
Future Internet Autonomic Management Using NetServ

M. Femminella, R. Francescangeli, G. Reali

DIEI – University of Perugia
Perugia, Italy

{femminella,francescangeli,reali}@diei.unipg.it

J.W. Lee, W. Song, H. Schulzrinne

CS - Columbia University
New York, USA

{jae,wonsang,hgs}@cs.columbia.edu

Abstract— This demo proposal describes an autonomic
management solution based on the recently defined
programmable node architecture NetServ.

I. INTRODUCTION

This demo proposal shows how the NetServ platform can
be used for implementing autonomic management
architectures for the Future Internet. The NetServ-based
management architecture that will be shown in the LCN demo
session, fully exploits the NetServ dynamic properties. This
translates to capabilities of automatically deploying,
configuring, and removing at runtime both Policy Decision
Point (PDP) and Policy Enforcement Point (PEP) modules on
network nodes, in order to provide network management with
effective autonomic capabilities. In fact, the usage of
programmable nodes able to host any service, made up by
combining inferential, decisional, monitoring, and actuator
modules, represents a powerful instrument to implement
autonomic network management functions.

In what follows, we present a novel solution for deploying
autonomic network and service management architectures. We
do not aim at introducing new management paradigms, but
rather to increase the effectiveness of the existing ones by
resorting to the potential provided by the NetServ project,
which is a framework designed to deploy and execute
networked services at runtime over programmable routers. The
use of the NetServ capabilities in the management planes
represents a step forward the state of the art, since it increases
the flexibility of management solutions, their dynamic
response to event requiring management actions, decreases the
relevant traffic, and decreases the response time. In order to
show the effectiveness of the proposed solution, we will show
a case study which highlights how NetServ allows deploying
self-protecting network functions. In the proposed demo, that
will be carried out using the GENI testbed, we will show how
the NetServ-based management architecture is able to
counteract a DoS attack by selectively deploying monitoring
and actuator modules at runtime.

This demo proposal is organized as follows. The next
section provides an overview of the NetServ architecture.
Section III describes the autonomic management scenario to be
shown in the LCN demo session. Section IV lists the
equipment and facilities needed along with space and time
requirements. Section V gives some final remarks.

II. NETSERV

NetServ is a programmable node architecture designed for

deploying in-network services [1]. It is suited for any types of
nodes, such as routers, set-top boxes, and user equipment.
NetServ includes an in-network virtualized service container
and a common execution environment for both network
services and traditional addressable services (e.g. a Web
server). NetServ is thus able to fill the gap between these two
types of services that have traditionally been kept separated in
the Internet architecture. In this way administrators can be
provided with a suitable flexibility to optimize resource
exploitation.

The NetServ prototype architecture is shown in Figure 1. It
is currently based on the Linux operating system. It includes
an NSIS-based signaling protocol [2], used for dynamic
NetServ node discovery and service modules deployment
therein. The NetServ controller coordinates NSIS signaling
daemons, service containers, and the node transport layer. It
receives control commands from the NSIS signaling daemons,
which may trigger installation or removal of both application
modules within service containers and filtering rules in the
data plane. Each deployed module has a lifetime associated
with it and it needs to be refreshed by a specific signaling
exchange before its lifetime expiration, otherwise it is
automatically removed. The NetServ controller is also in
charge of setting up and tearing down service containers,
authenticating users, fetching and isolating modules, and
managing service policies.

Service containers are user space processes. Each container
includes a Java Virtual Machine (JVM), executing the OSGi
framework [3] for hosting service modules. Each container
may handle different service modules, which are OSGi-
compliant Java archive files, referred to as bundles.

The OSGi framework allows for bundles hot-deployment.
Hence, the NetServ controller may install modules in service
containers, or remove them, at runtime, without requiring
JVM reboot.

NetServ
NSLP

GIST

GIST packet
interception

UNIX
socket

NetServ
Controller

Linux kernel transport layer

Service
Container

Service
Container

Java OSGi

Java OSGi

Server
modules

Client-server
data packets

Forwarded
data

packets

Signaling
packets

iptables
command

Netfilter NFQUEUE #1

Packet
processing
modules

N
S

IS
 s

ig
n

a
lin

g
 d

a
e

m
on

s NetServ repository

Modules
verification

Modules
installation

Figure 1 – NetServ node internal architecture.

Service modules, represented by circles in Figure 1, are
OSGi bundles deployed in a service container. Figure 1 shows
two types of modules:

• Server modules, circles located within the upper-right
service container. They act as standard network
servers, communicating with the external through a
TCP or UDP port.

• Packet processing modules, circles located within the
lower-left container. They are deployed in routers
along packet path and can both inspect and modify
packets in transit. The blue arrow in Figure 1 labeled
“forwarded data packets” shows how an incoming
packet is routed from the network interface, through
the kernel, to a service container process being
executed in user space. The packet is handled by two
different modules before being sent back to the kernel
and routed towards its final destination.

The module classification as server module or packet
processing module is only logical, since each NetServ module
may act in both ways. This is actually an important NetServ
feature since it overcomes the traditional distinction between
router and server by sharing each other’s capabilities.
The NetServ repository, introduced in the NetServ architecture
for management purposes, includes a pool of management
programs deployable through NetServ signaling in the
NetServ nodes present in the managed network.

Currently, the Linux kernel is used to implement the
NetServ transport layer. Packet filters, used to intercept
packets in the NetServ node, and rules, used to route them to
the proper service container, are installed in the node
forwarding plane by using the netfilter library through the
iptables tool.

III. AUTONOMIC MANAGEMENT ARCHITECTURE

The key element of our management architecture is the
NetServ Autonomic Management Element (NAME). It is
inspired by the FOCALE architecture shown in [4], which has
been mapped into the service deployment architecture shown
in Figure 1. This decision follows from the consideration that
the FOCALE architecture already includes most of enabling
mechanisms for autonomic network management and its
modularity allows integrating the unique features of NetServ
that, we believe, may introduce significant dynamics in
network and service management. The NetServ additional
functions are included in this architecture by implementing it
as a NetServ service, and by also introducing the PEP (policy
enforcement point) deployment module, which can deploy
management programs over the selected NetServ managed
resources at runtime. These programs are stored in the NetServ
repository.

IV. DEMO SCENARIO

This section describes the autonomic management scenario
we would like to show at the LCN demo session. The demo
will highlight the NAME effectiveness in self-protecting a
network resource from a DoS attack, one of the most
important Internet security threats [5]. The attack shown in the

demo will just be a sample of a generic DoS attack, but it will
be sufficiently structured to show the NetServ dynamic
properties brought to the management architecture.

Figure 2 shows the network topology in this experiment,
which we will deploy in the well-known GENI (Global
Environment for Network Innovation, [6]) experimental
platform. The victim, an application server, is protected by a
NAME instance. The attack is a classic DoS flooding attack,
performed by a number of hosts in different networks [5].

A lightweight NetServ service module, called
Rate_Monitor, is executed in the NAME itself and evaluates
the rate of incoming traffic and notifies the PDP module.
When the attack starts (see Figure 3 at time t1), the local
Rate_Monitor notifies the NAME engine the value of the
incoming rate above the alarm threshold. This information
reveals that the network has entered an unacceptable state. The
set of actions deemed necessary for leading the system to an
acceptable state are:

- retrieval of a Rate_Limiter module from the NetServ
repository and its deployment on the local interface,
in order to protect the victim against the
overwhelming service requests;

- deployment of a number of Rate_Monitor modules in
the NetServ nodes all around the NAME instance, by
means of epidemic signalling or directory service, so
as to identify the incoming attack directions and
deploy additional Rate_limiter modules on nodes
where the observed value of the incoming service
requests are above a given threshold.

The objective of the second action is twofold. First, any
attack direction can be identified and the attack can be faced
upstream. Second, in this way we relieve the network from the
traffic generated by the attackers (denial of network service).

In order to execute the second action, the NAME instance
starts sending NetServ PROBE messages towards all
directions from itself up to three IP hops1, so as to identify the
NetServ nodes able to host and execute an instance of the
Rate_Monitor module (see Figure 3). Then, by using the
NetServ deployment signaling, the NAME engine deploys a
Rate_Monitor module on the selected nodes, which
immediately start reporting incoming rate values.

2nd attack

3rd attack

1st replication

2nd replication

Monitor dissemination process

1° remote Rate_Limiter

2° remote Rate_Limiter
3° remote Rate_Limiter N

A
M
E

Victim

N1 N2 N3

Attack sources

1st attack

Attack sources

Attack sources

Figure 2 - Network topology for our DoS scenario.

1 This value may be changed according to network topology and management purposes.

NAME
Victim

Attacker AttackerAttackerN1 N3N2

t1

t2

t3

Rate_Limiter deployed on N1

Rate_Limiter deployed on NAME

Rate_Monitor deployed on N1 N2 N3

NetServ signaling Probe messages

Rate_Monitor reports

Attack detection time ΔT

ΔT Rate_Monitor report: attack detected
Rate_Limiter deployed on N2

ΔT Rate_Monitor report: attack detected
Rate_Limiter deployed on N3

Attack
Control

Figure 3 – Signaling flow in the GENI experiment.

Note that in this phase the application server is protected
by the Rate_Limiter instance executed by the NAME itself.
On the basis of reported values, which are the portion of
interest of the new system state, the Action Planner of the
NAME identifies the node N1 shown in Figure 3 as the best
candidate to deploy a remote Rate_Limiter module, since it is
the most distant node (in terms of IP hops) from the NAME
with an incoming rate above the alarm threshold. Thus, by
using the NetServ signaling, the NAME can instantiate the
Rate_Limiter in N1. The Rate_Limiter module interacts with
the NAME, which receives reports of all deployed
Rate_Monitor modules, and changes the acceptable incoming
rate threshold dynamically, depending on the number and
frequency of detected requests. In this way, a further control
loop is created so that each management action enforced by
the NAME is dynamically adapted to possible context and
state changes.

At time t2, the attacker adds additional sources of DoS
packets in other networks, thus bypassing the deployed shield.
Nevertheless, since the NAME instance has been executing
the monitor and rate limiter module since attack beginning, it
can both protect the server and argue that the previous remote
counteracting action has been bypassed. If the previously
deployed Rate_Monitor modules are still active, some of them
start reporting values of the observed incoming rate beyond
acceptable values. This context information allows the NAME
to identify the NetServ node N2 as the best candidate to
deploy another remote instance of the Rate_Limiter module. If
the lifetime of the previously deployed Rate_Monitor modules
has expired, they are re-deployed.

Finally, the attacker starts a further attack session from
another network at time t3. The self-protecting procedure is
repeated again, thus deploying a further instance of the
Rate_Limiter on N3 that decreases the service request rate
once again to a value as close as possible to the target value.
When the attack ends, all the monitor and rate limiter
instances are no longer refreshed. Hence, they are
automatically removed, without any additional signaling.

In order to actually estimate the end of attack condition at
the NAME, the remote monitor modules track both forwarded
and dropped service requests, and report back the relevant
statistics.

In future work, we will improve platform reliability and
performance by integrating OpenFlow [8][9] as low level
mechanism to balance the load towards multiple NAME
modules.

V. DEMO REQUIREMENTS

For the purpose of this demo, our team will need a table
with enough space to host two laptops that will drive the
experiment plus a projector with the respective screen or,
alternatively, two big monitors to allow the visualization of the
network traffic in the demo topology.

The scenario described in the previous section will actually
take place in real-time in a GENI slice, using a topology of
nodes deployed across the continental USA, thus decreasing
the needed hardware. In order to allow the remote usage of the
GENI testbed, a high speed Internet connection will be required
(a wired connection is highly recommended to decrease latency
related problems). Power outlets able to operate the above
listed equipment are also required.

VI. CONCLUSION

This demo proposal described the NetServ platform and how it
can successfully be used for implementing autonomic
management architectures for the Future Internet. In order to
show the effectiveness of the proposed solution, we have
conceived a case study which highlights how NetServ allows
deploying self-protecting network functions. In the
experiment, to be carried out live on the GENI testbed, we will
show how the proposed architecture is able to counteract a
DoS attack by selectively deploying monitoring and actuator
modules at runtime.

The authors also would like to point out that another demo
has been previously carried out live on the GENI testbed
platform [7]. Nonetheless, the demo shown at the GENI
Engineering Conference (GEC) 9, featured a previous version
of NetServ with less functionalities (e.g. no management and
epidemic signaling). Also, GEC9 services were more oriented
towards the application level (CDN and SIP overload), whereas
the demo proposed here shows NetServ as a Future Internet
network service platform.

REFERENCES
[1] J.W. Lee et al, “NetServ: Active Networking 2.0”, FutureNet IV 2011,

Kyoto, Japan, June 2011.

[2] X. Fu et al., “NSIS: a new extensible IP signaling protocol suite”, IEEE
Communications Magazine, 43(10), 2005, pp. 133- 141.

[3] OSGi Alliance. http : // www . osgi . org.

[4] B. Jennings et al., “Towards Autonomic Management of
Communications Networks”, IEEE Communications Magazine, Vol. 45,
Issue10, Oct. 2007.

[5] X. Yang, X. Liu, Y. Xia, “NetFence: Preventing Internet Denial of
Service from Inside Out”, ACM SIGCOMM 2010, Delhi, India.

[6] The Global Environment for Network Innovations (GENI) project,
http :// www .geni .net.

[7] GEC9 NetServ demo,
http : // www .cs. columbia. edu/irt/ project/netserv/.

[8] Openflow, http : // www . openflow . org

[9] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, L.
Mathy, “Flow Processing and the Rise of Commodity Network
Hardware”, ACM SIGCOMM Computer Communication Review,
39(2), April 2009.

