Event semantics in
asynchronous distributed
event middleware

Janak J Parekh
Candidacy Exam
May 5, 2003

Agenda

@ Preliminaries
= Overview and definitions
= Motivation and problem domains
« Organization of the talk
@ Existing work
» Classic event systems
» Single event filtering
« Event sequence filtering
« Multiple event correlation
= Other/commercial approaches
@ Unsolved problems
@ Conclusion

Overview and definitions

o Events are discrete, structured data
objects generated at a specific point in
time

o Events are commonly used to:

= Communicate between nodes in a distributed
system, and possibly different systems

» Signal alarms or faults
= Report system activity

Overview and definitions (lI)

@ Event mechanisms: Given events, we...

= Propagate/replicate (across objects,
processes, network...)

= Store (later playback, postmortem analysis)
= Filter (compression, conversion, etc.)
= Correlate (root-cause analysis)

@ This talk deals with the latter 3, not the first

Overview and definitions (lII)

oWe examine two primary types of systems
@ Event publish/subscribe middleware
» Defines event types or formats
= Construct, publish, deliver and filter events
o Event correlation and event-based
workflow

» Advanced filtration/compression, root-cause
analysis, postmortem analysis, etc.

@ Surprisingly minimal crossover

Motivations and problem domains

o As the number of nodes increases, the
number of events generated among them
rises superlinearly [8, 9]

@ At the same time, need to gain greater
insight into events’ semantics

o Various applications
= Workflow optimization
= Network management
= Anomaly, fault detection: EMERALD [9], KX

Organization of the talk

@ “Levels” of semantic power

@ Publish-subscribe systems

= Classic event systems: Channel-based with minimal
event filtering

= Single event filtering: Provides flexible filtering on an
event-by-event basis

= Event sequence filtering: Supports delivery and
manipulation of contiguous sequences of events
@ Multiple event correlation: Dedicated correlation
engines that provide flexible filtering and
aggregation over many events

Agenda

@ Preliminaries
= Overview and definitions
= Motivation and problem domains
« Organization of the talk
@ Existing work
» Classic event systems
» Single event filtering
« Event sequence filtering
« Multiple event correlation
= Other/commercial approaches
@ Unsolved problems
@ Conclusion

Classic event systems

@ In essence, event-structured multicast

= Sources publish to a channel in the
middleware layer

= All subscribers to (clients of) that channel
receive the notification

= Variations include having selection based on
single subject/topic
o Events are usually formatted as primitive
or opaque structures

Classic event systems (ll)

o Field [18], 1990

= One of the first “standalone” event systems,
built for GUI component collaboration

» Events were just strings; they were parsed for
simple equality matching (scanf-like syntax)

@ CORBA Event Service [27], 1993-2000

= Events are either generic (opaque) or typed
(IDL)

= No filtering (effectively multicast)

Classic event systems (lll)

@ TIB [24], 1993
= Objects (LISP CLOS-style)
= Subject field, equality and wildcard matching
= Basic subject rewriting
@ Others
= System logs (UNIX, NT)

Single event filtering

@ CORBA Noatification Service [28]
« Extension to Event Service to solve limitations

« In particular, “structured” events: IDL-typed events
were too hard; enables Boolean-expression filters

= Many commercial implementations
@ JECho [21]

= Serialized Java objects

« “Eager handlers” filter information beforehand
a Elvin [17]

» Structured events similar to CORBA

= Filter language supports equality, boolean, regular-
expression operation

Single event filtering (I1)

@ Siena [23]
= While sequences are theoretically supported in the
interface, unsupported at this point

= Structured events; XML subsets parsed into attribute-
value pairs

@ JMS [20]
= CORBA-like, except no wire format
= Channel-based; filters on Properties in header;
several types of opaque bodies
a WebFilter [25]
= Notably one of the few XML-capable filter tools

= But only grabs XPath-specified XML subsets, like
Siena, and uses Le Subscribe for underlying work

Event sequence filtering

@ TAO RT events [16]
= Built on top of CORBA Notifications; supports simple
sequence matching (event batching)
a@ Gryphon
» Information flow operations [19]: collapse, expand
« Stream interpretations [12]: map “equivalent” streams
@ READY [26]
= Supports a type hierarchy of attribute-value structured
events (simple concatenation)
= Boolean expressions can be matched against an
array of events, using SQL-like WHERE clauses

Multiple event correlation

@ Conceptual Framework [3] for network
management-based event correlation and
filtering

= Goal is usually RCA or compression

= Geared towards Managed Objects (MOs), but
generally applicable

= Causal vs. temporal
@ Action-Oriented Analysis [10] provides
somewhat alternate view

= Need to determine actionable events in order to
conduct repair/reconfiguration

Multiple event correlation (I1)
Matching strategies

@ FSM/Petri nets
= Dependency graphs [2]
aSimple, integrate with existing event management
system
@ Rule engines
= Yemanja [1]
alayered rule engine for network management
= WEC, built on top of CORBA [15]

aUpgrade CORBA events for filtering, sequencing,
ECA rules

Multiple event correlation (I11)
More matching strategies

@ Procedural languages

= Rapide [4]
a“Event Pattern Language (EPL)” — very powerful,
procedural

@Supports both temporal and causal structures
@ Signature/Codebook

« SMARTS InCharge/DECS [6, 8, 11]
@Actually compiled down from higher-level language
aVery, very fast, but no temporal constraints

Multiple event correlation (1V)
Manual rule generation

@ An Oracle (i.e., human being)
= Code rules, build state machines
= Error-prone and slow
@ Rapide [5]
= Software architecture, architectural constraint
languages as model
o Database queries via EVE [13]
= Build a query engine for event workflow logs

Multiple event correlation (V)
Automated rule generation

o MODEL [6, 8]
» Bayesian (probabilistic) learning models from
higher-level domain languages
oMEDD [7]
= Rules from event logs accomplished via
systematic search
© Process mining [14]
= Manual workflow design doesn’'t work
= Uses frequency tables

Other / Commercial approaches

@ Fault management (classic)
= IMPACT: End-users build expert systems
» ECXPERT: Correlation trees
@ Commercial
= IBM Tivoli
= HP OpenView: Circuit-based approach
= NetCool MicroMUSE
= TIBCO, Vitria: evolution of TIB

Agenda

@ Preliminaries
= Overview and definitions
= Motivation and problem domains
= Organization of the talk
@ Existing work
» Classic event systems
= Single event filtering
= Event sequence filtering
= Multiple event correlation
= Other/commercial approaches
@ Unsolved problems
@ Conclusion

Unsolved problems

@ Pushing event correlation into the publish-
subscribe layer
= Some primitive operations are now supported,

e.g., Gryphon, READY, but very little higher-
level constructs

= Support a variety of applications, such as
mobile/disconnected behavior, seamlessly

= Better temporal support (distributed clocks?)

= Implement in existing or new pub-sub event
systems

Unsolved problems (I1)

@ Complex type matching and correlation
= Few systems handle even single-event XML matching
= Leverage semantics known about sequences
= Use dynamic type system
o XML (Schema), PSL SmartEvents (SOAP [29])
@ Global types that no one wanted to do
a Rule generation
= Learning and searching exist - but other heuristics?

= Architectural description languages for application
and system management

Unsolved problems (l11)

@ Novel correlation domains
= GUIs

= Model existing protocols (TCP, syscalls, NFS)
as events to reap benefits of correlation

@ Learning domains
= Unsolvable?

= Or maybe one can teach the system
interactively?

Conclusion

@ The event construct provides a flexible,
broadly available methodology for data
interchange, fault communication, and
history

o Numerous systems already exist to
process single and multiple events, but
many disconnects and manual operation

2 Open field ripe for further study

That's all, folks!

(Figures follow... use hyperlinks
from earlier slides.)

r— Menitor A1
Conmiaton of Basrenal Rrvsin) ey
[
[
[
[
[
| Sed-PARTY
: stu:lll\
'
I
[Qy«\u.
I
I
I
I
I
]
'
' AcHATURE
1 INCINES
' LY —
-] Tbenremie Ut
A PARTY ',
sEeunTy ewarnet v
MOoLE imiten AT1 '
vt Repigs |
Evest Loggen R
Shomior AP Y\ o» u
v Repecang) | [r— \ et Regarsog
Fig. 1. The Generie EAKRALD Monitar Architectrs

Raw Managemenl Evenls
P (Tt
e ®

Dependency

I — Graph
Y Faudt e

EN

= Condensed Event
Protecel Adapters

LN T

Plaim "'”‘-IT} Erown | Evemt | h;nnn_,y
B - Amalyrer -

Candened
Evenie

Mapper Frgine

Eveat ta ()lux\}uny‘ﬂ |('nm|x|'-- bjogis

Cenerator

Comdemypd
Fremic ™

Rapide example

type Table(numPhils : integer) is interface
action in StickRequested(n : Chopstick; id: Philosopherld),
StickRecovered(n : Chopstick);
action out ReleaseStick(n : Chopstick; id: Philosopherld);
behavior

action FreeStick(n : Chopstick);
begin
start => for i: integer in 0..(numPhils—1) do table rule 1.
FreeStick(i);
end for;;

(?a in Chopstick, ?i in Philosopherld) table rule 2.

StickRequested(?a, ?i) and FreeStick(?a) ||> ReleaseStick(?a, 7i);;

(?a in ChopStick) table rule 3.
StickRecovered(?a) ||> FreeStick(?

end Table;

) unmcch\ 1nnumcnn|c N}
CORBA Evanlts CORBA Evants CORBA Events
Np-tldelq’{.upl
%
Manaagemest Sysiem
BRT.high { front-end serve -
back-end ser e = Resource
BRT.high { front-end se. V{"mmmw 5,_“,,]“,”;\- Hanager
back-end server o ST tottle, please
back-end-server.comection-problem
(back-end server = 47)
Océano. Yemanjo.worksiation.bad_connection
(workstation =47, VLAN = 462)
workstation bad-connnection
(workstation = 47, VLAN = 462) \(ﬂ
Océano. Yemanja.cihiernet _fink.doss_and_defay
(NIC =144
i LA ethernet_interfuce.input_errors-iligh
Ethernet Link (Resource = 144)
cthernet link bad cab ble id = 144) etherner_interface.input_errors-Iligh
- e (Resource = *1.2.3.4', 4, 7|
Figure 4: A correlation scenario for bad_cable condition 30

interface TransportConn

propagate symptom PacketLossHigh =
Port, ConnectedTo, PacketLossHigh;

}

interface UDPPort: Port

propagate symptom PacketLossHigh =
Appl, Underlying, PacketLossHigh;

}

interface MM InPort: Appl

{

instrumented attribute long MinRate;

instrumented attribute long MaxRate;

instrumented attribute long MsgCounter;

instrumented attribute long ActTime;

computed attribute ActualRate = (MsgCounter)/(time - ActTime);

event BadRate = (MinRate > ActualRate) || (ActualRate > MaxRate);

problem PacketLossHigh = BadRate 1.0;

Figure 2: the automatically mined D/F-graph.

1|2 |3 (4|56 |7 8|90 |0 ||| |1 ||| |1]|2
| | | 01 (2 f3|4(5]6 7[8]0 0
P (L1t jtfrirjofojojojojo|ofojo|0 (0|0
P, (O[T (1 Jojojrjofofr (o fr]rjofoftr|r]jL]l]|oO
Pp O (T JOf1 (1 (11 oo |l o jojojo|l|Ljofl |1 |0
Py L1 J1 o frfofojl ot (1L {1LjbjojojojljL (o0
P [0 [oJolr ool oot foflr]ofi]olr]o]r]l
Po [L|O [0 0O |1 {011 |00 |01 |1 [1]|1L]|0|0[0]]
Table 4: Correlation Matrix
I (3 (4 |6 (9 |18
P (1 (0L [T 1 |0 |0
P {0 (Lo 1 |1 |1
P, (0 |0 |1 |1 o |1
P (1|1 |0 fo o |1
Ps 0 0 | L1] | 0
P |1 O (O]1 |1 |0
Table 6: Codebook of Radius 1.5
31
[X
Tin 0135 0
75 g S0
T LT [
T3 JILE 1
79 50
(L) L3
[E] 146
In 0
7 i
Tz |] 0]
Tl JILL 0
n 1] 1]
T 1994 1]
Table 1: an example IVF-table Tor task 76,
0386 > L/
: 055
— “o.308
v e | e oo rooo—x U8 .
a7z’ . ™
o247 sasa
- P ~ “« r
™ T i ™ o it T3
R [e B e ey esoz e T
e ‘D 423 a Bd:!/ ™
- o4
| T .,
1994 \
1.000 =84

