
NetServ: Dynamically Deploying In-network Services

Suman Srinivasan∗† Jae Woo Lee∗† Eric Liu∗† Michael Kester∗†
∗Suman, Jae, Eric and Michael contributed equally to this paper.

Henning Schulzrinne† Volker Hilt‡ Srini Seetharaman§ Ashiq Khan¶

†Department of Computer Science, Columbia University, New York, NY, USA
{sumans,jae}@cs.columbia.edu, {ewl2113,msk2117}@columbia.edu, hgs@cs.columbia.edu

‡Bell Labs/Alcatel-Lucent, Holmdel, NJ, USA
volkerh@alcatel-lucent.com

§Deutsche Telekom R&D Lab, Los Altos, CA, USA
srini.seetharaman@telekom.com

¶DoCoMo Communications Laboratories Europe, Munich, Germany
khan@docomolab-euro.com

ABSTRACT
We present NetServ, an extensible architecture for core net-
work services for the next generation Internet. The functions
and resources available on a network node are broken up into
small and reusable building blocks. A new core network ser-
vice is implemented by combining the building blocks, and
hosted in a sandbox-like execution environment that pro-
vides security, portability, resource control, and the ability
to deploy modules dynamically.

We describe our first prototype, a novel combination of the
Click router and the Java-based OSGi module system. Our
measurement results indicate that the processing overhead
incurred by the Java layer is a reasonable trade-off for the
level of modularity we achieve in our system.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign

General Terms
Design, Measurement, Performance

Keywords
FIND, Java, OSGi, future internet, modular, netserv, pro-
grammable, routers, service oriented architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ReArch’09, December 1, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-749-3/09/12 ...$10.00.

1. INTRODUCTION
Despite the tremendous success of the Internet in the past

decade, a number of shortcomings of current Internet archi-
tecture have become apparent. The ossification of the In-
ternet, often suggested as the main problem of the current
architecture, refers to the fact that it is nearly impossible to
add new functionality and services to the network core. This
is clearly shown by the dismal rate of adoption of new Inter-
net protocols such as multicast routing and QoS, even when
the need for them is widely recognized. Many have naturally
turned to implementing network services on the application
layer using overlay networks formed by end hosts, since pro-
viding services through overlay networks eliminates the need
to update the network core. However, such solutions tend to
be ad hoc, often duplicating the effort of other overlay net-
works, and inefficient because certain basic functions such as
distance estimation can be achieved much more effectively
at the network core.

We present NetServ [10], our on-going research effort to
design an extensible architecture for core network services
for the next generation Internet. The key idea of NetServ is
service modularization. The functions and resources avail-
able on a network node are broken up into small and reusable
building blocks. A new core network service can then be im-
plemented by combining the functionality of building blocks
available on multiple network nodes. We use the term ser-
vice modules to refer to the building blocks or the composite
components that use multiple building blocks.

Another piece of the NetServ architecture is the virtual
services framework, which refers to the architecture of the
network nodes that host service modules. The virtual ser-
vices framework provides a sandbox-like execution environ-
ment for the service modules, offering security, portability
across hardware platforms, and the ability to control re-
source allocation among modules. In addition, the frame-
work supports adding and removing service modules at run-
time, by network administrators or even by content providers
and end users, enabling on-demand and per-flow services in
the network core.

In this paper, we describe our first prototype implementa-
tion of the NetServ architecture. We used the Click modular

router [19, 3] as a base router platform, and augmented it
with a Java-based dynamic module system called OSGi [13],
which provided the ability to load and unload service mod-
ules at runtime. Currently, the prototype implements a
component inside the Click router that intercepts incom-
ing packets and sends them to Java service modules that
can be installed and uninstalled at runtime. The Java tech-
nology provides portability across hardware platforms, and
a comprehensive security framework on which to build our
security and resource control mechanisms in the future.

The Java technology has not been used much in routers,
most likely due to concerns on its performance. We com-
pared our prototype with a Click router running as a user
process and also with a Linux kernel acting as a router
using Maximum Loss Free Forwarding Rate (MLFFR) as
the metric. Our results indicate that the processing over-
head incurred by the Java layer is quite acceptable, as it
is much smaller than other unavoidable penalties associated
with systems where modules can be installed dynamically.

The rest of this paper is organized as follows. Section 2
gives a brief overview of the two technologies that we have
used to implement our prototype: the Click modular router
and the OSGi framework. Section 3 describes our prototype
implementation in detail. Section 4 presents our measure-
ment methods and results. Section 5 summarizes the related
work. Finally, we conclude and discuss future work in Sec-
tion 6.

2. TECHNOLOGY OVERVIEW

2.1 Click Modular Router
Click [19, 3] is a modular software architecture for Linux

and other UNIX-like platforms that allows for the creation
of easily reconfigurable routers and switches. Click func-
tionality is manipulated using a text file that specifies how
modules, called elements, are arranged in a directed graph.
The graph structure allows for numerous possibilities. One
such possibility is shown in Figure 1. This example of a
very simple Click configuration receives packets from eth0,
counts them, and discards them. Click includes hundreds of
predefined elements so it is easy to reconfigure a graph to
implement many types of network devices. In addition, cus-
tom elements can be written to further extend functionality.

The Click router can run in two modes: user-mode or
kernel-mode. User-mode runs as a user-level process. This
means it does not replace the routing performed by the un-
derlying Linux kernel. In contrast, kernel-mode runs as a
module inside the Linux kernel and can replace the routing
functionality of Linux.

The performance of the Click router is much higher in
kernel-mode, and it can be further enhanced by replacing
the standard Linux Ethernet drivers with polling drivers.
Polling drivers turn off Linux’s interrupt structure and de-
vice handling, and allow the network card to poll for packets.

Kernel-mode uses the proc file system to access data from
a running element or to change the element’s settings. If
more extensive changes are required, Click offers the ability
to replace the running configuration with an entirely new
one, called hot-swapping. Compared to NetServ, Click’s hot-
swap feature is limited in three ways. First, Click elements
are written in C++, thus the elements in binary form can
be installed only on a particular hardware platform. Second,
Click elements run inside the kernel so there is little to no

FromDevice(eth0) -> Counter -> Discard;

Figure 1: A minimal Click configuration.

security or access control. Third, the ability to hot-swap a
particular element into a running Click router is dependent
on the element having been compiled into the Click kernel
module. The router must be restarted to insert a newly
developed element.

2.2 OSGi Framework
OSGiTM [13] is a component framework for Java. In the

OSGi framework, an application is organized as a set of mod-
ules, called bundles, which are Java Archive (JAR) files [6]
that conform to the structure specified by the OSGi frame-
work. The bundles can be loaded and unloaded at run-
time. This enables installing a new feature into a running
application or upgrading a part of it with newly written
code, without having to shutdown and restart the applica-
tion. There are a number of implementations of the OSGi
framework available today, including open source software
such as Apache Felix [1] and Eclipse Equinox [4].

In a normal Java application, a class can usually access
any other public class in the same application, i.e., a class
can create an instance of another public class and invoke a
method on it. In OSGi, the scope of such an unrestricted
access is limited to the enclosing bundle. In other words,
the classes that belong to a bundle are not visible to the
other classes that belong to other bundles. The only method
of inter-bundle communication is for a bundle to explicitly
export a service by listing a package containing the interfaces
in the manifest file of its JAR file, and for another bundle to
explicitly import the service, also by using its manifest file.
The OSGi framework achieves this isolation of bundles by
using a custom class loader.

3. NETSERV IMPLEMENTATION
We implemented a prototype of NetServ using the Click

modular router as the base platform. The Click router pro-
vides a high performance router platform that can be easily
extended because of its modular approach. Extending the
Click router is a matter of writing a new C++ class–an ele-
ment in Click terminology–that extends a simple base class
with a few member functions. This enabled us to develop our
prototype concentrating on the NetServ functionality with-
out having to worry about the basic router functionality.
The current version of NetServ is based on the user-mode
Click. Implementing NetServ on the kernel-mode Click is
planned as a future work.

On top of the Click router platform, we used the OSGi
framework. OSGi provides an ideal foundation on which we
can realize our vision of a secure and portable services frame-
work that supports dynamic distribution of services. Since
OSGi is based on Java, it naturally inherits the portability
across hardware platforms and the comprehensive Java se-
curity architecture [7]. OSGi’s ability to load and unload
bundles at runtime satisfies the fundamental requirement of
dynamic distribution of services. The strict separation of
OSGi bundles provides a solid starting point to address the
security concerns associated with dynamic distribution of
services.

Equinox OSGi framework

NetServ

App

Bundle

NetServ

Building Block

Bundle

Java Virtual Machine

User-level Click router

dispatcher.addPkt

Processor(this);

Single process

CheckIPHeader

element

StaticIPLookup

element

NetServ OSGi Launcher

Registers an instance of
PktDispatchingService

NetServ

element

Implements
PktProcessor

packet flow

Figure 2: NetServ prototype architecture.

Figure 2 depicts the overall architecture of the prototype
implementation. The shaded boxes represent different com-
ponents of NetServ, and the thick arrow represents the flow
of a packet being forwarded by the router, taking a detour
into the NetServ components.

We wrote a Click element in C++, called NetServ, and
configured a Click router to place the NetServ element on the
path of the packet flow. Our test configuration was based on
the basic IP router configuration that came with the Click
software package. In that configuration, the NetServ ele-
ment was placed between the CheckIPHeader and StaticI-
PLookup elements. When a Click router is started, it calls
the initialize() member function of each element. Net-
Serv’s initialize() creates a Java Virtual Machine (JVM),
launches the OSGi framework, and loads the configured bun-
dles.

The NetServ element creates a JVM using the Invocation
API, which is a part of the Java Native Interface (JNI) [8].
The JNI specification provides various ways for Java code
and C/C++ code to call each other. The Invocation API,
in particular, makes it possible for an application written
in C/C++ to embed a whole JVM in the same process.
After creating a JVM, the NetServ element invokes a Java
function to run inside the JVM. That Java function is an
entry point into the NetServ.launch package, represented
as a box labeled NetServ OSGi Launcher in Figure 2.

The NetServ OSGi Launcher serves two purposes. First,
it launches the OSGi framework, which in turn will load
the NetServ Building Block Bundle and all configured ap-
plication bundles. Figure 2 shows only one application bun-
dle loaded–labeled NetServ App Bundle–but multiple ap-
plication bundles can be loaded as well, in which case the
packet will travel through each bundle in the order they were
loaded. An application bundle implements the PktProces-

sor interface, and registers itself with the global packet dis-
patcher in order to receive the incoming packets. The global
packet dispatcher is a singleton object which is exported as
a service by the NetServ Building Block Bundle.

Second, the NetServ OSGi Launcher provides a Java class
called PktConduit, which is visible from the Building Block
Bundle and also accessible from the C++ code in NetServ
element. The PktConduit class therefore acts as a bridge

between the Java and C++ regions. Such a bridge is neces-
sary because an OSGi bundle is loaded using a custom class
loader, making it invisible to other bundles or any other code
outside the OSGi framework.

The NetServ element’s initialize() function, before it
returns, also finds and saves a handle to the injectPkt

method of the PktConduit class using JNI. After the ini-
tialization is completed, the NetServ element diverts every
incoming packet to the Java components by calling PktCon-

duit.injectPkt(), which in turn will hand over the packet
to the Building Block Bundle, which in turn will invoke all
registered packet processors.

We avoid copying a packet when it is passed from C++ to
Java. We construct a direct byte buffer object that simply
points to the memory address containing the packet using
the NewDirectByteBuffer() JNI call. The reference to this
object is then passed to the Java components.

4. EVALUATION
We want to ensure that our goal of increased modularity

for network services does not come with unacceptable trade-
offs. There is a performance penalty associated with the
detour that packets take into the Java layer of NetServ. We
show that the performance penalty is a reasonable trade-
off. We measure NetServ’s maximum loss free forwarding
rate (MLFFR), which is defined to be the maximum number
of packets that a router can forward without incurring any
packet loss. We compare NetServ’s performance to a plain
Click router running in user-mode (Plain Click) and also to
a Linux kernel acting as a router (Bare Linux).

4.1 Measurement Environment
The configuration we used for measurements involves three

PCs, referred to as node 1, node 2, and node 3. Node 1 is
connected directly to node 2, and node 2 is connected di-
rectly to node 3. When testing with only two machines,
node 1 is connected to node 3 through a 10/100Mbs Ether-
net switch. Node 1 is always the sending machine, node 3
is always the receiving machine, and node 2 is always the
router.

The hardware used for testing was consistent but not iden-
tical for each node. Node 1, the packet source, is a Dell
Optiplex 755, with an Intel Core 2 Duo E6750 at 2.66GHz,
2x 2GB DDR2 RAM at 800MHz, and an Intel 82566DM-2
Gigabit Ethernet card.

Node 2, the router, is a custom built machine with 2x
Athlon MP 1600+ at 1.4GHz, 2x 512MB DDR RAM at
266MHz, and two Ethernet cards–an Intel 82557 100Mb card
(eth0) and a DEC Tulip 100Mb card (eth1). We disabled
one of the two CPUs in order to localize the load on the
system.

Node 3, the destination, is an IBM ThinkPad T61, with
an Intel Core 2 Duo T8100 at 2.10GHz, 1x 2GB DDR2 RAM
at 667MHz, and an Intel 82566MM Gigabit Ethernet card.

The connections were all run at 100Mbps. All three PCs
were booted into single-user mode to disable superfluous
background processes. We enabled kernel-level logging for
data collection.

We used kernel-mode Click to ensure that node 1 and
node 3 are capable of sending and receiving as quickly as
possible. For node 2, we used user-level Click since NetServ
currently only runs in user-mode. Node 1 and node 3 ran
Ubuntu Linux 8.04 with a patched 2.6.24.7 kernel, polling

Figure 3: Comparison of the MLFFR of bare Linux,

a user-mode Click router, and a user-mode Click

router running NetServ, forwarding 64 byte packets.

Ethernet drivers, and Click version 1.7.0 rc1. Node 2 ran
Ubuntu Linux 9.04, standard Ethernet drivers, and Click
version 1.6.0.

4.2 Maximum Loss Free Forwarding Rate
(MLFFR)

The overall test for MLFFR involves having node 1 send
and count packets, node 3 receive and count packets, and
node 2 forward packets between node 1 and 3. We com-
pare the counts from nodes 1 and 3 to determine when and
how many packets are dropped. We identify MLFFR as the
highest packet rate for which the packet count at node 1 is
the same as the packet count at node 3. Our measurements
show that the MLFFR for Bare Linux is 115,000 packets/sec,
Plain Click is 36,500 packets/sec, and Click with NetServ is
27,900 packets/sec as depicted in Figure 3.

For each test run, node 1 generates packets using the Click
element FastUDPSource and counts them as they are sent.
Node 3 simply discards them after they have been counted.
We have node 1 run successive tests using every rate between
100 and 143,000 packets/sec in increments of 100. Each rate
is run for 20 seconds. The tests are run with both 64 and
1500 byte packets. We also have both node 1 and 3 log the
packet count every second while the test is running. Node 2
is run in each of three different scenarios for forwarding:
1) Bare Linux, 2) Plain Click, and 3) Click with NetServ.
MLFFR is calculated using the data collected from the ker-
nel logging.

Bare Linux forwarding is enabled by changing the value of
/proc/sys/net/ipv4/ip_forward to 1. Node 2 uses the for-
warding capability built into Linux kernel to handle packet
forwarding.

Plain Click is a router configuration generated using the
make-ip-conf.pl included with Click. This script creates a
fully IP-compliant router. The configuration generated by
this script will handle all typical forwarding duties expected
of an IP router, including ARP requests and replies.

Click with NetServ uses the same configuration but inserts
the NetServ element. The NetServ element is placed early in
the path the packet travels: directly after it has been identi-
fied as an IP packet. The packet will travel through all the
components depicted in Figure 2 with a single NetServ App
Bundle installed. This bundle does nothing to the packet
and is introduced to only gauge the overhead of sending a
packet through NetServ.

Our tests for 64 byte packets show that there is sizable
performance overhead when comparing Bare Linux to Plain
Click. This was expected because node 2 is running Click
in user-mode in the latter. This results in a kernel-to-user
transition as the packet comes in to Click and then a user-
to-kernel transition as Click forwards the packet out to the
intended destination. These transitions result in penalties
to the performance of the system. When we compare Plain
Click to Click with NetServ, we see additional overhead in-
troduced by the NetServ components. However, we see that
the overhead of introducing NetServ on top of Click is signif-
icantly less compared to the overhead between Bare Linux
and Plain Click.

When looking at the 1500 byte packet test, Bare Linux,
Plain Click, and Click with NetServ are all capable of for-
warding rates that are comparable: just over 8200 pack-
ets/sec. Each router levels off at the same maximum rate
because they reach the bandwidth limit of our setup. This
result is favorable, as real world use of NetServ is more likely
to involve manipulating larger packets instead of sending
minimum sized packets as fast as possible.

Since the MLFFR of 115,000 packets/sec for bare Linux
was sufficiently close to the theoretical MLFFR of 148,800
packets/sec for 100 Mbps Ethernet connection [19], we tested
to make sure that the number represented the limit of the
bare Linux routing performance rather than the line limit.
We replaced node 2 with a 10/100Mbps Ethernet switch. A
direct connection between the two nodes causes the connec-
tion to run at 1Gbps. The switch forced a 100Mbps connec-
tion. This ensures comparability with our other test cases
which use 100Mbps connections. Performing our MLFFR
test in this scenario resulted in a rate of about 142,200
packets/sec. In order to ensure that this is the line limit
for 100Mbps and not some other limit, we also directly con-
nected node 1 and 3 allowing the connection to run at 1Gbps.
This resulted in a forwarding rate that approached 500,000
packets/sec. These checks demonstrate that we are reaching
the limit of Bare Linux and not another barrier.

5. RELATED WORK
Our work is fundamentally different from the active net-

working proposals such as ANTS [22], JanOS [20], NetScript [24]
and Switchware [16]. In contrast to active networking, Net-
Serv provides for virtualized services on current, passive net-
works by installing modules on the router control plane. Ser-
vice invocation is signaling driven, not packet driven.

A service-centric view of the network core is not new.
Tilman Wolf proposes a new abstraction for information
transfer in the next generation Internet [23]. NetServ com-
plements the idea, as it can provide the technology platform
on which to implement the abstraction.

Much work has been done on virtualizing different parts
of the Internet architecture. Their focus is sharing network
resources such as bandwidth. NetServ’s focus is providing a
uniform hosting architecture for network services.

The DaVinci project [18] presents the design of a sys-
tem that allows one physical network to support multiple
classes of traffic. Major commercial routing hardware ven-
dors, such as Cisco and Juniper, are also offering increas-
ingly fine-grained network virtualization services for their
customers [2, 14, 9]. Vyatta, an open-source routing plat-
form vendor, also offers similar networking virtualization
services [15].

The OpenSolaris Crossbow [12] project aims to enable net-
work virtualization and resource control for each service or
protocol such as HTTP or FTP. It does so by virtualizing
the protocol stack and the NIC for each service.

The VROOM router project [21] presents“virtual routers”
that can be moved from one physical node to another and
controlled using network primitives. Egi et al. [17] evaluate
implementation issues while designing a virtual router using
the Xen virtual machine framework.

There are several other architectures that decouple control
from the data plane in routers. The OpenFlow Switch [11]
aims to allow a standard interface to routers to enable re-
searchers to run experimental protocols on their campus net-
works. Ethane [5] provides a management model that aims
to allow simple management and security in enterprise net-
works.

6. CONCLUSION AND FUTURE WORK
We described a prototype implementation of NetServ, an

extensible architecture for core network services for the next
generation Internet. We augmented the Click router with
the Java-based OSGi framework to provide security, porta-
bility, resource control, and the ability to dynamically deploy
service modules. Our measurement results indicate that the
performance difference between our prototype and the Click
router–essentially the processing overhead of the Java layer–
is much smaller than the difference between the Click router
and the Linux kernel. The difference between Click and
Linux comes from the fact that the Click router runs as a
user process and thus every packet incurs a transition from
kernel to user mode. In a system where a module can be in-
stalled dynamically, such transitions are likely unavoidable,
because running a service module inside a kernel would pose
an unacceptable security risk.

As future work, we plan to enhance the NetServ frame-
work with a full suite of security and resource control mech-
anisms. We also plan to develop a number of applications
that can demonstrate the power of NetServ.

7. ACKNOWLEDGMENTS
The NetServ project is funded by the National Science

Foundation under grant NSF-CNS #0831912 as a part of
its Future Internet Design (FIND) initiative, and also by
DOCOMO Communications Laboratories Europe.

8. REFERENCES
[1] Apache Felix. http://felix.apache.org/.

[2] Cisco network virtualization. http://bit.ly/abknD.

[3] The Click modular router project.
http://read.cs.ucla.edu/click/.

[4] Eclipse Equinox. http://www.eclipse.org/equinox/.

[5] Ethane. http://yuba.stanford.edu/ethane/.

[6] JAR file specification. http://java.sun.com/j2se/1.
4.2/docs/guide/jar/jar.html.

[7] Java 2 platform security architecture.
http://java.sun.com/j2se/1.4.2/docs/guide/

security/spec/security-spec.doc.html.

[8] Java Native Interface specification. http://java.sun.
com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html.

[9] Juniper Networks Partner Solution Development
Platform. http://www.juniper.net/us/en/
products-services/nos/junos/psdp/.

[10] The NetServ project. http:
//www.cs.columbia.edu/irt/project/netserv/.

[11] The OpenFlow switch.
http://www.openflowswitch.org/.

[12] OpenSolaris project: Crossbow: Network
virtualization and resource control.
http://opensolaris.org/os/project/crossbow/.

[13] OSGi Alliance. http://www.osgi.org/.

[14] Service-oriented network architecture.
http://www.cisco.com/en/US/netsol/ns629/

networking_solutions_packages_list.html.

[15] Vyatta network virtualization.
http://www.vyatta.com/products/virtualized.php.

[16] D. S. Alexander, W. A. Arbaugh, M. W. Hicks,
P. Kakkar, A. D. Keromytis, J. T. Moore, C. A.
Gunter, S. M. Nettles, and J. M. Smith. The
SwitchWare Active Network Architecture. IEEE
Network, May 1998.

[17] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt,
L. Mathy, and T. Schooley. Evaluating Xen for Router
Virtualization. In Computer Communications and
Networks (ICCCN), pages 1256–1261, 2007.

[18] J. He, R. Zhang-shen, Y. Li, C. yen Lee, J. Rexford,
and M. Chiang. DaVinci: Dynamically Adaptive
Virtual Networks for a Customized Internet. In
Proceedings of CoNEXT, 2008.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM
Transactions on Computer Systems, 18(3):263–297,
2000.

[20] P. Tullmann, M. Hibler, and J. Lepreau. Janos: A
Java-oriented OS for Active Network Nodes. IEEE
Journal on Selected Areas in Communications,
19:501–510, 2001.

[21] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe,
and J. Rexford. Virtual routers on the move: live
router migration as a network-management primitive.
In SIGCOMM ’08: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication,
pages 231–242, New York, NY, USA, 2008. ACM.

[22] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse.
ANTS: A Toolkit for Building and Dynamically
Deploying Network Protocols. In IEEE OPENARCH,
1998.

[23] T. Wolf. Service-centric end-to-end abstractions in
next-generation networks. In IEEE International
Conference on Computer Communications and
Networks (ICCCN), pages 79–86, Arlington, VA, 2006.

[24] Y. Yemini and S. D. Silva. Towards programmable
networks. In IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management,
1996.

