

despite perturbation and individual restrictions
• Privacy-preserving information sharing [Agrawal03]: Two-party

equijoin, intersection, counts via commutative encryption
• K-anonymity [Sweeney02]: Privacy via redundancy
• Privacy-preserving BF-enabled queries [Bellovin04], secure indices

[Bawa03, Goh04]
• “Hippocratic databases” [Agrawal02]

Related work: Other Privacy-
Preserving Computation

89

Related work: Other Privacy-
Preserving Computation

• Secure multiparty communication [Yao82]
• [Du01] proposes general transformation architecture,

including intrusion detection information; too slow to
handle near real-time alert streams

• Zero-Knowledge Proofs [Goldwasser89, Goldreich94]
• Like data-mining, traditionally between two parties;

scaling up is extremely hard, and may leak information
• [Dwork04] proposes a model for scaling, but requires

clever timing constraints
• Like SMC, doesn’t scale to the event volumes

discussed here

90

