
Secure “Selecticast” for Collaborative Intrusion Detection Systems

Philip Gross, Janak Parekh and Gail Kaiser

Columbia University
Programming Systems Lab

[phil|janak|kaiser]@cs.columbia.edu

Abstract

The problem domain of Collaborative Intrusion
Detection Systems (CIDS) introduces distinctive data
routing challenges, which we show are solvable through
a sufficiently flexible publish-subscribe system. CIDS
share intrusion detection data among organizations,
usually to predict impending attacks earlier and more
accurately, e.g., from Internet worms that tend to attack
many sites at once. CIDS participants collect lists of
suspect IP addresses, and want to be notified if others are
suspicious of the same addresses. The matching must be
done efficiently and anonymously, as most organizations
are reluctant to share potentially revealing information
about their networks. Alerts regarding external probes
should only be visible to other CIDS participants
experiencing probes from the same source(s). We term
this type of simultaneous publish/subscribe “selecticast.”
We present a potential solution using the secure Bloom
filter data structure propagated over the MEET publish-
subscribe framework.

1. Introduction

Increasingly, malicious attackers attempt to avoid

tripping an Intrusion Detection System (IDS) by spacing

out their probes over long periods of time, and

interleaving probes among multiple sites over these

extended periods [1]. Most current IDS�s have a limited

memory window, or employ thresholding before

signaling an alert in order to avoid generating a flood of

false alerts. In contrast, Collaborative Intrusion Detection

Systems (CIDS) attempt to correlate low-level alerts from

multiple enclaves in the same organization or across

organizations over a long period of time in order to detect

these stealthy scanners prior to an actual attack.

Participating sites submit lists of suspicious addresses,

including those that fall below their own thresholds for

escalating alerts (e.g., to human administrators). Each

site compares others� lists against its own, looking for

matches, which are then escalated to a higher level of

suspicion and monitoring.

One approach to implementing CIDS is a centralized

repository that receives all the �watchlists� and sends

back augmented watchlists to each participant. However,

this creates a central point of failure and a tempting target

for denial-of-service attacks. It also requires revealing all

the data to the central site, but the organizations may only

want to share with others that are targets of the same

prospective attacker(s). The nature of the latter

communication suggests a content-based messaging

system, but in a context where participants (particularly

when from independent institutions) may demand that

their data be anonymized. That is, if participant A has no

low-level alerts in common with participant B, it will

learn nothing about participant B�s network structure or

traffic from the data set. Only if there is an alert in

common will the information of that particular alert, and

only that alert, be revealed.

Such a peer-to-peer system should ensure that the data

streams remain private, using some form of encryption.

However, content-based messaging systems are

inherently difficult to use for encrypted message streams.

Content-based routing (CBR) implies that routers inspect

the contents of every packet at each routing point, which

is unacceptable if routers aren�t trusted. Encryption is not

a problem in channel-based routing, since routers along

the path don�t need to inspect content, and only privileged

subscribers can decrypt the events. However, channels

are not well suited for this problem domain, as each IP

probe source would need its own channel, which is

potentially a huge number. Encryption is also less of an

issue if the content-based routers can be trusted, as each

message could safely be decrypted and inspected within

the router (although this is computationally expensive).

Additionally, trusted routers could enforce access control

policies (e.g., [2] or [3]) to guarantee that events are

forwarded only to subscribers whose security credentials

match those acceptable to the publishers.

However, ensuring that all intermediate routers are

trustworthy will not generally be possible. We present a

new approach that supports a restricted form of content-

based event routing with only minimal trust required of

routers. In particular, we trust the routers to forward

messages to subscribers without forging, altering, or

discarding them, and to implement our specialized

algorithms correctly. Rogue routers that do attempt to

interpret the events themselves for malicious purposes,

that forward false matches, or forward to additional

entities pose little or no threat, as explained below. The

main restriction on our approach is that content filtering is

limited to equality and inequality, as opposed to other

comparisons on event content such as less than, greater

than, substring of, etc.

Our main insight is to employ Bloom filters for

representing hashed alert sets. A Bloom filter [4],

described further below, is essentially a compact

representation of a set of hashes. A router receives sets of

hashed values from participants (publishers), which are

then checked against others� (subscribers�) Bloom filters.

Matched values are sent back to the submitter and to the

matched participants; we call this symmetric form of

publish-subscribe �selecticast�. The router then converts

the submitted values to a much smaller Bloom filter, and

discards the originals. There is a small possibility of false

matches, which can be decreased by increasing the size of

the Bloom filters and/or the number of hashes per input

value [5]. For the CIDS application domain, false

positives are not a major issue, assuming the rate is

sufficiently low, as it merely implies that a small

percentage of addresses will be temporarily flagged for

closer monitoring despite being innocent.

We present one such system, including its methods for

minimizing false matches. We first describe the

collaborative intrusion detection system motivating this

work. We then explain how Bloom filters operate and

criteria for selecting the hashes. We compare several

alternative approaches to CBR based on secure hashes.

We briefly discuss the system�s integration into a modular

event system and its extension to a distributed

implementation. Finally, we survey related work, and

conclude with the current status and real-world evaluation

plans.

2. Motivation

The current emphasis on security has led to the

development and deployment of sophisticated traffic

analysis tools, honeypots, and intrusion detection

systems. A fundamental limitation of such systems is the

single-point perspective on suspicious activity they offer:

such activity can only be examined from the point of view

of the sensor, which is attached to only one network.

Patient attackers can slowly scan several targets in

parallel, without creating enough traffic against any one

of them to warrant an alert. Such low-frequency events

can be easily lost in the sea of alerts generated by IDS's.

A collaborative intrusion detection system, such as

described in [6], shares IDS alert information among sites

within a large organization or across different

organizations, thereby enriching the information available

to each, and revealing far more detail about the behavior

of attackers than would otherwise be possible.

Assume we already have a collection of sites, each

hosting an IDS performing surveillance detection, i.e.,

tracking connections and failed or incomplete connection

attempts, and mapping these activities to source IP

addresses (or ranges of addresses) as much as memory

permits. The Antura Recon detector is a commercial

example of such a surveillance-detection-enabled IDS [7].

By identifying such sources, sites progress from detecting

attacks as they occur to predicting impending attacks.

In CIDS, we correlate these alerts from IDS�s across

multiple sites. With sufficient participation in the

collaboration, it now becomes possible to detect stealthy

scanners who relatively rarely probe any given site but

are slowly testing multiple target sites. Collaborative

�watchlists� across multiple sites aggregate the activities

of source IPs (or ranges of IPs) that would likely fall

under the radar at any individual site. A critical concern,

however, is that sites be able to participate without

revealing confidential or sensitive information about their

networks and traffic. By hashing the alerts before

transmission and correlating and distributing them with

selecticast, we can solve the problem simply and

efficiently.

3. Secure Hashes and Bloom Filters

A Bloom filter [4] is a �one-way� data structure,

consisting of a bit-string that represents hash hits. It is

one-way in the sense that one can test to determine

whether a given filter has seen a particular datum before,

and the filter will answer with no false negatives and rare

false positives. Thus, the Bloom filter does not reveal its

contents; it can only confirm whether a specific value is

stored.

More precisely, Bloom filters are used to

probabilistically and compactly represent subsets of some

universe U. A Bloom filter is implemented as an array of

m bits, uses k hash functions mapping elements in U
to m..0 , and supports two basic operations: add and

query. Initially, all bits in the Bloom filter are set to 0.

To add u U to a Bloom filter, the hash functions are

used to generate k indices into the array and the

corresponding bits are set to 1. A location can be set to 1

multiple times, but only the first has an effect. A query is

positive if and only if all k referenced bits are 1. A

negative query clearly indicates that the element is not in

the Bloom filter, but a positive query may be due to a

false positive: the case in which the queried element was

not added to the Bloom filter, but all k queried bits are 1

due to other additions. We use k independent indices,

instead of just a single index, to reduce the probability of

a such a false positive.

The probability of false positives is an important

metric because minimizing it is the key to making

effective use of Bloom filters. The analysis proceeds as

follows. If p is the probability that a random bit of the

Bloom filter is 1, then the probability of a false positive is

pk, the probability that all k hash functions map to a 1. If

we let i be the number of elements that have been added

to the Bloom filter, then p = 1-(1-1/m)ik
, as ik bits were

randomly selected, with probability 1/m, in the process of

adding i elements. In [8] and [5], it is shown that the

probability of false positives is minimized when k is

approximately 2lnim .

The reason the above analysis is with respect to k, the

number of hash functions, is that we do not control i, the

number of additions, in our application � it�s dictated by

network traffic. What we can control is m, the amount of

memory used and k, the number of hash functions. The

collaborative security participants need to choose m and k
so that the probability of false positives is acceptably

minimized. Small values of k lead to large values of m,

whereas small values of m lead to large values of k. The

smaller m, the more compact our Bloom filters, but the

smaller k, the faster the implementation � at routers as

well as subscribers. As discussed in the next section,

hash computation is the dominant cost and it depends on

k.

4. CBR With Bloom Filters and Hashes

Bloom filters efficiently represent a set of hash values

in a small space. Good results are typically obtainable

with filters with only eight times as many bits as there are

items being stored [5]. One can merge two or more

Bloom filters by simply binary-ORing them together (at

the cost of a higher false-positive rate).

Bloom filters also have some disadvantages, most

significantly the impossibility of deletion, although

alternate schemes allowing deletion (at the cost of less

space efficiency) have been proposed [9]. Additionally,

as with standard hash tables, the hash values have usually

been adjusted modulo the size of the table, so increasing

the size requires rehashing the original values.

We will assume that it is undesirable (insecure) for the

routers to see raw, unhashed values, which will typically

be alerts containing sensitive IP address and port

information. There are several different ways to leverage

Bloom filters to represent the hash-value sets participants

are publishing. We could have clients submit Bloom

filter bit-strings representing the hashed addresses of

interest, and have routers use Bloom filters internally.

We could have clients submit the sets of hash values and

have routers organize them into Bloom filters. Or we

could have clients submit lists of hash values and have

the routers use standard hash tables.

There are a number of costs to consider, and the

optimal solution will depend on the specific attributes of

our network and the needs of our CIDS �selecticast.�

Among the important cost metrics are the size of the

�selecticast� submissions and notifications in transit, the

size of the subscription representations in router memory,

and the speed with which the router can compute

intersections. Another important variable is the

specificity of participant notification: do participants

merely need to know that others have seen a particular

alert, the number who have seen the alert, or the actual

identities of all who have seen an alert?

Plain Hash Tables
If clients submit lists of the hash values, the most

straightforward approach for the router is to simply

maintain a hash table of all submissions. Each entry in

the hash table links to a list of submitters. When a new

set is submitted, the router adds each entry to the master

hash table. If the submitter list for that entry was non-

empty, a notification containing the new submitter list

and the hash value is sent to all entries in the list.

This implementation has the advantages that there will

be no false positives except for rare hash collisions. It

also allows deletion, enabling the submission of updates,

as opposed to complete lists. If a hashed alert is flagged

for deletion, the submitter will be silently deleted from

the submitter list for that entry in the master hash table.

Its main disadvantage compared with Bloom filters is

size. The exact size depends on the specific type of hash

table constructed and the underlying architecture of the

system (e.g., pointer size). Assuming both hash values

and pointer size are 32 bits (reasonable for our expected

alert set cardinality of 105-106), an optimal open hash

table (load factor 0.50) storing n items will use around

64n bits, and an optimal chained hash table (load factor

around 0.75) will use around 85n bits (64 bit entries, 32

bits for value and 32 for pointer, times 4/3 for optimal

load). For either type, if each entry also has a linked list

of submitters, add an extra 64n.

Pure Bloom Filters
At the opposite extreme, we could deal purely with

Bloom filters. In this case, participants would submit a

Bloom filter representation of their dataset. In order to

look for matches, we would directly compare the Bloom

filters, counting the number of bits in common. Filters

with any matching elements must have at least k bits in

common, where k is the number of Bloom filter bits we

set for each input value.

Unfortunately, this approach will usually not be

practical. The number of bits that match due to random

chance will be huge for any typical pair of Bloom filters.

Suppose we have two Bloom filters of size m bits, each

storing n distinct values (i.e., no values in common) using

k bits per item. A bit in the filter will be set with

probability p, roughly
knm111 . For optimal Bloom

filters, p should be near 0.5, although we can make it

much sparser at the cost of increased memory usage.

For our candidate Bloom filter, we can view the case

that one of our bits coincidently matches a bit in the other

filter as a Bernoulli trial with chance of �success� p. The

number of matching bits will then follow a binomial

distribution, with the expected number of successes in kn
trials equal to knp. Computer simulation confirms the

accuracy of this analysis. knp will be vastly greater than

k, and thus the number of false positives will be

enormous. Even if we try to lower knp by making p
extremely small (and making the filter extremely sparse),

large values of n will rapidly make the situation

unworkable.

For instance, if k is 6, and thus we want our expected

number of collisions to be less than 6, we must put fewer

than 1200 items into an 8 million bit (1MB) Bloom filter

(k=6, n=1183, m=223, p 0.0008, knp 6.0). Note that this

cost is only incurred in memory. We can compress the

filter during network transmission by a large factor using

standard compression tools. Nonetheless, and even given

the speed of simply ANDing the two large Bloom filters

together, 7000+ bits per item stored is a highly

unattractive ratio.

Hybrid Bloom Filter
We can successfully leverage the size advantage of

Bloom filters by combining them with the set-of-hash-

values approach. Participants submit the list of hash

values of interest, representing noted instances of

suspicious network activity. The router uses the actual

hash values to check against the Bloom filters of the other

participants to find matches with reasonable accuracy. If

matches are found, the router sends the matching values

as a notification to all matching participants.

Additionally, the router converts the submitted set of hash

values into a Bloom filter of size n�8 bits, where n� is the

estimated total number of values per participant (making

all filters the same size, and giving a chance of false

positive around 2%). This filter is then stored and

associated with the submitter. After all of the submitted

hash values have been checked against everyone else�s

Bloom filters, the router can then discard the submitted

hash value list, leaving only the subscriber�s (much

smaller) Bloom filter.

Thus publishers submit large sets of hash values,

which are used to find matches, and then leave behind

much smaller Bloom filter �residues� that act as

subscriptions. Matching hash value sets (optionally

tagged with the identity of their submitter) are sent out as

the actual notifications. For this domain, we assume that

the number of notifications is very small in relation to the

number of values submitted (experiments show

correlation rates of 0.01% or lower). If the number of

matches is expected to be large, the matching sets could

themselves be converted to Bloom filters before being

sent as notifications, with the attendant space savings.

Note that the hash values used for Bloom filter

generation are much larger than the hash values used by a

plain hashtable, even though the resulting filter structure

is smaller than the corresponding hashtable. For each

item entered, Bloom filters need k indices into an m-bit

table, and thus a total of klnm bits of hash per item. If

m=8n, then k(3+lnn) bits. For sets of 2,000 to 128,000

items and k=6, this works out to 84-120 bits per item, or a

factor of 3-4 increase over the size of the hash values

needed for plain hashtables. This would potentially be a

problem for the submission of large sets of hashed values

in the hybrid case.

However, we can avoid this problem by hashing our

alerts to 32 bits for transmission, and then rehashing each

to 120+ bits after it arrives at the server (and then splitting

up those bits into the k indices of size lnm that we need),

thus making the transmission cost no more expensive than

for plain hashtables. Since the original alerts will

typically contain less than 32 bits of entropy, no

information should be lost with this two-stage hashing

process.

Optimization with Two-Stage Compare
In the hybrid case described above, we assumed that

the router maintains a separate Bloom filter for each of

the C collaborating parties, representing the specific set of

alerts seen by that party. When a new set of values is

published, it must be compared against each of the C-1
other sets. We can speed processing by entering all of the

submitted value sets into a single large �master� Bloom

filter in the Router and checking this first.

If we find a match in the master Bloom filter, we must

then check each individual filter to discover the specific

participants who matched. Despite this, we will show

that this approach can offer substantial space efficiencies

over the hash table approach, and the speed disadvantage

can be reduced.

We can speed our Bloom filter lookups by taking

advantage of arithmetic modulo 2m on binary numbers.

Just as a base 10 number modulo 10m is the least

significant m digits of the number, a binary number

modulo 2m is just the bottom m bits of the number, which

can be extracted by ANDing the number with an

appropriate bit mask ((1<<m)–1 using the C-language

bit operators).

Let n’ be the power of 2 closest to n. We create one

master Bloom filter of size Cn’ and a filter of size n’ for

each of the C participants. Sizing these at 8 bits per item,

we have a total space of 16Cn’. The single hash table

approach, as described above, will use 128Cn-150Cn bits

to encode the same information. Even if we choose

n’=2n, the total size of our Bloom filters will be a quarter

or less of the size of the hash table solution. To do a

lookup, we take our k hash values, compute indices

modulo Cn’, and do our lookups into the master Bloom

filter. If all k indices match, we simply take the bottom

log2n’ bits of each master table index value, and use these

as our search indices into the size n’ subtables. Thus we

only need to compute a nontrivial modulus once. If C is

also a power of 2, both hash resizings become single

AND instructions.

Aging
The master Bloom filter still has one major weakness

vis-à-vis the master hash table solution. Participants will

be publishing new alert lists to the network on a regular

basis. While we can easily add new values to the master

Bloom filter (just keep setting the appropriate bits), we

have no way to delete out-of-date entries, and our master

filter will gradually fill up with junk bits, until the

probability of a positive response for any input

approaches 1.

One solution is to maintain a �shadow� copy of the

�primary� master Bloom filter (at a cost of an extra 8Cn’
bits), and periodically swap the two. At startup, after the

primary master Bloom filter is initialized from all the

participants� data, the shadow copy is cleared. When

participants subsequently publish a new set of values,

their individual Bloom filter is replaced, and both the

primary and shadow filters are updated with the new

values. After all participants have submitted new data (or

a preset time interval is elapsed), the shadow table

becomes the new primary table, and the old primary table

is cleared and becomes the new shadow table.

During the period where many new sets have been

added to the current primary table, the number of false

positives it returns will increase. However, as the

individual participant subtables are always up-to-date,

this should not result in a much higher rate of actual false

positive messages transmitted back to subscribers, as all

of the secondary checks for specific matches will fail.

The only effect will be a reduction of the primary table�s

efficiency in filtering. If value set updates are largely

similar to the previous set, the performance degradation

will be even smaller.

MEET
The Multiply Extensible Event Transport (MEET) is a

modular publish-subscribe system currently under

development that allows users to define their own data

types and predicates on those types to be used as filters.

MEET allows enhancements to the classic publish-

subscribe paradigm through the addition of new modules.

In the above discussion, we have assumed a single

router node. We can use this extensible system

implement a fully distributed solution. We wish to

distribute the task of matching values among multiple

routers. We can achieve even distribution of the

computation by assigning particular hashes to particular

routers with a mechanism based on Distributed Hash

Table routing. For instance, if we have 16 routers, the

first handles all hashed values ending with 0000, the

second all hashes ending with 0001, etc.

MEET enables DHT routing and selecticast through

the addition of data type, filter, and routing

modules.Further discussion of MEET is outside the scope

of this paper.

5. Related Work

A number of sophisticated publish-subscribe systems

have been developed, including Siena [10], Gryphon [11],

JEDI [12], ECho [13], CORBA Events [14], and Elvin

[15]. Siena, Gryphon, JEDI, and Elvin are all content-

based, where intermediate routers analyze the contents of

each packet to determine appropriate forwarding

destination(s). Wang et al. [16] examined security issues

for CBR, but focused on the (as yet unsolved) problems

of evaluating complex filters (i.e., more complex than

simple equality testing, e.g., ad-hoc range checking) on

encrypted data.

Bloom filters have been studied for a number of

applications, including wide-area service discovery [17],

IP packet traceback [18], and distributed caching

services[8], in addition to being a primary tool for

relational database joins [19]. The most germane work is

probably by Triantafillou and Economides [20, 21], who

use Bloom filters to create �subscription summaries,�

allowing for radical speedups to standard content-based

routing. To our knowledge, no one has proposed using it

for management of large numbers of opaque subscriptions

in publish/subscribe systems. We also know of no other

�selecticast� systems where publications are also

subscriptions.

Others have investigated CIDS, e.g., [22] [23] [24]

[25], but none have proposed an event infrastructure for

data distribution.

6. Status and Conclusions

We believe that our proposed two-level system of

Bloom filters will allow efficient and secure correlation of

data as required by collaborative intrusion detection

systems. The launch of a second generation CIDS, using

MEET with Bloom filters extended as discussed here, is

planned as a joint project between Columbia, Georgia

Tech, Florida Institute of Technology, Syracuse

University, MIT, USC/ISI and the Brookings Institute.

We expect to be able to compare our performance data

against first generation CIDS trials involving Columbia,

George Tech, and the University of Pennsylvania, where

the raw data was collected and correlated at a centralized

site.

Our extensions to Bloom filters may also prove useful

for other secure content-based routing applications where

equality/inequality testing of values is sufficient.

Publications and subscriptions do not necessarily have to

be symmetric, as in our �selecticast�, but instead

subscriptions could be provided directly as Bloom filters.

7. Acknowledgements

We would like to thank Sal Stolfo and the other

members of his Intrusion Detection Systems Lab for

developing the collaborative security framework

motivating this event system research; Angelos

Keromytis, Vishal Misra, Jason Nieh, Dan Rubenstein

and Henning Schulzrinne for helpful suggestions; and the

other members of our Programming Systems Lab. PSL is

funded in part by National Science Foundation grants

CCR-0203876, EIA-0202063 and EIA-0071954, and by

Microsoft Research.

8. References

[1] CERT Coordination Center. Module 4 - Types of Intruder
Attacks, CERT/CC Overview Incident and Vulnerability
Trends. 2003.

[2] Blaze, M., J. Feigenbaum, and A.D. Keromytis. KeyNote:

Trust Management for Public-Key Infrastructures. Security
Protocols International Workshop. 1998. Springer LNCS.

[3] Keromytis, A.D., et al. The STRONGMAN Architecture.

3rd DARPA Information Survivability Conference and
Exposition. 2003.

[4] Bloom, B.H., Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, 1970.

13(7): p. 422-426.

[5] Mitzenmacher, M., Compressed bloom filters. IEEE/ACM
Transactions on Networking, 2002. 10(5): p. 604-612.

[6] Locasto, M., et al. Secure and Efficient Privacy–Preserving
Multi–Organization Intrusion Detection, Technical Report
CUCS-012-04. 2004.

[7] Robertson, S., et al. Surveillance Detection in High

Bandwidth Environments. 3rd DARPA Information
Survivability Conference and Exposition. 2003.

[8] Fan, L., et al. Summary cache: a scalable wide-area Web

cache sharing protocol. SIGCOMM '98 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication. 1998.

[9] Cohen, S. and Y. Matias. Spectral bloom filters. ACM
SIGMOD International Conference on Management of
Data. 2003.

[10] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf, Design

and evaluation of a wide-area event notification service.

ACM Transactions on Computer Systems, 2001. 19(3): p.

332-383.

[11] Aguilera, M.K., et al. Matching events in a content-based

subscription system. 18th Annual ACM Symposium on
Principles of Distributed Computing. 1999.

[12] Cugola, G., E. Di Nitto, and A. Fuggetta, The JEDI event-

based infrastructure and its application to the development

of the OPSS WFMS. IEEE Transactions on Software
Engineering, 2001. 27(9): p. 827-850.

[13] Eisenhauer, G., F.E. Bustamante, and K. Schwan. Event

services for high performance computing. 9th International
Symposium on High-Performance Distributed Computing.

2000.

[14] Harrison, T.H., D.L. Levine, and D.C. Schmidt. The design

and performance of a real-time CORBA event service.

ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages and Applications. 1997.

[15] Segall, B., et al. Content based routing with Elvin.

Australian UNIX and Open Systems User Group. 2000.

[16] Wang, C., et al. Security Issues and Requirements for

Internet-scale Publish-Subscribe Systems. 35th Annual
Hawaii International Conference on System Sciences.
2002.

[17] Czerwinski, S.E., et al. An Architecture for a Secure

Service Discovery Service. Mobile Computing and
Networking. 1999.

[18] Snoeren, A.C. Hash-based IP traceback. Conference on
Applications, technologies, architectures, and protocols for
computer communications. 2001.

[19] Mackert, L.F. and G.M. Lohman. R* optimizer validation

and performance evaluation for local queries. ACM
SIGMOD International Conference on Management of
Data. 1986.

[20] Triantafillou, P. and A. Economides. Subscription

summaries for scalability and efficiency in

publish/subscribe systems. 22nd International Conference
on Distributed Computing Systems Workshops. 2002.

[21] Triantafillou, P. and A. Economides. Subscription

summarization: A new paradigm for efficient

publish/subscribe systems. 24th International Conference
on Distributed Computing Systems. 2004.

[22] Yegneswaran, V., P. Barford, and S. Jha. Global Intrusion

Detection in the DOMINO Overlay System. 11th Annual
Network and Distributed System Security Symposium.

2004.

[23] Markatos, E. A European Network of Affined Honeypots,

Private communication, 2004.

[24] Balasubramaniyan, J.S., et al. An Architecture for Intrusion

Detection Using Autonomous Agents. Annual Computer
Security Applications Conference. 1998.

[25] Cuppens, F. and A. Miege. Alert correlation in a

cooperative intrusion detection framework. IEEE
Symposium on Security and Privacy. 2002.

