
78 COMMUNICATIONS OF THE ACM | JUNE 2015 | VOL. 58 | NO. 6

review articles

I
M

A
G

E
 B

Y
 O

M
E

L
C

H
E

N
K

O

DOI:10.1145/2699392

Future Internet testbeds permit
experiments not possible in today’s public
Net or commercial cloud services.

BY MARK BERMAN, PIET DEMEESTER, JAE WOO LEE,
KIRAN NAGARAJA, MICHAEL ZINK, DIDIER COLLE,
DILIP KUMAR KRISHNAPPA, DIPANKAR RAYCHAUDHURI,
HENNING SCHULZRINNE, IVAN SESKAR, AND SACHIN SHARMA

STANDARDIZATION OF BASIC underlying protocols
such as the Internet Protocol (IP) has enabled rapid
growth and widespread adoption of the global Internet.
However, standardization carries the attendant risks of
reducing variability and slowing the pace of progress.
Validation and deployment of potential innovations
by researchers in networking, distributed computing,
and cloud computing are often hampered by Internet
ossification, the inertia associated with the accumulated
mass of hardware, software, and protocols that
constitute the global, public Internet.24 Researchers
simply cannot develop, test, and deploy certain classes
of important innovations into the Internet. In the best
case, the experimental components and traffic would

be ignored; in the worst case, they
could disrupt the correct behavior
of the Internet. Cloud computing re-
searchers confront a similar dilem-
ma. In order to maintain uniformity
and efficiency in their data centers,
commercial cloud providers gener-
ally do not provide “under the hood”
controls that permit modification
to the underlying network topology
or protocols that comprise the cloud
environment.

A clear example of the challenge
is apparent to anyone tracking the
pace of adoption of IPv6, a relative-
ly modest revamping of IP. Because
IPv6 deployment affects compo-
nents throughout the Internet, years
of extensive review, planning, and
coordination have been required to
ensure a smooth, if slow, transition.
For researchers contemplating more
fundamental innovations, such as
non-IP protocols or new routing
approaches, the barriers are cor-
respondingly higher. Accordingly,
researchers have been forced to em-
ploy compromise measures, such as
validating their novel concepts only
in simulation, or in modest, isolated
laboratory configurations. These en-
vironments permit a wide range of ex-
periments, but at the expense of the
realism that comes with a large-scale
physical deployment.

Future
Internets
Escape
the Simulator

 key insights
 ˽ By design, the Internet is inhospitable

to many classes of experiments that
could lead to major advances in
networking, resulting in a problem known
as Internet ossification.

 ˽ Researchers worldwide are
increasingly turning to future Internet
and distributed cloud (FIDC) testbeds,
such as GENI in the U.S. and FIRE
in the E.U., where they can conduct
networking, distributed computing,
and cloud computing experiments in a
distributed laboratory setting.

 ˽ Although the technology is still in flux,
FIDC testbeds are already supporting
important research and education
initiatives. As these testbeds join
together in international federations,
their benefits increase combinatorially.

http://dx.doi.org/10.1145/2699392

JUNE 2015 | VOL. 58 | NO. 6 | COMMUNICATIONS OF THE ACM 79

80 COMMUNICATIONS OF THE ACM | JUNE 2015 | VOL. 58 | NO. 6

review articles

Key concepts: Slicing and deep pro-
grammability. Establishing a FIDC test-
bed of meaningful scale requires a
significant investment of money and
effort. Exclusive use is generally not
feasible, so virtualization quickly be-
comes a practical necessity to support
a sizable research community. A key
feature of FIDC testbeds is the abil-
ity simultaneously to virtualize both
computing and networking resources
and to assemble them into end-to-end
configurations or slices. While virtual-
ization of computational resources is
reasonably well understood, adding
network programmability and virtual-
ization to the mix presents a challenge.
However, it is the property of deep pro-
grammability that creates the key op-
portunities for innovation in a FIDC
testbed. In a deeply programmable en-
vironment, the experimenter controls
the behavior of computing, storage,
routing, and forwarding components
deep inside the network, not just at or
near the network edge.

As with any virtualized environ-
ment, FIDC testbeds present each
user with the illusion of exclusive con-
trol over shared resources. In a FIDC
testbed, the researcher’s usual view
of his or her resource suite is as a col-
lection of general-purpose computers
connected in experimenter-specified
topologies by a programmable net-
work, perhaps augmented with spe-
cial-purpose devices (for example,
sensors, high-performance comput-
ing resources, and cyberphysical sys-
tems). Because these resources are,
at their core, real physical computers,
networks, and storage devices, rather
than simulations, FIDC testbeds can
also create powerful opportunities for
end user opt-in, the ability to run ex-
perimental configurations that offer
advanced services to real end users.

The selection of virtualization and
network programmability approaches
represents a trade-off among perfor-
mance, isolation, and cost. Different
testbeds choose different operating
points within this space. In fact, some
offer multiple virtualization options,
even for a single resource type. For ex-
ample, in GENI a slice’s computation
resources may include bare metal,
Xen, and Vserver hosts, while network
programmability options may include
modular software routers (for example,

FIDC Testbeds
Future Internet and distributed cloud
testbeds are a promising response to
these concerns, providing a virtualized
environment where multiple experi-
mental networks may be simultane-
ously deployed, tested, and validated
at significant scale, within a shared
platform. These testbeds, beginning
with Global Environment for Network-
ing Innovation (GENI) in the U.S.2 and
Future Internet Research & Experimen-
tation (FIRE) in the E.U.,4 are quickly
gaining prevalence and scale. The
GENI testbed, for instance, is current-
ly completing its initial deployment
phase to 50 sites, with a target of 100–
200 sites (see Figure 1).

FIDC testbeds have proven to be
successful and versatile in supporting
a wide variety of work. For example, as
shown in Figure 2, over 3,000 unique
users to date have allocated GENI test-
bed resources for their research and

educational work, with the pace of use
rapidly increasing. This article is a sur-
vey, which introduces key FIDC testbed
concepts and presents selected exam-
ple applications. Interested readers are
encouraged to pursue further details
found in the referenced documents.

Future Internet testbeds are quickly
becoming a global phenomenon sup-
ported by a growing international com-
munity. Key underlying technologies
developed by GENI, FIRE, the University
of Utah’s Flux group, the OpenFlow and
software-defined networking (SDN) com-
munities, the VNode project in Japan,
and others are rapidly being combined
to form heterogeneous testbeds and in-
teroperable federations. In addition to
the U.S. and E.U., national-scale efforts
are under way or in planning stages in Ja-
pan, Mexico, Canada, China, and South
Korea. While these testbeds are built on
a variety of underlying technologies, they
share certain core capabilities.

Figure 1. Current GENI deployment phase candidate sites.

Figure 2. Cumulative unique GENI users.

3,500

3,000

2,500

2,000

1,500

1,000

500

0
2009 2010 2011 2012 2013 2014

JUNE 2015 | VOL. 58 | NO. 6 | COMMUNICATIONS OF THE ACM 81

review articles

Click), or hardware- or software-based
OpenFlow software-defined network-
ing. Similarly, Flare programmable
switches in the Japanese VNode net-
work virtualization testbed provide a
wide variety of deep programmability
options, including efficient native im-
plementations of Click and OpenFlow.

Case Studies
The four efforts discussed here help
to illustrate the broad applicabil-
ity of FIDC testbeds in supporting
advanced research and applications.
These projects, recently conducted in
the GENI testbed and FIRE’s iLab.t,8
apply a wide variety of technology in-
novations. These range from “clean
slate,” non-IP protocols to novel cloud
computing paradigms and OpenFlow-
based software-defined networking.
The application domains are similarly
diverse, including peer-to-peer mes-
sage passing, weather forecasting, and
video delivery. What these projects
share in common is a need to program
the underlying network infrastructure
in ways not available in the current
public Internet.

Cloud-based, near-term, localized
weather forecasting. CloudCast10 pro-
vides personalized short-term weath-
er forecasts to clients based on their
current location using cloud services,
generating accurate forecasts tens of
minutes in the future for small areas.
These short-term “Nowcasts” have
profound public safety implications
for emergency response to dangerous
weather (for example, tornados and
severe thunderstorms). Researchers at
the U.S. National Science Foundation
(NSF) Engineering Research Center
for Collaborative Adaptive Sensing of
the Atmosphere (CASA) are evaluating
the benefits and feasibility of provid-
ing a large-scale CloudCast service,
based on improved weather observa-
tions from networks of small, low-cost
X-band radars.

An example of the potential benefits
of nowcasting is seen in Figure 3, which
shows a comparison between data pro-
vided by a CASA radar network and data
from the current National Weather Ser-
vice (NWS) NEXRAD system. The upper
series of images, from the CASA system,
provides much finer temporal and spa-
tial resolution, clearly showing a “hook
echo,” a rotational event that is a po-

tential indicator of a tornado. Cloud-
Cast produces improved forecasts by
employing a larger number of relatively
short-range radars. These radar net-
works improve resolution and avoid
low-altitude blind spots created over
long distances by the curvature of the
Earth. Exploiting the data from these
sensor networks is computationally in-
tensive, but highly bursty. For example,
during a 75-day intensive operation pe-
riod in the CASA Oklahoma testbed in
the spring of 2011, the climatological
peak season for severe weather, only 90
hours (or 5% of the period) featured on-
going convective precipitation.

For this reason, the infrastructure-
as-a-service (IaaS) model offered by
a cloud-computing environment is a
very promising approach for a large-
scale CloudCast implementation.
Instead of acquiring dedicated com-
puting hardware, which would sit idle
most of the time, nowcasts could be
computed in the cloud, on an as-need-
ed basis. Clearly this economic benefit
needs to be balanced with timeliness.

Because nowcasts have a very short
time horizon, they must be provided
to the end users with as little delay as
possible. For example, in the case of
a 15-minute nowcast, a difference of
just a minute or two in nowcast deliv-
ery time can be significant. Especially
in severe weather situations, providing
maximum lead-time can save lives and
property.

Experiment design and results. Be-
cause timely nowcast generation and
delivery relies on a well-engineered
combination of network and compu-
tational resources, CASA researchers
hypothesized that research cloud plat-
forms coupled with control over net-
work assets in an FIDC testbed might
outperform commercial clouds. For
this investigation, CASA researchers
turned to the GENI testbed. They con-
ducted a series of experiments compar-
ing two commercial cloud platforms
(Amazon AWS and Rackspace) and two
research cloud platforms (GENICloud
and ExoGENI), with a goal of improv-
ing overall delivery times by reducing

Figure 3. Data from CASA’s Oklahoma radar network (top) shows a “hook echo” forming at
the center of the image.

Timing results for nowcast algorithm.

Instances Memory (GB) Execution time (s) Total time (s)

Amazon EC2 7.5 74.34 95.08

Rackspace 8 96.53 120.33

GENICloud 8 67.45 78.60

ExoGENI 8 56.83 72.07

82 COMMUNICATIONS OF THE ACM | JUNE 2015 | VOL. 58 | NO. 6

review articles

tion on cloud services, a live measure-
ment experiment was carried out on
each cloud instance to calculate the
overall nowcast delivery time from
the moment the radar generates the
data. These live measurements used
a prototype CASA radar located on the
University of Massachusetts Amherst
campus.16 Overall results are shown
in the last column of the table. These
figures provide the most valid informa-
tion on CloudCast feasibility, because
they include the full product delivery
chain: raw data transmission time to
the instance executing the algorithm,
computing time to generate 15-minute
nowcast images, and time to transmit
the resulting nowcast images to a cen-
tral Web server for access by end users.

The average overall time for the
whole nowcasting process was 95.08
seconds for the EC2 instance, of which
71.98 seconds are consumed in the
computation of 15-minute nowcasts
on the cloud instance. The remaining
23.10 seconds are used to send data
from the radar to the receiving instance,
and to transfer the predicted images
back to the central server for access by
end users. Similarly, the total time tak-
en for executing the whole nowcasting
process on Rackspace, GENICloud, and
ExoGENI instances is 120.33, 78.60,
72.07 seconds, respectively. Significant-
ly, the dedicated networking resources
associated with the research cloud plat-
forms markedly improved overall per-
formance, even without specific tuning
for the CloudCast application.

This series of experiments provides
convincing evidence of the feasibility
of performing short-term weather fore-
casts in a cloud, with only two minutes
to generate and disseminate nowcasts.
Additional detailed data on the net-
work and computation components
of the overall delivery timeline will
provide useful guidance to a potential
large-scale CloudCast implementation.

MobilityFirst future Internet ar-
chitecture. MobilityFirst20 is a future
Internet architecture currently under
development as part of the U.S. Nation-
al Science Foundation (NSF) Future
Internet Architecture (FIA) program.
The architecture targets a broad set of
performance, reliability, and security
goals with particular focus on enabling
seamless at-scale mobility and estab-
lishing trustworthiness as a basic ele-

data transmission time to and from the
cloud computing resources.

Detailed experimental results from
four cloud platforms are presented in
Krishnappa et al9 and summarized in
the accompanying table. Similar com-
puting resources are reserved on each
cloud platform. Execution times are
measured by replaying one hour of re-
corded weather data observed by the
CASA radar network in southwestern
Oklahoma. The cloud-based nowcast
instance receives radar scans, gener-
ates 1-minute to 15-minute nowcasts,

and stores them on the instance’s stor-
age. This continues for one hour, and
the average execution time for the gen-
eration of each nowcast is measured.

As shown in the table, computation
times range from 56.83 seconds on the
ExoGENI platform to 96.53 seconds
on a Rackspace instance. In compari-
son to their commercial counterparts,
both research cloud instances take less
time (67.45 seconds and 56.83 seconds
respectively) to compute the nowcasts.

Live process measurement. As a proof
of concept for the CloudCast applica-

Figure 4. MobilityFirst protocol stack with GUID service layer providing the new narrow
waist.

Name
Certification
Service

Global Name
Resolution
Service

Control Plane Data Plane

NCS
Socket API

Narrow Waist

App 1 App 2 App 3 App 4

E2E TP1

Link Layer 1
(802.11)

Link Layer 2
(LTE)

Link Layer 3
(Ethernet)

Link Layer 4
(SONET)

Link Layer 5
(etc.)

E2E TP2 E2E TP3 E2E TP4

GNRS GUID Service Layer

Hop-by-Hop
Block Transfer

Switching
Option

Optional Compute
Layer Plug-in

MF Routing
Control Protocol

GStar Routing MF Inter-Domain IP

Figure 5. Wide-area deployment of MobilityFirst prototype network on GENI testbed.

JUNE 2015 | VOL. 58 | NO. 6 | COMMUNICATIONS OF THE ACM 83

review articles

ment of network communication in
the future Internet. New protocols and
in-network services will address wire-
less access challenges and will provide
native support for emerging mobile In-
ternet applications rich in content and
context aspects.

A key design choice made in real-
izing the preceding goals is to have a
logically central naming service at the
core of the architecture that is fast,
highly scalable, and globally distrib-
uted. The naming service includes a
name certification service (NCS) that
translates human-readable names to
unique endpoint identifiers (GUIDs)
and a global name resolution service
(GNRS) that maps GUIDs to one or
more locators (that is, topological or
network addresses) of a network-at-
tached object. To enable decentralized
trust, the GUID is derived from a pub-
lic key of an asymmetric key-pair to
provide self-certifiable property, that
is, a trusted third party is not required
to verify identity between two com-
municating endpoints.1 Accordingly,
the protocol stack (Figure 4) provides
name-based networking abstractions
primarily by introducing a GUID Ser-
vice Layer. This new name-based nar-
row waist contrasts with the IP stack in
which names and addresses are con-
flated making seamless mobility a dif-
ficult problem. Protocols for scalable
inter-domain routing, for reliable data
transport, and for scalable multipoint
delivery (for example, multicast, any-
cast, and multihoming), all make use
of mappings within GNRS to provide
fast dynamic bindings under mobil-
ity.20 Late-binding, where only coarse-
grain locator information (for exam-
ple, destination network) is resolved
at the packet source, allows packets
to be bound at the destination net-
work to the latest address of a mobile
endpoint. Data is transported as large
blocks in a hop-by-hop manner us-
ing a segmented data transport12 and
storage-aware routing17 protocols that
leverage in-network storage to tem-
porarily buffer data under transient
problems in wireless access networks
such as temporary disconnections
under mobility and variable link qual-
ity. Finally, a new socket interface pro-
vides applications with name-based
access to in-network services includ-
ing direct operations on content (for

example, get and put) and other more
abstract objects such as context that
can be named using a GUID.3

Evaluation and testbed consider-
ations. To validate these key concepts,
the MobilityFirst team chose to build,
deploy, and evaluate a prototype Mo-
bilityFirst network in a realistic set-
ting. This prototype enables them to
characterize the performance and
scalability of the GNRS, of routing and
transport protocols, and also of end-
to-end applications over the Mobili-
tyFirst protocol stack. Since protocol
behavior and overall performance de-
pend significantly on network prop-
erties, a local testbed with limited
emulation capabilities alone will fall
short. The following capabilities were
deemed crucial for the testbed-based
evaluations: flexible configurability
of network with deep programmabil-
ity of nodes and network elements;
scale of hundreds or more program-
mable nodes; network with intercon-
nects that are diverse in their latency
and bandwidth characteristics; and
finally, a broad choice of traditional
and emerging network technologies,
including wireless (for example, WiFi,
4G WiMAX, and LTE) and SDN (for ex-
ample, OpenFlow switches).

While the protocol designs were
first explored in simulation environ-
ments (for example, ns-3 and custom
simulator), these were followed up
with full-feature prototypes and evalu-
ations in testbed (PlanetLab, GENI)
and commercial cloud platforms (Am-
azon EC2). Prototypes for the key com-
ponents of the architecture, that is, the
naming, routing, and transport ser-
vices have been implemented. A Click-
based software router implements the
storage-aware routing and transport
services, and closely integrates a GNRS
service instance for dynamic name
bindings. For the GNRS service, two
alternate designs were simultaneously
prototyped. One design uses an in-net-
work DHT to store GUID-address map-
pings (with multiple replicas for each
mapping) where service instances are
co-located with the routing fabric to
minimize access latency.28 The second
design is a flexible overlay implemen-
tation, and optimizes service latencies
by considering access locality and ex-
erting fine-grained control over replica
placement.27 For end-hosts, the proto-

In a deeply
programmable
environment,
the experimenter
controls the
behavior of
computing,
storage, routing,
and forwarding
components deep
inside network,
not just at or near
the network edge.

84 COMMUNICATIONS OF THE ACM | JUNE 2015 | VOL. 58 | NO. 6

review articles

ity events. Experiments so far include
validation of in-network DHT version
of GNRS, evaluations of reliable content
delivery to multihomed mobiles, and a
recent demonstration at the 18th GENI
Engineering Conference of a novel P2P
messaging app that uses name-based
networking to address contextual ob-
jects like location.

The messaging app—‘Drop It’—
uses GUIDs to name well-bounded lo-
cations such as a conference room or
a campus bus stop, while mobile users
either ‘drop’ messages at locations or
pick up messages dropped by others.
In this pure P2P version, messages re-
main on originating phones and are
retrieved directly when picked up by
another phone visiting the location.
This is done by maintaining a GNRS
mapping from location GUID to the set
of phone-GUIDs (or their addresses)
that dropped messages at that loca-
tion, and sending a multicast request
to the location GUID, which leverages
the hybrid name-address routing in
MobilityFirst. This application was
demonstrated and evaluated using a
multi-site GENI slice (shown in Figure
5) deployment with 10 MobilityFirst
software routers (each with GNRS in-
stance), five of which were edge routers
providing WiFi and WiMAX client ac-
cess for Android phones.

Current work and the next phase of
the MobilityFirst project are focused on
at-scale evaluations and real-world trials
of the architecture, including end user
opt-in. The plan for GENI-based deploy-
ments include footprint of few hundred
network elements comprising a core
network with several edge networks pro-
viding access to clients from participat-
ing campus networks or those deployed
on third-party cloud platforms (for ex-
ample, Amazon’s EC2).

The GENI deployment will also
serve as a crucial evaluation anchor
and provide the foundation for three
distinct real-world network environ-
ment trials in the next phase of the
MobilityFirst project. These include a
mobile data services trial with a wire-
less ISP (5Nines) in Madison, WI; a
“content production and delivery net-
work” trial involving several public
broadcasting stations in Pennsylvania;
and a weather emergency notification
system based on the CASA radar net-
work described here, with end users in

col stack in Figure 4 was implement-
ed for Linux and Android platforms,
along with implementations of the
new socket API.

Large-scale simulations and lim-
ited wide-area end-to-end experi-
ments bear out the benefits of the ar-
chitecture. Key results include: Both
GNRS designs provided 100ms lookup
latencies or better when evaluated
under current Internet topology as-
sumptions including topologies with
up to 26K ASs and 90K links. These
latencies could be even smaller (few
10s of ms) in the future if the Inter-
net topology flattens with time (that
is, ASs have more direct paths to the
core).28 Limited deployments of GNRS
on the GENI testbed across seven rack
sites showed 95th percentile latency
under 80ms, which mostly reflect
the inter-site RTTs; segmented data
transport with storage-aware rout-
ing significantly improves end-to-end
data transfers, particularly under tran-
sient wireless access conditions—in
some cases an order of magnitude
throughput improvements.12,22 The
Click-based router achieves a forward-
ing rate of approximately 750Mbps on
GENI programmable nodes, while the
SDN version of the router (OpenFlow/
Floodlight with Pronto 3290) achieves

close to the 1Gbps line rate.
Wide-area deployment on GENI test-

bed. Offering extensive heterogeneous
resources, geographic diversity, and
deep programmability, the GENI test-
bed was a clear choice for Mobility-
First’s goal of at-scale realistic evalua-
tion. Several of the early deployments
on GENI were of standalone prototypes
and demonstrated the working of key
protocols including GNRS and GSTAR
in the wide area. Recently, we are main-
taining long-running deployment of the
more complete prototype network to
enable network-level evaluations and to
provide an open platform for novel ap-
plication development. The deployed
components include our Click-based
router, the in-network GNRS, along with
end-hosts running the MobilityFirst
stack. It is possible to connect all nodes
on a single layer-2 network or establish
domains using VLAN programming.
The Click routers and GNRS servers are
deployed on either bare-metal or VMs,
with some as edge-routers having inter-
faces connected to wireless edge net-
works with WiFi or WiMAX access. End-
hosts are run on GENI testbed nodes or
can be user-carried devices (for exam-
ple, on Android phones and tablets) at
GENI campus sites, which can present
natural mobile data traffic and mobil-

Figure 6. How ActiveCDN works.

End user

NetServ
router

N

NetServ
router

Regular
router

Regular
router

Content
provider

N

(1) User requests video: http://content-provider.com/?file=foo

(7) Another user requests http://content-provider.com/?file=foo

(8) Content provider finds nearby ActiveCDN node, sends redirect message

(9) User requests http://netserv1.service-provider.com/?file=foo

(10) ActiveCDN downloads the video, simultaneously serving and caching it
(11) ActiveCDN can also process content

(2) Content provider sends video file

(3) Content provider sends on-path signal to deploy ActiveCDN module

(4) NetServ routers download the module

(5) Content provider probes for installed ActiveCDN modules

(6) NetServ routers with ActiveCDN reply to probe

JUNE 2015 | VOL. 58 | NO. 6 | COMMUNICATIONS OF THE ACM 85

review articles

the Dallas/Fort Worth area. These trials
are expected to provide a firm basis for
validation of the protocol stack and its
utility for advanced mobile, content,
context, and cloud applications, while
also advancing the technology to the
field-deployment stage.

NetServ in-network services archi-
tecture. Computing devices connected
to the Internet today largely fall into
two categories: end systems and rout-
ers. The primary goal of a router is to
move network packets as quickly as
possible. To this end, router vendors
typically employ custom operating
systems that can take full advantage
of the underlying hardware platform.
This model limits the ability of a router
operator who wishes to customize op-
eration by installing a custom applica-
tion inside the router—an application
developed by a third-party vendor, for
instance. So far, the inability to fully
customize routers has not hampered
the growth of the Internet. Consumer
demands have been met by innovative
applications running on end systems.
The role of routers inside the network
has remained the same: moving pack-
ets as quickly as possible.

Many signs indicate, however, that
the traditional dichotomy between end
systems and routers no longer models
the complexity of modern networks.
With the advent of P2P networking,
end systems now frequently assume
the role of routers by relaying packets
on behalf of other end systems. P2P
applications must resort to such over-
lay networks because routers running
fixed software are ill-equipped to form
P2P networks, which are usually dy-
namic, ad hoc, and optimized for spe-
cific applications.

Router functionality has not stag-
nated during this period. Networks
grow more complex, ISPs’ need and
desire for traffic engineering grow
more sophisticated, and router ven-
dors respond with new functions like
QoS, firewall, VPN, IPsec, NAT, Web
cache and rate limiting. Routers have
become programmable, but not in the
same way that end systems are pro-
grammable. Router functions are still
limited to a predetermined set sup-
plied by the router vendor itself or the
third-party developers approved by the
router vendor. In fact, the closed na-
ture of mainstream routers brought

the proliferation of middleboxes—net-
work devices that are daisy-chained
with routers to provide added function-
ality—adding to ISPs’ network man-
agement problems.

Architecture goals. The NetServ team
envisions a future Internet where all
nodes support a common runtime en-
vironment, which eliminates the dis-
tinction between end systems and rout-
ers for the purpose of running network
services.5,11,14 Network services run on
any node, from backbone routers to set-
top boxes, and the services are dynami-
cally installed, removed, and migrated
to optimal locations on the Internet. As
a first step toward that vision, NetServ
provides an architectural framework
for dynamically deploying in-network
services on edge routers. Modules
implementing various network func-
tions can be installed at runtime on any
NetServ-enabled router on the Internet.

NetServ has adopted five goals in

designing a viable in-network service
framework. First, NetServ must en-
able new classes of economically com-
pelling applications that cannot be
achieved with existing middleboxes
and end systems. One such applica-
tion is ActiveCDN, which has been
demonstrated running on a set of
NetServ nodes deployed in the GENI
testbed. ActiveCDN is a use case that
shows how NetServ can facilitate an
economic alliance between ISPs and
content providers. Second, NetServ
provides a unified runtime environ-
ment. A NetServ module can act as an
end system application engaged in
client-server networking, as a router
add-on performing deep packet in-
spection, or as both at the same time.
Third, NetServ provides a wide-area
deployment mechanism, using a stan-
dardized on-path signaling protocol.6
A signaling packet is sent to a network
destination and the packet is routed as

Figure 7. Setup for failure recovery experiment on ILab.t facility at iMinds.

Monitors for visualization

iLab.t Nodes iLab.t NodesForce10 Switch

86 COMMUNICATIONS OF THE ACM | JUNE 2015 | VOL. 58 | NO. 6

review articles

tent from the network vicinity.
Unlike traditional CDNs, the con-

tent provider controls where an Ac-
tiveCDN module is deployed. The
module can be redeployed to differ-
ent locations depending on the cur-
rent traffic. Moreover, the module can
perform custom content processing,
like inserting region-specific advertise-
ments into video streams.

Resilience in OpenFlow networks.
Software-defined networking (SDN)
decouples the control plane from the
data/forwarding plane (switches or
routers) of a network and embeds it
into one or more external servers called
controllers. OpenFlow is the reigning
SDN technology, and research teams
worldwide investigate many of the re-
search challenges behind it.

The Split Architecture Carrier-Grade
Networks (SPARC) project, funded
through the European Seventh Frame-
work Programme (FP7), investigated the
potential applicability of OpenFlow in
carrier-grade telecom networks. Carrier-
grade telecom networks support hun-
dreds of thousands of customers, as-
sume failure recovery within 50ms (RFC
5654), and have to deliver high Quality of
Experience (QoE) to their customers.

Two well-known recovery tech-
niques, restoration and path protec-
tion,26 are implemented in Openflow.21
In case of restoration, the controller
establishes an alternative path after a
failure is detected in the network. In
case of path protection, the controller
establishes a disjoint alternate path
together with the working path. After a
failure is detected in the working path,
the ingress switch redirects affected
traffic to the alternate path using the
fast-failover group table implementa-
tion of OpenFlow.19

Experiment design. The SPARC proj-
ect has chosen a mixed-fidelity experi-
mentation approach (accurately rep-
resenting key parts of a system, while
simplifying less important parts),
using the FIRE testbed to investigate
strategies and implementations for
failure recovery in challenging network
conditions. This approach, combin-
ing emulated topologies with realistic
output devices, has two prime benefits.
The first is the ability to evaluate the
actual software stack, including Erics-
son OpenFlow software,18 using real
video traffic and displays, simply by

usual by the regular IP routers. When
the signaling packet passes through
NetServ-enabled routers, however, the
packet will trigger module installa-
tions on the routers. Fourth, NetServ
provides a multi-user execution envi-
ronment by running modules inside
Java Virtual Machines (JVMs) allocat-
ed per user. Fifth, in order to address
the performance overhead of running
modules in JVM, NetServ has proposed
a scalability solution using OpenFlow.

NetServ on GENI testbed. FIDC test-
beds provide an ideal platform to de-
ploy and test NetServ. NetServ requires
deep programmability to deploy in-
network packet processing modules.
While emulation-based environments
like Mininet and Emulab offer localized
deep programmability, a sizable FIDC
testbed creates additional experiment
options, including measurements of
signaling latencies arising from real
geographic distances and network to-
pologies. GENI has been an integral
part of the NetServ project, in continual
use for developing, testing and dem-
onstrating NetServ functionality. The
NetServ team has demonstrated two
NetServ applications, ActiveCDN and
Overload Control,11 running on GENI at
the 9th GENI Engineering Conference.a

Researchers have also investigated
an autonomic management solution
based on NetServ,5,14 including applying
NetServ’s dynamic in-network service
deployment capability to the problem
of counteracting a DoS attack. In one
example, an experiment performed on
GENI showed a flow-based intrusion de-
tection system was able to reconfigure
itself and deploy protection modules
quickly using NetServ and OpenFlow,
effectively counteracting a DoS attack
on a VoIP application server.

ActiveCDN. Figure 6 illustrates a Net-
Serv module deployment scenario us-
ing ActiveCDN, a NetServ application
that implements CDN functionality
on edge routers. When a content pro-
vider’s server receives a large number
of requests for certain content from a
particular network area, the server can
deploy an ActiveCDN module in the
NetServ-enabled routers near the area.
The ActiveCDN module then handles
subsequent requests for the same con-

a The 14-minute demo video is at http://vimeo.
com/16474575.

Many signs indicate
the traditional
dichotomy between
end systems
and routers no
longer models
the complexity of
modern networks.

JUNE 2015 | VOL. 58 | NO. 6 | COMMUNICATIONS OF THE ACM 87

review articles

observing the quality of video on the
displays. Performing such experiments
in simulation is very difficult, requiring
simulation not only of network func-
tions, but also the software stack of the
video codec, the rendering pipeline,
and post-processing functions of the
video client. The second benefit is the
opportunity to create a wide variety of
pan-European topologies, controlled
network traffic, and failure scenarios
to evaluate thoroughly the perfor-
mance requirements and implemen-
tation of switches and controller soft-
ware. Experiments detailed in Sharma
et al.21 indicate a protection strategy is
required to meet recovery time targets
and validate the specific failure recov-
ery approach. Although most critical
components were tested in a realistic
manner, further steps toward deploy-
ment will require further testing, for
example, on real hardware switches.

Failure recovery experiments are
conducted on the iLab.t virtual wall
facility at iMinds8 (see Figure 7). Cur-
rently, iLab.t has three virtual walls,
each consisting of 100 nodes (multi-
processor, multi-core servers with up
to eight 1Gb/s interfaces per server)
interconnected by non-blocking Eth-
ernet switches. iLab.t is based on Emu-
lab software developed at the Univer-
sity of Utah, and researchers can build
experiments by drawing a topology in a
graphical user interface (GUI) or by de-
fining it in scripts. Furthermore, a dis-
play wall (20 monitors) is present for
easy visualization. iLab.t is part of the
Fed4FIRE federation.25

Four kinds of failure recovery exper-
iments are performed on the iLab.t fa-
cility: validation experiments in one of
the pan-European topologies (shown
in Figure 8) considering link failures;
experiments considering link and
node failures on different topologies;
scalability experiments in terms of traf-
fic load; and experiments for measur-
ing subjective quality of video.

In the validation experiment, each
client sends packets to all other clients
at a constant 6ms interval. The experi-
menters intentionally break the Lon-
don-Amsterdam link at time zero and
observe the failure recovery time for
both restoration and protection. Fig-
ure 9 shows the traffic destined to the
London client, which is going through
the Paris-London link, just before and

Figure 8. Emulated failure recovery experiment topology.

Amsterdam Hamburg
Berlin

Prague

Vienna

Zagreb

Munich

Milan

Zurich
Lyon

Strasbourg

Frankfurt
Brussels

Paris

London

Rome

Figure 9. Failure recovery experiment results

T
ra

ffi
c

to
 L

on
d

on
(p

ac
ke

ts
 p

er
 1

0
m

s)

Experiment Time (s)

50ms

240ms

Failure

–0.2
0

5

0 0.2 0.4

10

15

20

25

30

35 Restoration Experiment Protection Experiment

Figure 10. Ongoing FIDC testbed activity.

88 COMMUNICATIONS OF THE ACM | JUNE 2015 | VOL. 58 | NO. 6

review articles

from relatively basic exercises (for ex-
ample, configuring IP networking in
a small network or implementing a
rudimentary Web server) to advanced
experiments with novel protocols and
individual research projects. Increased
exposure to FIDC testbeds in university
curricula is raising the comfort level of
the next generation of researchers and
practitioners who may benefit from
these capabilities.

Future Trends and Challenges
FIDC testbeds are already creating ad-
ditional opportunities for experimen-
tal investigations that are not possible
in Internet-based and commercial
cloud environments. Although the con-
tributions of FIDC testbeds are clear,
there remain important unanswered
questions in designing and managing
these community resources. Many of
these questions are fundamental de-
sign tensions, such as slicability vs. fi-
delity, that have been anticipated since
the first discussions of GENI’s design.7
Such questions do not have correct an-
swers, but rather describe a spectrum
of design options actively being sam-
pled by various testbed developers. As a
result, FIDC testbeds such as FIRE and
GENI are generally heterogeneous fed-
erations of collaborating resource pro-
viders, providing experimenters with a
variety of options. For example, one ex-
periment may choose to emphasize re-
producibility, while another seeks ex-
posure to “in the wild” network traffic.

Other challenges do not arise from
deep philosophical conundrums, but
simply represent the relatively imma-
ture state of these testbeds and their
associated tools. While most FIDC re-
searchers are successful in conducting
experiments they could not run else-
where, the user experience can be chal-
lenging. There is much good work still
to be done to provide both novice and
experiment researchers with appropri-
ate tools to design and manage their
experiments, particularly those that
are long-lived or conducted at large
scale. Similarly, tools and processes
supporting FIDC infrastructure own-
ers’ monitoring and maintenance are
often relatively basic.

The trend toward heterogeneous
federation of research infrastructure is
likely to continue, as testbed develop-
ers and their researchers seek greater

after the failure. After the failure (at
time zero), this is the only link con-
necting London to the network. There-
fore, after the failure all traffic to and
from London traverses this link. Total
restoration time is around 240ms and
the total protection time around 50ms.
This result shows that meeting the car-
rier-grade requirement of 50ms will be
very difficult using a centralized con-
troller. Protection is the only choice to
meet this stringent requirement.

Failure recovery results. To evaluate
the impact of the topology on the re-
covery time, different pan-European
topologies with varying numbers of
nodes and node degree are evalu-
ated. The restoration time increases
with the number of nodes because
the path calculation time grows as
O(n2), where n is the number of nodes.
When node degree is reduced, resto-
ration time increases because more
hops are used for the restoration path
and the controller needs to configure
more switches. Protection does not
require controller intervention and
is therefore far less dependent on the
network topology.

The scalability experiment shows
an approximately linear relationship
between the restoration time and the
number of affected flows. In the protec-
tion case, the group table implemen-
tation effectively mitigates the depen-
dency on the number of affected flows.
In all experiments, protection achieves
the carrier-grade recovery requirement.

In the video experiment, a video is
streamed over the Real-Time Trans-
port Protocol (RTP) and the effect of
failure recovery on the video quality is
assessed on the display wall. The video
is sent using different maximum trans-
mission unit (MTU) sizes. The resto-
ration experiments show clear errors
in the video, however, without a clear
influence of the MTU. In contrast, pro-
tection is so fast that no observable ar-
tifacts are noticed.

FIDC Testbeds in Education
An increasing number of universities
are turning to FIDC testbeds to support
classroom exercises and research proj-
ects in their computer science curri-
cula. Perhaps the most straightforward
application is to adopt a FIDC testbed
as a virtual laboratory for classroom
networking experiments. Laboratory-

based instruction is already a popular
approach for introducing basic net-
working concepts. A leading example
is Liebeherr and El Zarki’s classroom
networking laboratory design, with
companion exercises.13 A network-
ing student following this approach is
quickly exposed to important concepts
and tools, such as datagrams, address
resolution, configuring a basic IP net-
work and debugging with tools like
ping, tcpdump, and wireshark.

Instructors employing a labora-
tory approach find the transition to
classroom experimentation in a FIDC
testbed relatively straightforward. Us-
ing a virtual laboratory brings many
of the same benefits as a physical
networking laboratory, with the obvi-
ous exception of familiarization with
physical networking components.
Instructors are attracted to a virtual
laboratory because it has greater elas-
ticity for varying class sizes and elimi-
nates the equipment cost (Liebeherr
and El Zarki estimate U.S. $1,000 per
student) and administrative burden to
configure and maintain a classroom
laboratory. In addition, FIDC testbeds
by their very nature are well suited to
manipulation of network settings and
configurations that are generally not
available to users of standard cloud
computing services. Thus, instructors
can easily offer basic exercises such as
configuring IP addressing and routing
for a simple network configuration.

FIDC testbeds have also gained
popularity in non-networking courses
One example is the FORGE initiative,15
which is implementing an educational
layer over the FIRE testbed facilities, in
support of a broad suite of CS laborato-
ry exercises. Another is Williams Col-
lege Professor Jeannie Albrecht’s un-
dergraduate distributed systems class,
where students use the GENI test-
bed to build distributed applications
like a Web server, an online bookstore,
and a P2P file-sharing system. In ad-
dition to simplifying lab setup for the
course staff, students see a benefit of
using FIDC testbeds for these assign-
ments (compared to local resources),
because alternative network topolo-
gies with varying conditions can be
easily created. Students are then better
able to observe the impact of the net-
work on distributed applications.

Educational applications range

JUNE 2015 | VOL. 58 | NO. 6 | COMMUNICATIONS OF THE ACM 89

review articles

scale, flexibility, and variety by joining
together in global federations. Figure 10
highlights (in blue) countries and re-
gions worldwide with active FIDC test-
bed communities. While this trend is
exciting, it also creates new challenges
in federated policy management and
enforcement.

Perhaps the leading example of an
emerging global FIDC federation is
evident from a collaboration that be-
gan in the summer of 2013. Participat-
ing testbeds are jointly developing a
federation compatibility interface for
“clearinghouse” functions, such as
user credentialing and project mem-
bership, and adopting the GENI “ag-
gregate manager” API for resource
discovery and provisioning functions.
Federation testing and demonstration
began in late 2013, with initial partici-
pants including GENI in the U.S., FIRE
in the E.U., FIBRE in Brazil and Europe,
VNode in Japan, and NICTA in Austra-
lia. A monitoring capability, developed
at iMinds, continually assesses and re-
ports the status and availability of fed-
eration resources, for use by participat-
ing experimenters.

FIDC testbeds are gaining global
traction, with support from a growing
international community. For a variety
of practical reasons, testbed develop-
ers are increasingly turning to feder-
ated designs as a strategy to achieve
scale while controlling cost and ad-
ministrative effort. Federated testbeds
rely on a web of trust relationships,
uniting the key testbed stakeholders:
infrastructure providers, testbed devel-
opers, and research/educational users.
Several national-scale FIDC testbeds
are employing a federation approach
to their development and deployment.
In addition, a number of these national
testbeds are entering into collaborative
efforts to create a worldwide, federated
infrastructure that facilitates transcon-
tinental research.

Acknowledgments
GENI and CASA are funded by the
NSF under cooperative agreements
CNS-0737890 and EEC-0313747, re-
spectively. Authors from Columbia,
University of Massachusetts, and Rut-
gers acknowledge support under NSF
grants CNS-0831912, CNS-1238485,
and CNS-1040735 and CNS-1345295,
respectively. Authors Zink and Krish-

nappa acknowledge support from the
GENI project office. Any opinions,
findings, conclusions or recommenda-
tions expressed in this material are the
authors’ and do not necessarily reflect
the views of the NSF.

Part of this work was carried out
with the support of the Fed4FIRE and
SPARC projects, funded by the Euro-
pean Commission through the 7th
ICT Framework Programme. It does
not necessarily reflect the views of the
European Commission. The European
Commission is not liable for any use
that may be made of the information
contained herein.

References
1. Anderson, D.G. et al. Accountable Internet Protocol

(AIP). ACM SIGCOMM Computer Communication
Review 38, 4 (2008), 339–350.

2. Berman, M. et al. GENI: A federated testbed for
innovative network experiments. Computer Networks
61 (2014), 5–23.

3. Bronzino, F., Nagaraja, K., Seskar, I. and Raychaudhuri,
D. Network service abstractions for a mobility-centric
future internet architecture. In Proceedings of the
International Workshop on Mobility in the Evolving
Internet Architecture, (2013), 5–10.

4. Fdida, S. et al. FIRE Roadmap Report 1 – Part II. Future
Internet Research and Experimentation (FIRE), 2011.

5. Femminella, M., Francescangeli, R., Reali, G., Lee,
J.W. and Schulzrinne, H. An enabling platform for
autonomic management of the future internet. IEEE
Network 25, 6 (2011), 24–32.

6. Fu, X., Schulzrinne, H., Bader, A., Hogrefe, D., Kappler,
C. and Karagiannis, G. et al. NSIS: A new extensible IP
signaling protocol suite. IEEE Communications 43, 10
(2005), 133–141.

7. GENI design principles. Computer 39, 9 (Sept. 2009),
102–105.

8. iLab.t at iMinds; http://www.iminds.be/en/develop-
test/ilab-t.

9. Krishnappa, D.K., Lyons, E., Irwin, D. and Zink, M.
Network capabilities of cloud services for a real time
scientific application. In Proceedings of the 2012 IEEE
37th Conference on Local Computer Networks, (2012),
487–495.

10. Krishnappa, D., Irwin, D., Lyons, E. and Zink, M.
CloudCast: Cloud computing for short-term weather
forecasts. Computing in Science & Engineering 15, 4
(2013), 30–37.

11. Lee, J.W. Towards a Common System Architecture for
Dynamically Deploying Network Services in Routers
and End Hosts.

12. Li, M., Agrawal, D., Ganesan, D., Venkataramani, A.
and Agrawal, H. Block-switched networks: A new
paradigm for wireless transport. In Proceedings
of Symposium on Networked Systems Design and
Implementation 9, (2009), 423–436.

13. Liebeherr, J. and El Zarki, M. Mastering Networks: An
Internet Lab Manual. Addison-Wesley, Reading, PA, 2003.

14. Maccherani, E., Femminella, M., Lee, J.,
Francescangeli, R., Janak, J., Reali, G., et al.
Extending the NetServ autonomic management
capabilities using OpenFlow. Network Operations and
Management Symposium (2012), 582–585.

15. Marquez-Barja, J.M., Jourjon, G., Mikroyannidis, A.,
Tranoris, C., Domingue, J. and DaSilva, L.A. FORGE:
Enhancing elearning and research in ICT through
remote experimentation. In Proceedings of the IEEE
Global Engineering Education Conference. Istanbul,
Turkey, 2014.

16. McLaughlin, D., Pepyne, D., Chandrasekar, V., Brenda
Philips, J. K., Zink, M., Droegemeier, K., et al. Short
wavelength technology and the potential for distributed
networks of small radar system. Bulletin of the American
Meteorological Society 90, 12 (2009), 1797-1817.

17. Nelson, S., Bhanage, G., & Raychaudhuri, D.
(2011). GSTAR: Generalized storage-aware routing
for MobilityFirst in the future mobile Internet.
Proceedings of the 6th ACM International Workshop

on Mobility in the Evolving Internet Architecture
(MobiArch) ACM, New York, 19–24.

18. OpenFlow Ericsson implementation; https://github.
com/TrafficLab/of11softswitch .

19. OpenFlow Specification 1.1; http://archive.openflow.
org/documents/openflow-spec-v1.1.0.pdf.

20. Raychaudhuri, D., Nagaraja, K. and Venkataramani, A.
MobilityFirst: A robust and trustworthy mobility-
centric architecture for the future Internet. ACM
Mobile Computing and Communications Review 16, 3
(2012), 2–13.

21. Sharma, S., Staessens, D., Colle, D., Pickavet, M.
and Demeester, P. OpenFlow: Meeting carrier-grade
recovery requirements. Computer Communications
36, 6 (2013), 656–665.

22. Somani, N., Chanda, A., Nelson, S.C. and Raychaudhuri,
D. Storage aware routing protocol for robust and
efficient services in the future mobile Internet. In
Proceedings of the IEEE International Communications
Conference, FutureNet V Workshop (2012).

23. Staelens, N., Deschrijver, D., Vladislavleva,
E., Vermeulen, B., Dhaene, T. and Demeester,
P. Constructing a no-reference H.264/AVC
bitstream-based video quality metric using genetic
programming-based symbolic regression. IEEE
Transactions on Circuits and Systems for Video
Technology 23, 8 (2013), 1322–1333.

24. Turner, J. and Taylor, D. Diversifying the Internet.
In Proceedings of the Global Telecommunications
Conference (2005). IEEE.

25. Vandenberghe, W., Vermeulen, B., Demeester, P.,
Willner, A., Papavassiliou, S. and Gavras, A. et al.
Architecture for the heterogeneous federation
of future Internet experimentation facilities. In
Proceedings of the Future Network and Mobile Summit
2013 Conference.

26. Vasseur, J.P., Pickavet, M. and Demeester, P. Network
Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS. Morgan Kaufmann, 2004.

27. Venkataramani, A., Sharma, A., Tie, X., Uppal,
H., Westbrook, D. and Kurose, J. et al. Design
requirements of a global name service for a mobility-
centric, trustworthy internetwork. Communication
Systems and Networks (2013) 1–9.

28. Vu, T., Baid, A., Zhang, Y., Nguyen, T.D., Fukuyama, J.,
Martin, R.P. et al. DMap: A shared hosting scheme for
dynamic identifier to locator mappings in the global
internet. Distributed Computing Systems (2012), 698–707.

Mark Berman (mberman@acm.org) is Vice President for
Technology Development and GENI Project Director at
Raytheon BBN Technologies, Cambridge, MA.

Piet Demeester (piet.demeester@intec.ugent.be) is a
professor at Ghent University–iMinds, Gent, Belgium.

Jae Woo Lee (jae@cs.columbia.edu) is a lecturer in
computer science at Columbia University, New York, NY.

Kiran Nagaraja (kiran.nagaraja@ericsson.com) is a senior
researcher at Ericsson, Inc. This work was done while
he was a senior research associate at WINLAB, Rutgers
University, New Brunswick, NJ.

Michael Zink (zink@ecs.umass.edu) is an assistant
professor at the University of Massachusetts, Amherst, MA.

Didier Colle (Didier.Colle@UGent.be) is a professor at
Ghent University–iMinds, Gent, Belgium.

Dilip Kumar Krishnappa (dilipkuk@akamai.com) is a
senior performance engineer, Akami Technologies. This
work was done while he was a student at the University of
Massachusetts, Amherst, MA.

Dipankar Raychaudhuri (ray@winlab.rutgers.edu)
is Distinguished Professr of Electrical and Computer
Engineering and Director of WINLAB at Rutgers
University, New Brunswick, NJ.

Henning Schulzrinne (hgs@cs.columbia.edu) is Julian
Clarence Levi Professor of Computer Science at Columbia
University, New York, NY.

Ivan Seskar (seskar@winlab.rutgers.edu) is associate
director of WINLAB at Rutgers University, New
Brunswick, NJ.

Sachin Sharma (sachin.sharma@intec.ugent.be) is a
Ph.D. student at Ghent University–iMinds, Gent, Belgium.

Copyright held by authors.
Publication rights licensed to ACM. $15.00

