
1

Event semantics in 
asynchronous distributed 

event middleware
Janak J Parekh

Candidacy Exam
May 5, 2003

2

Agenda
Preliminaries

Overview and definitions
Motivation and problem domains
Organization of the talk

Existing work
Classic event systems
Single event filtering
Event sequence filtering
Multiple event correlation
Other/commercial approaches

Unsolved problems
Conclusion

3

Overview and definitions

Events are discrete, structured data 
objects generated at a specific point in 
time
Events are commonly used to:

Communicate between nodes in a distributed 
system, and possibly different systems
Signal alarms or faults
Report system activity

4

Overview and definitions (II)

Event mechanisms: Given events, we…
Propagate/replicate (across objects, 
processes, network…)
Store (later playback, postmortem analysis)
Filter (compression, conversion, etc.)
Correlate (root-cause analysis)

This talk deals with the latter 3, not the first

5

Overview and definitions (III)

We examine two primary types of systems
Event publish/subscribe middleware

Defines event types or formats
Construct, publish, deliver and filter events

Event correlation and event-based 
workflow

Advanced filtration/compression, root-cause 
analysis, postmortem analysis, etc.

Surprisingly minimal crossover

6

Motivations and problem domains

As the number of nodes increases, the 
number of events generated among them 
rises superlinearly [8, 9]
At the same time, need to gain greater 
insight into events’ semantics
Various applications

Workflow optimization
Network management
Anomaly, fault detection: EMERALD [9], KX



2

7

Organization of the talk
“Levels” of semantic power
Publish-subscribe systems

Classic event systems: Channel-based with minimal 
event filtering
Single event filtering: Provides flexible filtering on an 
event-by-event basis
Event sequence filtering: Supports delivery and 
manipulation of contiguous sequences of events

Multiple event correlation: Dedicated correlation 
engines that provide flexible filtering and 
aggregation over many events

8

Agenda
Preliminaries

Overview and definitions
Motivation and problem domains
Organization of the talk

Existing work
Classic event systems
Single event filtering
Event sequence filtering
Multiple event correlation
Other/commercial approaches

Unsolved problems
Conclusion

9

Classic event systems

In essence, event-structured multicast
Sources publish to a channel in the 
middleware layer
All subscribers to (clients of) that channel 
receive the notification
Variations include having selection based on 
single subject/topic

Events are usually formatted as primitive 
or opaque structures

10

Classic event systems (II)

Field [18], 1990
One of the first “standalone” event systems, 
built for GUI component collaboration
Events were just strings; they were parsed for 
simple equality matching (scanf-like syntax)

CORBA Event Service [27], 1993-2000
Events are either generic (opaque) or typed 
(IDL)
No filtering (effectively multicast)

11

Classic event systems (III)

TIB [24], 1993
Objects (LISP CLOS-style)
Subject field, equality and wildcard matching
Basic subject rewriting

Others
System logs (UNIX, NT)

12

Single event filtering
CORBA Notification Service [28]

Extension to Event Service to solve limitations
In particular, “structured” events: IDL-typed events 
were too hard; enables Boolean-expression filters
Many commercial implementations

JECho [21]
Serialized Java objects
“Eager handlers” filter information beforehand

Elvin [17]
Structured events similar to CORBA
Filter language supports equality, boolean, regular-
expression operation



3

13

Single event filtering (II)
Siena [23]

While sequences are theoretically supported in the 
interface, unsupported at this point
Structured events; XML subsets parsed into attribute-
value pairs

JMS [20]
CORBA-like, except no wire format
Channel-based; filters on Properties in header; 
several types of opaque bodies

WebFilter [25]
Notably one of the few XML-capable filter tools
But only grabs XPath-specified XML subsets, like 
Siena, and uses Le Subscribe for underlying work

14

Event sequence filtering
TAO RT events [16]

Built on top of CORBA Notifications; supports simple 
sequence matching (event batching)

Gryphon
Information flow operations [19]: collapse, expand
Stream interpretations [12]: map “equivalent” streams

READY [26]
Supports a type hierarchy of attribute-value structured 
events (simple concatenation)
Boolean expressions can be matched against an 
array of events, using SQL-like WHERE clauses

15

Multiple event correlation
Conceptual Framework [3] for network 
management-based event correlation and 
filtering

Goal is usually RCA or compression
Geared towards Managed Objects (MOs), but 
generally applicable
Causal vs. temporal

Action-Oriented Analysis [10] provides 
somewhat alternate view

Need to determine actionable events in order to 
conduct repair/reconfiguration

16

Multiple event correlation (II)
Matching strategies

FSM/Petri nets
Dependency graphs [2]

Simple, integrate with existing event management 
system

Rule engines
Yemanja [1]

Layered rule engine for network management
WEC, built on top of CORBA [15]

Upgrade CORBA events for filtering, sequencing, 
ECA rules

17

Multiple event correlation (III)
More matching strategies

Procedural languages
Rapide [4]

“Event Pattern Language (EPL)” – very powerful, 
procedural
Supports both temporal and causal structures

Signature/Codebook
SMARTS InCharge/DECS [6, 8, 11]

Actually compiled down from higher-level language
Very, very fast, but no temporal constraints

18

Multiple event correlation (IV)
Manual rule generation

An Oracle (i.e., human being)
Code rules, build state machines
Error-prone and slow

Rapide [5]
Software architecture, architectural constraint 
languages as model

Database queries via EvE [13]
Build a query engine for event workflow logs



4

19

Multiple event correlation (V)
Automated rule generation

MODEL [6, 8]
Bayesian (probabilistic) learning models from 
higher-level domain languages

MEDD [7]
Rules from event logs accomplished via 
systematic search

Process mining [14]
Manual workflow design doesn’t work
Uses frequency tables

20

Other / Commercial approaches

Fault management (classic)
IMPACT: End-users build expert systems
ECXPERT: Correlation trees

Commercial
IBM Tivoli
HP OpenView: Circuit-based approach
NetCool MicroMUSE
TIBCO, Vitria: evolution of TIB

21

Agenda
Preliminaries

Overview and definitions
Motivation and problem domains
Organization of the talk

Existing work
Classic event systems
Single event filtering
Event sequence filtering
Multiple event correlation
Other/commercial approaches

Unsolved problems
Conclusion

22

Unsolved problems

Pushing event correlation into the publish-
subscribe layer

Some primitive operations are now supported, 
e.g., Gryphon, READY, but very little higher-
level constructs
Support a variety of applications, such as 
mobile/disconnected behavior, seamlessly
Better temporal support (distributed clocks?)
Implement in existing or new pub-sub event 
systems

23

Unsolved problems (II)

Complex type matching and correlation
Few systems handle even single-event XML matching
Leverage semantics known about sequences
Use dynamic type system

XML (Schema), PSL SmartEvents (SOAP [29])
Global types that no one wanted to do

Rule generation
Learning and searching exist - but other heuristics?
Architectural description languages for application 
and system management

24

Unsolved problems (III)

Novel correlation domains
GUIs
Model existing protocols (TCP, syscalls, NFS) 
as events to reap benefits of correlation

Learning domains
Unsolvable?
Or maybe one can teach the system 
interactively?



5

25

Conclusion

The event construct provides a flexible, 
broadly available methodology for data 
interchange, fault communication, and 
history
Numerous systems already exist to 
process single and multiple events, but 
many disconnects and manual operation
Open field ripe for further study

That’s all, folks!
(Figures follow… use hyperlinks 

from earlier slides.)

27 28

29

Rapide example

30



6

31 32

33


