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ABSTRACT
With the increased use of botnets and other techniques to obfus-
cate attackers’ command-and-control centers, Distributed Intrusion
Detection Systems (DIDS) that focus on attack source IP addresses
or other header information can only portray a limited view of dis-
tributed scans and attacks. Packet payload sharing techniques hold
far more promise, as they can convey exploit vectors and/or mal-
code used upon successful exploit of a target system, irrespective
of obfuscated source addresses. However, payload sharing has had
minimal success due to regulatory or business-based privacy con-
cerns of transmitting raw or even sanitized payloads. The cur-
rently accepted form of content exchange has been limited to the
exchange of known-suspicious content, e.g., packets captured by
honeypots; however, signature generation assumes that each site re-
ceives enough traffic in order to correlate a meaningful set of pay-
loads from which common content can be derived, and places fun-
damental and computationally stressful requirements on signature
generators that may miss particularly stealthy or carefully-crafted
polymorphic malcode.

Instead, we propose a new approach to enable the sharing of suspi-
cious payloads via privacy-preserving technologies. We detail the
work we have done with two example payload anomaly detectors,
PAYL and Anagram, to support generalized payload correlation and
signature generation without releasing identifiable payload data and
without relying on single-site signature generation. We present pre-
liminary results of our approaches and suggest how such deploy-
ments may practically be used for not only cross-site, but also cross-
domain alert sharing and its implications for profiling threats.

1. INTRODUCTION
A Distributed Intrusion Detection/Collaborative Intrusion Detection
System (DIDS/CIDS) is one that employs multiple Network In-
trusion Detection and/or Host Intrusion Detection sensors (NIDS/
HIDS), often across multiple local area networks, and correlates
resulting alerts to get a broader picture of Internet-based threats.
Most existing approaches (see section 5) share header-based alert
data, e.g., source IPs, destination ports, and aggregate statistics; the
goal of correlating such features across multiple sites is to detect
common sources of attack, especially as they are performing initial
scans to build hitlists in a future attack. Not only can these lists be
used in building fast-propagating worms [38], they can also be used
for targeted attacks, e.g., an attacker looking to exploit a critical
infrastructure industry that may use common services, such as the
financial services industry.

However, the advent of botnets [7, 10, 35] and other forms of in-
direction have made it far more difficult to discover the true attack
source, instead of bot machines which play a small role in the ac-
tual process. While firewalling can be employed against common

IPs [50], there is no guarantee an attacker will not scan using one
network and attack using another, thereby defeating proactive at-
tempts.

Instead, one can approach the problem from the perspective of de-
tecting the actual exploit used in the attack attempt: in an increas-
ingly monocultured-software world, specific vulnerabilities are com-
mon to a large pool of applications [30]. We can leverage the com-
monality of such attack approaches to identify and protect against
such attacks even if target machines are unpatched and remain vul-
nerable. This is particularly advantageous for zero-day worm detec-
tion, when common attack vectors may present themselves across
many sites in short timeframes, i.e. correlation of common alerts
across space, and for stealthy scanning for long time periods, i.e.
correlation of common alerts across time. In either case, correlating
alerts among collaborating sites requires careful design for accuracy
and efficiency.

Of course, exploit-specific vulnerability detection has its challenges:
in particular, a reliance on payload detection and correlation is nec-
essary. It is impractical to assume that organizations can exchange
raw traffic streams; there is far too much data of a potentially sen-
sitive nature. Even if exchanged material is confined merely to
suspicious payloads as classified by an anomaly detector, organi-
zations may fear that some legitimate and/or sensitive traffic may
be misclassified and exchanged to other, possibly competing in-
stitutions. Instead, techniques are required to exchange privacy-
preserving alerts that make it impossible for other entities to deter-
mine the actual content of the underlying traffic, yet at the same
time exchanging information that can effectively be correlated. We
propose that this is not only possible, but practical and broadly ap-
plicable, and propose a collection of techniques to do so.

This paper is organized as follows. Section 2 briefly discusses the
concepts of payload anomaly detection, and introduces two detec-
tors developed by our group—PAYL and Anagram—as a represen-
tative class of local detectors. Section 3 then introduces the privacy-
preserving correlation techniques at the heart of this paper. Section
4 shows some early results based on the techniques described in sec-
tion 3. We discuss related work in section 5, briefly look at future
possibilities in section 6 and conclude in section 7.

2. PAYLOAD ANOMALY DETECTION
In order to better motivate the correlation techniques described in
this paper, we first describe two payload anomaly sensors developed
at Columbia: PAYL, which implements anomaly detection based
on frequency-based 1-gram modeling, and Anagram, which uses
binary-based mixtures of higher order n-gram modeling (n > 1).
Both sensors train on normal unencrypted content flows and employ



the models to test for suspicious traffic.1 Alerts are generated on
traffic sufficiently deviant from normal; it is these alerts that we
wish to share with other sites to resolve false positives from true
zero-day attacks. The reader is encouraged to refer to [47, 45, 46]
for detailed descriptions of the aforementioned sensors.

It is also important to note that we do not intend to address all pos-
sible payload detection techniques here. Consequently, the tech-
niques described in section 3 may be usable with other (possibly
host-based and/or misuse) sensors.

2.1 PAYL: 1-gram frequency modeling
PAYL’s models are 1-gram byte frequency distributions conditioned
on packet length; tested traffic is classified as normal or malicious
by computing the Mahalanobis distance between the distribution
of the candidate packets and the frequency model. A larger dis-
tance means bigger deviation from the model and a more abnormal
packet; thresholding differentiates normal from malicious traffic.

A raw PAYL alert typically contains metadata, including the source
and target IP/port pair, payload length, and score (distance from
model). Additionally, the suspicious packet may be included in its
alert. While the payloads can be shared, they significantly increase
alert sizes and run into privacy issues, especially for misclassified
traffic, i.e. false positives. While PAYL’s false positive rates have
been determined to be very low [45], the notion of transmitting any
raw payload inhibits collaboration among defensive sites.

2.2 Anagram: n-gram binary modeling
Anagram uses an alternative approach to anomaly detection via bi-
nary-based high order n-gram modeling. Compared to 1-gram,
higher order n-grams are better at modeling sequential content in-
formation in packets, and thus it is capable of detecting signifi-
cant anomalous byte sequences and their location within a packet.
To avoid significant memory overhead associated with n-gram fre-
quency distributions, only a binary (yes/no) statistic is kept for each
possible gram. Scoring is accomplished by counting the percentage
of not-seen-before (i.e. unusual) n-grams out of the total n-grams in
the packet, and thresholding is again applied to differentiate traffic.

Surprisingly, analysis shows [46] that binary-based modeling pro-
duces extremely good results; it turns out the additional data repre-
sentation of frequency-based modeling is less advantageous when
the space of potential grams grows significantly (e.g., the likelihood
of having significant frequency information for distinct 5-grams,
or 2565 grams, is significantly smaller than for the 256 distinct 1-
gram), and the representational power of higher-order n-grams ef-
fectively offsets the loss of frequency information.

The structure of a raw Anagram alert is similar to that of a raw
PAYL alert.

2.2.1 Bloom filters
Even though binary-based modeling significantly reduces space over-
head, there is still a significant number of possible n-grams as n
increases, and a typical hash set structure uses at least 4 bytes per
entry. Since only the binary set property is needed, we can use a
more efficient, bit-based representation to store the model, reducing
data requirements by an order of magnitude. A Bloom filter [5] is
one such structure; it is represented as a bit array of n bits, where
any individual bit i is set if the hash of an input value, mod n, is i.

1Anagram utilizes other information and is semi-supervised.

A Bloom filter contains no false negatives, but may contain false
positives if collisions occur; the false positive rate can be optimized
by changing the size of the bit array to avoid saturation, as well as
using multiple hash functions (and requiring all of them to be set for
an item to be verified as present in the Bloom filter). Operations on
a Bloom filter are also O(1), keeping computational overhead low.
Finally, a Bloom filter has interesting privacy-preserving properties;
we explore these in the next section.

3. CORRELATION TECHNIQUES
In this section, we describe several techniques (both raw and privacy-
preserving) to support content-based alert correlation. First, how-
ever, we develop several metrics as to how we can best compare
these techniques.

3.1 Evaluating correlation techniques
The techniques described in this paper essentially trade off the amo-
unt of information contained versus the privacy maintained. On one
extreme, we can consider the idea of transmitting the raw packets
that generated alerts; while this enables any correlation technique,
we consider it infeasible because of the sheer amount of data and
the fact it is not privacy-preserving. On the other end of the spec-
trum, we can consider privately-encrypted packet content: unless
the key is shared, it essentially appears as noise to peers—but this
requires all or no trust. The techniques in this paper fall somewhere
in between, and we characterize their relative merits from two per-
spectives: our ability to correlate data given a transformed version
of packets and the amount of privacy that is gained using different
privacy-preserving transformations of packet content.

Correlation ability. The fundamental question, given any tech-
nique, is whether it is possible to correlate alerts with low false pos-
itive and low false negative rates. Given raw packets that generate
an alert, there are several well-defined algorithms that aim to ac-
complish this task. We consider the longest common subsequence,
or LCSeq, as an appropriate baseline, as it is able to find any non-
semantic commonality in the candidate packets, and discuss it be-
low. Other approaches, including semantic matching, are discussed
briefly in section 5, and are considered outside the scope of this pa-
per, which focuses on correlation amongst pure network sensors,
i.e. no host-specific information.

Given a technique, and a collection of alerts, we can then compute
a similarity score distribution as each pair of alerts is tested (see
section 4.1). This score distribution then becomes a useful metric
for comparing correlation ability. If we consider LCSeq as a useful
baseline, for instance, we can measure the deviation of other tech-
niques from LCSeq as a comparative measure of how other tech-
niques correlate alerts. Ideally, a network sensor would be able to
use a privacy-enabled technique and get similar results, signifying
an increase in the privacy preservation while maintaining the ability
to determine common threats and exploits.

Privacy gain. We characterize the baseline as having no privacy as
raw packets are exchanged, and having total privacy with encrypted
content without the corresponding key (noise). To characterize in-
termediate approaches, we utilize a probabilistic model: given a
representation of the encoded payload, what is the likelihood that
a curious peer would be able to reconstruct the original, possibly
sensitive data? For most of the approaches listed, we can estimate
this probability by determining the number of original payloads that
could be represented by the encoded alert; the resulting measure-
ments are discussed in section 4.4.



Correlation speed. Finally, one remaining important characteris-
tic is the ability to correlate quickly, especially if many sites are
involved with many alerts being generated and exchanged. This
“speed” metric is reflected in two aspects: the resulting alert size
after a transformation is applied, and the computation overhead nec-
essary to transform the original alert. As with the previous cases, we
consider raw packets the baseline: it is the largest unencrypted alert
encoding (up to 1500 bytes, i.e. bounded by packet size, per alert)
and LCSeq is amongst the slowest correlation mechanisms (up to
polynomial-time with respect to buffer size).

3.2 Alert correlation
Alert correlation is presented as three main approaches: raw packet
alert correlation, frequency-based alert correlation, and n-gram alert
correlation.

3.2.1 Baseline: Raw payload correlation
As previously discussed, we choose raw packet alert correlation as
a baseline technique: it contains the most complete original infor-
mation.

SE: String Equality. This is the simplest and most intuitive corre-
lation approach. Two alerts are deemed similar to each other only
if they have identical content. This metric is very strict and does
minimize false positives, but has no tolerance for any variation—
fragmentation, polymorphism, obfuscation, etc. Equality is mem-
ory and computationally efficient (linear time).

LCS: Longest Common Substring. LCS is one of the classic
string comparison techniques; it is less deterministic than SE, and
is not susceptible to fragmentation. The longer the string that LCS
computes, the greater the confidence that the compared alerts are
similar. While it allows minor payload manipulation, multiple chan-
ges often cause a short LCS, reducing confidence in its correla-
tion ability. LCS is reasonably fast; a suffix-tree implementation
is linear-time, but at the cost of having to store a suffix tree per alert
(or O(n2) for a naive but memory-efficient algorithm).

LCSeq: Longest Common Subsequence. LCSeq can be consid-
ered a generalization of LCS; instead of finding a single contiguous
matching block, LCSeq allows non-matching characters to be inter-
posed. This enables detection despite a variety of payload manip-
ulation operations, including insertion and reordering, and poten-
tially polymorphism. Like LCS, the length of a LCSeq is an indi-
cation of similarity. Its main shortcoming is its computation over-
head; at best, sparse dynamic programming can achieve, on average,
O(n lg n) complexity (and can range to O(n2 lg n) worst-case).

ED: Edit Distance. Edit distance, also known as Levenshtein dis-
tance, is another most commonly-used approach to compare string
similarity. It computes the smallest number of insertions, deletions,
and substitutions required to change one string into another. In gen-
eral, it has similar properties as LCSeq.

3.2.2 Frequency-modeled 1-gram alert correlation
Having discussed different techniques for raw payload comparison
and correlation, we now describe our first alert transformation: fre-
quency modeling. As our work on PAYL demonstrates [47], 1-gram
frequency models are a good indicator of the nature of packet con-
tent. We can leverage this technique and use frequency distributions
as alerts, either with the corresponding normalized frequency counts
or with an approximation of this information.

Frequency Distribution. A packet payload can be represented by

its byte frequency distribution, making it nearly impossible to re-
construct the actual payload except in degenerate cases—the byte
distribution contains byte values but no sequential information. Gi-
ven two packets with their respective distributions, we can apply
standard distance metrics to determine similarity; Manhattan dis-
tance is efficient (O(n) in length of the alert) yet produces a good
approximation of the actual distance. Frequency-based alerts are
comparatively sized compared to packets; a floating-precision fre-
quency distribution takes 1KB of space.

Z-String. A more compact frequency representation based upon
the packet payload’s byte distribution is what we term a “Z-String”,
short for “Zipf String” [47]. As its name implies, when a byte fre-
quency distribution is rank-ordered, it usually produces a Zipf-like
distribution (exponentially decreasing frequency values). We rank
order the distribution of a suspicious packet from most frequent to
least and drop the frequency counts, resulting in a Z-String. A Z-
String relies on the relative notion of frequency just by the ordering
of the individual byte values, and since it is a string, we can apply
the raw matching techniques described above to the Z-Strings them-
selves. Z-Strings are also often smaller than full packets (e.g., 8-bit
byte-based packets would be referenced by a 256-byte Z-String),
and as such the string comparison times are generally shorter than
on the raw packets themselves. However, Z-Strings still have an
O(n lg n) creation overhead in the size of the alphabet. (See sec-
tion 4.3 for an example generated Z-String.)

3.2.3 Binary-modeled n-gram alert correlation
While frequency-modeled 1-gram alerts offer a measure of privacy,
1-gram modeling cannot represent a sequence of characters. For
worms and other malicious binary payloads, we may want to cap-
ture such sequences, as they may serve as invariants across multi-
ple suspect payloads that can be correlated. As discussed in [46],
binary-based modeling produces surprisingly good results and leads
to two different possible alert types.

N-gram signature. We can generate a list of n-grams that are found
to be suspicious from an originating packet. Such a “signature”
is position-independent while capturing specific malicious byte se-
quences. Given two n-gram signatures, we can simply compute the
intersection of the two and threshold the cardinality of the inter-
sected set to determine a similarity score. Such an intersection is
linear time in the length of the signatures by using fast set-based
data structures; depending on the n-gram size and packet content,
this can vary significantly; while most packets are regular and have
few n-grams, encrypted traffic, with a very flat byte distribution, can
have as many n-grams as the size of the packet itself. In either case,
an n-gram signature is a degenerate form of a raw packet; when
distributing large n-grams, this is clearly not privacy-preserving, as
even a 5-gram can contain a password. In these cases, we need a
transformation on the n-gram itself.

Bloom filter n-gram signature. Instead of publishing an n-gram
signature, we can instead insert the n-grams into a Bloom filter and
publish it. Since Bloom filters support both insert and verify, set
intersections can be done between a (local) “raw” n-gram signa-
ture and a published BF n-gram signature; such an approach can
identify the same n-grams as the previous technique, but without
yielding other, potentially sensitive n-grams. This approach is also
linear time but leverages the space efficiency afforded by Bloom fil-
ters. Additionally, space and computation overhead can be reduced
by publishing multiple alerts via a single Bloom filter; instead of a
single collection of n-grams, we treat the Bloom filter as a bag of
suspicious n-grams. This enables a multiplicative reduction in the



amount of data transmitted and work needed to compute intersec-
tions.

Incidentally, correlating two BF n-gram signatures can be done via
bitwise AND, but the actual n-gram content cannot then be retrieved—
the only extractable feature is an approximate score, which can give
a general threat metric, but which loses some of the advantage of
payload analysis. A more general approach, model comparison, is
potential future work (see section 6).

4. RESULTS
4.1 Similarity Score
As discussed in section 3.1, we compute a set of similarity scores
for every correlation technique, 0 ≤ score ≤ 1, with a higher score
implying a more similar pair of alerts.

Raw packets and Z-Strings. For both of these alert types, our
basket of string comparisons can be used. For SE, the score is bi-
nary: 0 or 1, where 1 means equality. For LCS and LCSeq, we
use the percentage of the common LCS or LCSeq length out of
the total length of candidate strings: score = 2 ∗ C/(L1 + L2),
where C is the length of LCS/LCSeq and Li is the length of string
i. For ED, larger values imply dissimilarity; we normalize it as
score = 1−D/(L1 + L2), where D is the computed edit distance
and Li the same as LCS/LCSeq.

Frequency distributions. As mentioned before, frequency distri-
butions are compared using Manhattan distance: M =

Pn
i=1 |xi −

yi|, score = M/2.

Raw and BF n-grams. Since we no longer have full packet content,
we instead compute the percentage of common n-grams:
score = 2 ∗ Nc/(N1 + N2), where Nc is the number of common
n-grams and Ni the number of suspicious n-grams in alert i. If a
Bloom filter is used, a count may be kept with it or approximated
by Nb/Nh, i.e., the number of bits set divided by the number of
hash functions used.

4.1.1 Testing with real traffic
To compare the approaches, we randomly sampled packets from
three sources: 100 packets each from www and www1 (two heavily-
trafficked Columbia CS webservers), and 56 malicious packets from
a sample of attacks (CodeRed, CodeRed II, WebDAV, Mirela, a ph-
pBB forum attack, and an IIS buffer overflow (MS03-022) exploit).
These packets were paired off in three sets: 1002 “good-vs-good”
pairs of www and www1 traffic, 56∗55/2 “bad-vs-bad” pairs formed
in the cross-product of the malicious packet dataset, and 100 ∗ 56
“good-vs-bad” pairs of www1 and malicious packets. Similarity
scores were generated for all of the resulting pairs with all tech-
niques, except SE, which is too brittle to produce meaningful com-
parisons, and the n-gram analyses, which cannot be compared over
an entire packet.

Figure 1 visualizes a small random subset (80 pairs) of the scores
generated from the “good-vs-good” source. As figure 1 shows, the
performance plots of the methods appear similar, although their cen-
ters and scale values differ as the scores are not normalized between
the correlation methods. On raw payloads, LCSeq and ED bear
very similar results, while comparisons on Z-Strings yield “flatter”
results, as less information is compared.

As a more complete experiment, normalized scores were generated
and compared for all of the pairs formed amongst the three datasets.
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Figure 1: Similarity score comparison of 80 random pairs of
“good-vs-good” alerts.

To normalize the scores for a comparison, we first compute simi-
larity score vectors VA, VB for the same data over two techniques
A and B. The center of the two vectors are then aligned by shift-
ing the median of VA to match VB . Finally, VA’s range is scaled
proportionally so that its min and max values match VB’s. This
normalization allows us to compute the Manhattan Distance of the
two vectors, distance =

Pn
i=1 |VAi − VBi |; smaller values imply

greater similarity between the two methods. Note that these scores
are relative and dependent on the data used; the normalized results
are only useful for comparing against a baseline, not as a source
of absolute values or across datasets. These pairs were tested with
each technique, and the resulting scores were normalized against
and compared to the LCSeq score over raw packets. Table 1 shows
the computed results.

Type Raw- Raw- MD ZStr- ZStr- ZStr-
LCS ED LCS LCSeq ED

G-G .0948 .0336 .0669 .2079 .0794 .0667
B-B .0508 .0441 .0653 .0399 .0263 .0669
G-B .0251 .0241 .0110 .0310 .0191 .0233

Table 1: Manhattan distance from Raw-LCSeq; lower is better.

Averaged over the three scores, Raw-ED is, unsurprisingly, closest
to Raw-LCSeq. When privacy-preserving methods are considered,
Manhattan distance performs the best overall, and particularly well
for good-vs-bad comparison. All of the privacy-preserving meth-
ods are close when correlating pairs with attack traffic; we con-
jecture that significantly different byte distributions enable effec-
tive comparison even when some information is lost via privacy-
preservation.

4.2 Cross-Domain Alert Correlation
Next, we compare the techniques by examining their actual perfor-
mance in identifying true alerts from false positives. Ideally, all
false alerts are eliminated by a small similarity score (i.e. the site
that produced the alert was the only site that saw this suspicious
packet) while true alerts are identified with high similarity scores
(i.e. the attack has been launched against more than one site).

In this experiment, we first randomly mix the aforementioned col-
lection of attacks into two hours’ traffic from www and www1, re-
spectively. Multiple instances of attacks—4 for CodeRed and 3
for CodeRed II—are present to simulate a real-world worm attack.



The attacks are also fragmented differently, as CodeRed does in
the wild; for instance, CodeRed may fragment into a sequence of
(1448, 1448, 1143) length packets, (4, 375, 1460, 1460, 740) len-
gth packets, etc. Multiple instances also enable testing correlation
between different attack types (e.g., CodeRed vs. CodeRed II).

Next, the two mixed traffic sets are each run through PAYL and
Anagram with previously-built models and with the alerting thresh-
old lowered so that 100% of the attacks are detected, but with higher
(and comparable) false positive rates. The resulting alert sets are
correlated against each other using each of the techniques; the re-
sults are summarized in figure 2. For each method, the stacked bar
represents correlation results for false positives. The shaded portion
of the bar represents the 99.9% percentile similarity score range,
while the white represents the worst-case (highest) score; in other
words, while the worst-case FP score can be high, the vast majority
of false positives score relatively low.

The asterisk-marked (“*”) lines represent the range of similarity
scores when instances of the same worm are correlated, and the
open circle-marked (“o”) lines represent scores across CodeRed and
CodeRed II—a very simple measure of polymorphism. The other
worms, which were inserted without fragmentation, all scored at or
near 1, and so are not shown.2

Figure 2: Methods comparison. The correlation methods are,
from 1 to 8, Raw-LCS; Raw-LCSeq; Raw-ED; Frequency-MD;
Zstr-LCS; Zstr-LCSeq; Zstr-ED; N-grams with n = 5.

We can draw several conclusions. First, correlation of identical
(non-polymorphic) attacks works perfectly and accurately for all
techniques. Most of the techniques can also correlate multiple in-
stances of fragmented attacks; of the privacy-preserving techniques,
MD, LCSeq and ED on Z-Strings, and n-gram analysis3 all perform
well. (As intuition may suggest, ZStr-LCS is not particularly effec-
tive.) Polymorphic worm detection is far harder—even in the case
of CR vs. CRII, only Raw-LCSeq and n-grams achieve promising
results. N-gram analysis, in particular, stands out; it produces accu-
rate results and is particularly effective at eliminating false positives,
and the use of BFs enables privacy-preservation.

4.3 Signature Generation
Correlating alerts across sites also enables the possibility of au-
tomatic signature generation and deployment, once true alerts are
2We could have artificially fragmented these worms to simulate the
CodeRed experiment, but we expect similar results.
3We do not distinguish between published raw n-grams and pub-
lished BF-based n-grams here, as they produce virtually identical
results.

identified. (We can also potentially use the scores computed dur-
ing similarity comparison as a “confidence” measure in mitigation
strategies to determine whether to deploy a signature.)

Raw packet-based signatures. Given the ability to share raw alerts,
we can exchange the LCS or LCSeq of highly similar packets. This
has been the subject of much recent work (section 5), is not privacy-
preserving, and we do not discuss it further here.

Byte frequency/Z-Strings. Given the first packet of a CodeRed II
attack in figure 3 and its byte distribution displayed in figure 4, we
can generate a Z-String by ordering the distribution by most fre-
quent to least and dropping frequency information. Figure 5 shows
the first 20 bytes of the generated Z-String for the distribution in
figure 4, with nonprintable characters shown by their ASCII values.
Both frequency distributions and Z-Strings can be used as signa-
tures.

GET./default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%u9090
%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%
u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u
00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u0

Figure 3: Raw packet of CRII; only the first 301 bytes are shown
for brevity.

Figure 4: Frequency distribution for the CRII packet.

88 0 255 117 48 85 116 37 232 100
100 106 69 133 137 80 254 1 56 51

Figure 5: First 20 bytes of the Z-String computed from the CRII
packet.

N-Grams. N-grams are an intriguing approach to signature gen-
eration; n-grams are position-independent, making them robust to
reordering and fragmentation. Additionally, if position information
is kept, such a collection can be transformed into a flat signature if
desired. Figure 6 shows the results when a collection of 5-grams
based on the CodeRed II example packet are “flattened”. Non-
printable characters are represented by “.”; “*” represents a wild-
card for signature matching. Compared to the original, figure 6
successfully captures the malicious encoding and deemphasizes the
padding “noise”. Results with different n-gram sizes and another
CRII packet are presented in an appendix.



* /def*ult.ida?XXXX*XXXX%u9090%u6858%ucbd3%
u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u
cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8
b00%u531b%u53ff%u0078%u0000%u00=a HT*: 3379

Figure 6: Generated 5-gram signature from the CRII packet;
only the first 172 bytes are shown for brevity.

4.4 Measuring Privacy Gain
As discussed earlier, we can use a probabilistic model as a first-
order approximation to measure the relative privacy of each privacy-
preserving technique.

Frequency-based approaches. Recovery of the original text from
its privacy-preserving encoding can be modeled as follows: given a
frequency distribution f = {(b0, π0), (b1, π1), ..., (bn−1, πn−1)},
where n is the size of the alphabet, bi is the byte value with proba-
bility πi, and a target length l, we construct the content of a packet
p = {b0b0...b0b1b1...b1 · · · bn−1bn−1...bn−1}, with π0l copies of
b0, π1l copies of b1, and so on.

We can now characterize the recovery likelihood R = 1/
(l!/((π0l)!(π1l)!...(πn − 1l)!)), where the denominator is simply
the count of all permutations of p. This is an effective estimate of the
privacy of the frequency distribution, as it represents the likelihood
an attacker will be able to correctly guess the true content of the
original packets. This number is, additionally, vanishingly small.
For the frequency distribution of the CRII packet shown in figure
4, R ≈ 1/28208, well beyond the scope of feasibility, despite the
packet’s regularity thanks to the large padded section.

The value of R for a Z-String is orders-of-magnitude smaller; not
only do permutations of a packet pi have to be computed, there are
many such packets; since no frequency information is stored, one
must guess the frequencies for each of the bytes bi in the packet. In
short, effectively guessing the correct base packet pi and its correct
permutation is intractable.

N-grams. We can consider the privacy of both a raw collection
of n-grams and a corresponding Bloom filter encoding. The raw
collection is not very privacy-preserving; not only can a byte se-
quence contain valuable information (e.g., an entire password), sig-
nificant n-gram collections enable reassembly of much of the orig-
inal packet, even without position information. Given a 5-gram
{b1b2b3b4b5} from packet p, one can search for the 5-gram
{b2b3b4b5bx} in the collection, where bx is any byte; if found, one
can reasonably assume the presence of the 6-gram {b1...b5bx} in
packet p; since 2564, the number of “common” 4-grams contained
in both two 5-grams, is much greater than a packet’s size, it is
highly unlikely that the common 4-gram happens to be a coinci-
dence. Combined with the fact that high-scoring alerts can contain
nearly as many n-grams as the original packet’s size, this is imprac-
tical from a privacy perspective.

Instead, as previously proposed, we insert the collection of n-grams
into a Bloom filter before publishing it. The size of the Bloom filter
need not be much more than the number of n-grams; we can pick
a size, say 212 bits, which is more than twice the size of any in-
dividual packet and not prone to significant false positives. (This
Bloom filter still takes substantially less memory than the n-gram
collection itself.) Given such an encoding, the only practical way
of recovering the data is to brute-force verify every possible n-gram
against the Bloom filter. For example, if we know that only 5-grams
are contained in the Bloom filter, there are 2565 possible n-grams.

Not only is testing all such n-grams computationally infeasible, a
brute-force attempt is likely to generate many, many false positives,
since there are 2565/212 possible n-grams for each set bit in the
Bloom filter (assuming one hash function4); the recovery likelihood
R = (212/2565)m, where m is the number of n-grams recovered,
is again vanishingly small. This number grows even smaller if mul-
tiple n-gram sizes are embedded in the same Bloom filter.

Interestingly, despite the number of possible n-grams for each bit of
the Bloom filter, correlating such filters is not prone to significant
misclassification. We can characterize the “unlucky coincidence”
rate = ( 2565/212

2565 )m, that is, the likelihood that we happen to incor-
rectly verify m possible n-grams, each represented by a particular
bit bi, out of all possible n-grams. This simplifies to ( 1

212 )m, which
rapidly grows smaller with increasing m. In our experiments, we
found that a similarity score threshold of 0.1 produced good results;
combined with the fact that the average number of n-grams in a false
positive alert is approximately 55, the probability of miscorrelating
a Bloom filter alert due to 5 unlucky coincidences is ( 1

212 )5—not a
major concern. In short, testing multiple n-grams eliminates coinci-
dences very rapidly. Sizing the Bloom filter appropriately to avoid
saturation is a far more important issue.

Given the effectiveness of n-gram analysis, combined with its strong
privacy guarantees and compact size, we believe there is great prom-
ise for this form of payload-based correlation.

5. RELATED WORK
We discuss selected related work from a number of different net-
work security and intrusion-detection areas, and encourage readers
to see the related work sections of [47, 45, 46] for a full discussion
on network anomaly detection, frequency and n-gram analysis.

Distributed intrusion detection. Distributed intrusion detection
has been researched for over 10 years; most research, e.g., [37, 34,
25] has focused on distribution within an enclave, although recent
work [2, 19, 50] has looked at Internet-scale correlation and detec-
tion. These approaches primarily focus on packet header informa-
tion and none of them are privacy-preserving; some use end-to-end
encryption, but this does not alleviate the notion of sensitive data
exchange.

DShield [41] is the most active volunteer-based DIDS project on the
Internet that we are aware of, focusing on “top 10”-style reports and
blacklists. DOMINO [50] organizes a decentralized, heterogeneous
collection of NIDS sensors; the paper measured, using DShield alert
logs, the notion of information gain—and concluded that 40-60 sites
enables building summaries and/or blacklists with high degrees of
confidence. An interesting application of this approach would be to
measure confidence when payloads are involved.

Signature generation and exchange. Another approach is to ex-
change “known bad” or exploit-specific signatures. Classic payload-
based work in this field includes Earlybird [36], Honeycomb [23],
and Autograph [20]. These approaches generally implement string-
style payload comparison algorithms, including LCS, LCSeq, and
Rabin fingerprints, and can be considered alongside the baseline
techniques discussed here. Polygraph [33] explicitly addresses the
notion of polymorphic worms using LCSeq-like techniques. FLIPS
[31] pairs PAYL with an Instruction Set Randomization infrastruc-
ture for zero-day worm signature generation. PADS [40], or “Posi-
tion-Aware Distribution Signatures”, seek to blend frequency distri-
butions and packet signature positioning.
4Additional hash functions do not affect our analysis.



More recently, work has focused on building semantic-aware or
vulnerability-based signatures to handle multiple (or polymorphic)
attacks for the same exploit. Kruegel et. al. [24] use structural
analysis of binary code and generate control-flow graphs to catch
worm mutations. Shield [43] provides vulnerability-specific but
exploit-generic filters based on predefined protocol-based policies.
Vigilante [8] introduces the notion of vulnerability-specific self-
certifying alerts that focus on filtering undesirable execution con-
trol, code execution, or function arguments, and can be exchanged
via P2P systems. VSEF [32] builds execution-based filters that filter
out vulnerable processor instruction-based traces. COVERS [26]
analyzes attack-triggered memory errors on a host and develops
structural memory signatures. Nemean [51] uses session-layer and
application-protocol semantics to reduce false positives. Some of
these signatures and filter descriptions may be exchangeable using
our techniques.

Privacy-preserving collaboration. There have been recent efforts
to focus on the privacy of alerts to enable correlation. Lincoln et
al. [27] suggest hash-based sanitization of several header fields,
enabling equality matching (e.g., identifying the same source IP)
while removing other features, including payloads; instead, our tech-
niques keep (and analyze) these payloads. Kissner [21] describes
the notion of privacy-preserving set operations using cryptographic
techniques; this achieves stronger privacy guarantees than hashing
approaches described by Lincoln and those used in section 3.2.3, but
it is restricted to set union, intersection, element reduction (set count
difference), which could still potentially be used with n-gram anal-
ysis. Privacy-Preserving Friends Troubleshooting Network [18, 17]
extends earlier work on PeerPressure [44]—a collaborative model
for software configuration diagnosis—with a privacy-preserving ar-
chitecture utilizing a “friend”-based neighbor approach to collabo-
ration, including the use of secure multiparty computation to vote
on configuration outliers and homomorphic encryption to protect
privacy. Xu [48] introduces the notion of “concept hierarchies” to
abstract low-level concepts, along with the use of entropy, to bal-
ance the sanitization and information gain of alerts; a similar use of
entropy may also be applicable here.

Privacy-preserving databases and data mining. There is a tre-
mendous volume of work on various aspects of data mining and
databases, e.g. [1, 28]; these primarily assume secure querying,
perturbation, and aggregate computation of values amongst one or
two databases, and does not generally scale to the collaboration de-
scribed here. Additionally, most of the research in this field is more
concerned with offline analysis.

Bloom filters. Research has been done using Bloom filters as a
means of secure indexing and data exchange [4, 3, 16, 14]; in most
of these cases, the model focuses on two-party interaction and pre-
cisely-defined entities. [12, 6] use Bloom filters for hardware-based
packet inspection and classification.

Secure multiparty computation (SMC) [49] is a theoretically at-
tractive way to accomplish privacy-preservation; certain forms of
correlation, such as intersection, can be fashioned as such a com-
putation problem. Du et al. [13] discuss a model to transform
standard computation problems to secure multiparty computations,
and review the possibility of sharing intrusion detection informa-
tion; however, algorithmic cost remains a concern [27], especially
with large alert streams.

6. FUTURE WORK
There are significant opportunities for future research, including:

Wide-scale deployment. These techniques are specifically designed
to be deployed at many enclaves to increase the correlation power
and confidence provided by sensors at different sites with differ-
ent content flows. We have begun an early integration of this work
with our Worminator distributed collaborative intrusion detection
platform [39, 29] and anticipate reporting on the results in the near
future.

Polymorphic worm detection and mimicry attack. As suggested
by section 4, n-gram analysis has the potential of detecting poly-
morphic worms. While the problem becomes significantly harder
as polymorphic worm engines launch mimicry attacks [42] to mask
themselves, such attacks are generally site-specific (see [22, 11] for
examples of such approaches); correlating across sites may have the
potential to better detect such attacks.

Information-theoretic analysis. A more general approach to com-
paring correlation techniques is to measure the comparative infor-
mation gain each correlation technique provides. However, this
requires an accurate characterization of the distribution of packet
content, which is both protocol and site content flow-specific. Ad-
ditionally, information gain does not directly translate to correlation
ability: as our results show, it is possible to correlate alerts rea-
sonably well with significantly less information. We are currently
working on acquiring data from multiple sites so we can build such
a characterization, and seek collaborators to work with us on this
problem using our respective content flows.

Model correlation. Given different site anomaly models, there is
the possibility of privacy-preserving model comparison. For ex-
ample, given two Bloom filters that represent anomaly models for
Anagram, we can do a bitwise AND of the two Bloom filters to es-
timate the number of common “good” n-grams, or a bitwise OR of
the two Bloom filters to aggregate and update the respective models.
Further discussion of this concept is beyond the scope of this paper;
see [15, 9] for an application of this approach to enhance access
control.

7. CONCLUSION
We have presented a view of cross-site and cross-domain collabo-
rative security by way of sharing content-based alerts among sites.
It is to everyone’s benefit to share important information without
violating policies that inhibit the disclosure of information. In par-
ticular, content-based alerts generated by locally-trained payload
anomaly detectors reveals an opportunity to detect the early onset of
zero-day worm or targeted attacks. We present a comparative eval-
uation of alternative correlation strategies and accuracy measures
using test data sets with known worm exploits; the methods include
a proposed estimate of the “privacy gain” each method affords. This
is important in approaching the problem analytically in order to
help break down barriers to collaboration. We find that cross-site
and cross-domain privacy-preserving “suspect payload” alert shar-
ing is feasible and useful as revealed in the analysis of Bloom filter-
exchanged alerts encoding suspect anomalous n-grams.

The techniques hold promise for other purposes as well. For ex-
ample, sites may exchange their respective anomaly detection mod-
els to measure their respective “content flow diversity”, enabling
estimation of the relative value of different anomaly alerts gener-
ated by different sites. More similar sites may have a higher chance
of detecting common exploits. Finally, privacy-preserving content
alerts may also be useful for other problems, such as collaborative
spam filtering, suspicious content detection for botnet command-
and-control data streams, etc.
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APPENDIX
We show further results of signature generation here; for brevity, we
only show the beginning part of the packet or generated signature.
Please see section 4 for the full discussion.

First, in figure 7, we present the generated signature using 7-grams
for the first packet of CodeRed II as shown in figure 3.

%*ET /default.ida?XXXXXX*XXXXXX%u9090%u6858
%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%
u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u
0003%u8b00%u531b%u53ff%u0078%u0000%u00=a HT
TP*type:

Figure 7: Flattened 7-gram signature for CRII’s first packet in
figure 3.

To give a better example, we can look at the signatures generated
for another packet P ′ of CodeRed II, which explicitly contains ma-
licious system calls. We first present part of the signature generated
by using LCS, which can also represent partial original raw packet,
and then the generated n-grams signatures.

|d0|$@|0 ff|5|d0|$@|0|h|d0| @|0|j|1|j|0|U|f
f|5|d8|$@|0 e8 19 0 0 0 c3 ff|%‘0@|0 ff|%d0
@|0 ff|%h0@|0 ff|%p0@|0 ff|%t0@|0 ff|%x0@|0
ff|%|0@|fc fc fc fc fc fc fc fc fc fc fc f
c fc fc fc fc fc fc fc 0 0 0 0 0 0 0 0 0 0
0 0 0|\EXPLORER.EXE|0 0 0|SOFTWARE\Microsof
t\Windows NT\CurrentVersion\Winlogon|0 0 0|
SFCDisable|0 0 9d ff ff ff|SYSTEM\CurrentCo
ntrolSet\Services\W3SVC\Parameters\Virtual
Roots|0 0 0 0|/Scripts|0 0 0 0|/MSADC|0 0|/
C|0 0|/D|0 0|c:\,,217|0 0 0 0|d:\,,217|fc f
c fc fc fc fc fc fc fc fc fc fc fc fc fc fc
fc fc fc fc fc fc fc fc

Figure 8: Part of the LCS result for the CRII packet P ′.

|%d0@|0 ff|%h0@|0 ff|%p0@|0 ff|%t0@|0 ff|%x
0@|0 ff|%|0@|fc fc fc fc fc fc fc fc fc fc
fc fc fc fc fc fc fc fc fc 0 0 0 0 0 0 0 0
0 0 0 0 0|\EXPLORER.EXE|0 0 0|SOFTWARE\Micr

*soft\Wind*s NT\CurrentVersion\Winlogon|0 0
0|SFCDisable|0 0 9d ff ff ff|SYSTEM\Curren
tC*trolSet\Services\W3SVC\Para*ters\Virtual
Roots|0 0 0 0|/Scripts|0 0 0 0|/MSADC|0 0|
/C|0 0|/D|0 0|c:\,,217|0 0 0 0|d:\,,217|fc
fc fc fc fc fc fc fc fc fc

Figure 9: Part of the flattened 5-gram signature for the CRII
packet P ′.

%d0@|0 ff|%h0@|0 ff|%p0@|0 ff|%t0@|0 ff|%x0
@|0 ff|%|0@|fc fc fc fc fc fc fc fc fc fc f
c fc fc fc fc fc fc fc fc 0 0 0 0 0 0 0 0 0
0 0 0 0|\EXPLORER.EXE|0 0 0|SOFTWARE\Micro
soft\Windows NT\CurrentVersion\Winlogon|0 0
0|SFCDisable|0 0 9d ff ff ff|SYSTEM\Curren
tControlSet\Services\W3SVC\Parameters\Virtu
al Roots|0 0 0 0|/Scripts|0 0 0 0|/MSADC|0
0|/C|0 0|/D|0 0|c:\,,217|0 0 0 0|d:\,,217|f
c fc fc fc fc fc fc fc fc fc f

Figure 10: Part of the flattened 7-gram signature for the CRII
packet P ′.


