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Overview and definitions

o Events are discrete, structured data
objects generated at a specific point in
time

o Events are commonly used to:

= Communicate between nodes in a distributed
system, and possibly different systems

» Signal alarms or faults
= Report system activity

Overview and definitions (lI)

@ Event mechanisms: Given events, we...

= Propagate/replicate (across objects,
processes, network...)

= Store (later playback, postmortem analysis)
= Filter (compression, conversion, etc.)
= Correlate (root-cause analysis)

@ This talk deals with the latter 3, not the first

Overview and definitions (lII)

oWe examine two primary types of systems
@ Event publish/subscribe middleware
» Defines event types or formats
= Construct, publish, deliver and filter events
o Event correlation and event-based
workflow

» Advanced filtration/compression, root-cause
analysis, postmortem analysis, etc.

@ Surprisingly minimal crossover

Motivations and problem domains

o As the number of nodes increases, the
number of events generated among them
rises superlinearly [8, 9]

@ At the same time, need to gain greater
insight into events’ semantics

o Various applications
= Workflow optimization
= Network management
= Anomaly, fault detection: EMERALD [9], KX




Organization of the talk

@ “Levels” of semantic power

@ Publish-subscribe systems

= Classic event systems: Channel-based with minimal
event filtering

= Single event filtering: Provides flexible filtering on an
event-by-event basis

= Event sequence filtering: Supports delivery and
manipulation of contiguous sequences of events
@ Multiple event correlation: Dedicated correlation
engines that provide flexible filtering and
aggregation over many events
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Classic event systems

@ In essence, event-structured multicast

= Sources publish to a channel in the
middleware layer

= All subscribers to (clients of) that channel
receive the notification

= Variations include having selection based on
single subject/topic
o Events are usually formatted as primitive
or opaque structures

Classic event systems (ll)

o Field [18], 1990

= One of the first “standalone” event systems,
built for GUI component collaboration

» Events were just strings; they were parsed for
simple equality matching (scanf-like syntax)

@ CORBA Event Service [27], 1993-2000

= Events are either generic (opaque) or typed
(IDL)

= No filtering (effectively multicast)

Classic event systems (lll)

@ TIB [24], 1993
= Objects (LISP CLOS-style)
= Subject field, equality and wildcard matching
= Basic subject rewriting
@ Others
= System logs (UNIX, NT)

Single event filtering

@ CORBA Noatification Service [28]
« Extension to Event Service to solve limitations

« In particular, “structured” events: IDL-typed events
were too hard; enables Boolean-expression filters

= Many commercial implementations
@ JECho [21]

= Serialized Java objects

« “Eager handlers” filter information beforehand
a Elvin [17]

» Structured events similar to CORBA

= Filter language supports equality, boolean, regular-
expression operation




Single event filtering (I1)

@ Siena [23]
= While sequences are theoretically supported in the
interface, unsupported at this point

= Structured events; XML subsets parsed into attribute-
value pairs

@ JMS [20]
= CORBA-like, except no wire format
= Channel-based; filters on Properties in header;
several types of opaque bodies
a WebFilter [25]
= Notably one of the few XML-capable filter tools

= But only grabs XPath-specified XML subsets, like
Siena, and uses Le Subscribe for underlying work

Event sequence filtering

@ TAO RT events [16]
= Built on top of CORBA Notifications; supports simple
sequence matching (event batching)
a@ Gryphon
» Information flow operations [19]: collapse, expand
« Stream interpretations [12]: map “equivalent” streams
@ READY [26]
= Supports a type hierarchy of attribute-value structured
events (simple concatenation)
= Boolean expressions can be matched against an
array of events, using SQL-like WHERE clauses

Multiple event correlation

@ Conceptual Framework [3] for network
management-based event correlation and
filtering

= Goal is usually RCA or compression

= Geared towards Managed Objects (MOs), but
generally applicable

= Causal vs. temporal
@ Action-Oriented Analysis [10] provides
somewhat alternate view

= Need to determine actionable events in order to
conduct repair/reconfiguration

Multiple event correlation (I1)
Matching strategies

@ FSM/Petri nets
= Dependency graphs [2]
aSimple, integrate with existing event management
system
@ Rule engines
= Yemanja [1]
alayered rule engine for network management
= WEC, built on top of CORBA [15]

aUpgrade CORBA events for filtering, sequencing,
ECA rules

Multiple event correlation (I11)
More matching strategies

@ Procedural languages

= Rapide [4]
a“Event Pattern Language (EPL)” — very powerful,
procedural

@Supports both temporal and causal structures
@ Signature/Codebook

« SMARTS InCharge/DECS [6, 8, 11]
@Actually compiled down from higher-level language
aVery, very fast, but no temporal constraints

Multiple event correlation (1V)
Manual rule generation

@ An Oracle (i.e., human being)
= Code rules, build state machines
= Error-prone and slow
@ Rapide [5]
= Software architecture, architectural constraint
languages as model
o Database queries via EVE [13]
= Build a query engine for event workflow logs




Multiple event correlation (V)
Automated rule generation

o MODEL [6, 8]
» Bayesian (probabilistic) learning models from
higher-level domain languages
oMEDD [7]
= Rules from event logs accomplished via
systematic search
© Process mining [14]
= Manual workflow design doesn’'t work
= Uses frequency tables

Other / Commercial approaches

@ Fault management (classic)
= IMPACT: End-users build expert systems
» ECXPERT: Correlation trees
@ Commercial
= IBM Tivoli
= HP OpenView: Circuit-based approach
= NetCool MicroMUSE
= TIBCO, Vitria: evolution of TIB
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Unsolved problems

@ Pushing event correlation into the publish-
subscribe layer
= Some primitive operations are now supported,

e.g., Gryphon, READY, but very little higher-
level constructs

= Support a variety of applications, such as
mobile/disconnected behavior, seamlessly

= Better temporal support (distributed clocks?)

= Implement in existing or new pub-sub event
systems

Unsolved problems (I1)

@ Complex type matching and correlation
= Few systems handle even single-event XML matching
= Leverage semantics known about sequences
= Use dynamic type system
o XML (Schema), PSL SmartEvents (SOAP [29])
@ Global types that no one wanted to do
a Rule generation
= Learning and searching exist - but other heuristics?

= Architectural description languages for application
and system management

Unsolved problems (l11)

@ Novel correlation domains
= GUIs

= Model existing protocols (TCP, syscalls, NFS)
as events to reap benefits of correlation

@ Learning domains
= Unsolvable?

= Or maybe one can teach the system
interactively?




Conclusion

@ The event construct provides a flexible,
broadly available methodology for data
interchange, fault communication, and
history

o Numerous systems already exist to
process single and multiple events, but
many disconnects and manual operation

2 Open field ripe for further study

That's all, folks!

(Figures follow... use hyperlinks
from earlier slides.)
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Rapide example

type Table(numPhils : integer) is interface
action in  StickRequested(n : Chopstick; id: Philosopherld),
StickRecovered(n : Chopstick);
action out ReleaseStick(n : Chopstick; id: Philosopherld);
behavior

action  FreeStick(n : Chopstick);
begin
start => for i: integer in 0..(numPhils—1) do table rule 1.
FreeStick(i);
end for;;

(?a in Chopstick, ?i in Philosopherld) table rule 2.

StickRequested(?a, ?i) and FreeStick(?a) ||> ReleaseStick(?a, 7i);;

(?a in ChopStick) table rule 3.
StickRecovered(?a) ||>  FreeStick(?

end Table;
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interface TransportConn

propagate symptom PacketLossHigh =
Port, ConnectedTo, PacketLossHigh;

}

interface UDPPort: Port

propagate symptom PacketLossHigh =
Appl, Underlying, PacketLossHigh;

}

interface MM InPort: Appl

{

instrumented attribute long MinRate;

instrumented attribute long MaxRate;

instrumented attribute long MsgCounter;

instrumented attribute long ActTime;

computed attribute ActualRate = (MsgCounter)/( time - ActTime);

event BadRate = (MinRate > ActualRate) || (ActualRate > MaxRate);

problem PacketLossHigh = BadRate 1.0;

Figure 2: the automatically mined D/F-graph.
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