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Abstract—Accurately determining a user’s floor location is
essential for minimizing delays in emergency response. This
paper presents a floor localization system intended for emergency
calls. We aim to provide floor-level accuracy with minimum
infrastructure support. Our approach is to use multiple sensors,
all available in today’s smartphones, to trace a user’s vertical
movements inside buildings.

We make three contributions. First, we present a hybrid
architecture that combines sensor-based dead reckoning and
beacon-based infrastructure. Second, we present the elevator
module for tracking a user’s movement in an elevator. The
elevator module addresses three core challenges that make it
difficult to accurately derive displacement from acceleration.
Third, we present the stairway module which determines the
number of floors a user has traveled on foot. Unlike previous
systems that track users’ foot steps, our stairway module uses a
novel landing counting technique.

I. INTRODUCTION

The emergency call systems in the United States and
elsewhere are undergoing a transition from PSTN-based legacy
systems to new IP-based systems. The new system is referred
to as the Next Generation 9-1-1 (NG9-1-1) system [1] in the
US. We have previously built a prototype NG9-1-1 system [2]
based on the Session Initiation Protocol (SIP).

The most important piece of information in the NG9-1-
1 system is the caller’s location. The location is first used
for routing the call to a proper call center. The emergency
responders then use the caller’s location to pinpoint the caller
on site. Therefore, it is essential to determine the caller’s loca-
tion as precisely as possible to minimize delays in emergency
response. Delays in response may result in loss of lives.

In the NG9-1-1 system, GPS can provide a user’s location
accurately when the user makes an emergency call outdoors
using a mobile phone. Indoor positioning, however, presents
a challenge because GPS does not generally work indoors.
Moreover, unlike outdoors, vertical accuracy is very important
in indoor positioning because an error of few meters will
send emergency responders to a different floor in a building,
which may cause a significant delay in reaching the caller.
The importance of vertical positioning makes GPS not a good
solution even if GPS signals can somehow reach indoors, since
the altitudes reported by GPS are usually inaccurate [3], [4].

Ladetto and Merminod [5] proposed a barometer-based
solution for vertical positioning. Barometers, however, have a
critical limitation when they are used in a vertical positioning
system intended for emergency situations. Firefighters often
use a technique called positive pressure ventilation (PPV) [6],
which means blowing air into a burning building in order

to clear out smoke. PPV will result in pressure changes in
the building, which will in turn cause large fluctuations in
barometer readings. In addition, parts of some buildings are
intentionally pressurized for various reasons [7], which will
also affect barometer readings.

This paper presents a proposal to augment our previous
NG9-1-1 prototype system with floor localization. We aim
to provide floor-level accuracy with minimum infrastructure
support. Our approach is to use multiple sensors, all available
in today’s smartphones, to trace a user’s vertical movements
inside buildings. When a user enters a building, the user’s
smartphone receives the information about the building and
the current floor from a beacon deployed at the entrance.
The smartphone starts tracking the user’s vertical movements
when she rides elevators or walks on stairs. Additional beacons
deployed sparsely throughout the building provide periodic
corrections to the user’s location.

Our design is largely driven by the requirements for
emergency calls. First of all, a positioning system intended for
emergency calls must be immune to transient conditions or
on-going changes inside the building. For example, interfering
electromagnetic signals, rearranged equipment and furniture,
or the number of current occupants should not affect the
system’s operation. Because of this requirement, we had to
rule out wireless fingerprinting, an effective technique used
in many other indoor location systems [8], [9]. Secondly,
the infrastructure should be reduced as much as possible
because an extensive infrastructure requirement hinders wide
adoption. We chose a hybrid design, combining beacon-based
infrastructure and sensor-based dead reckoning, in order to
fill the gap between sparsely deployed beacons. Lastly, in an
emergency call system, a partial failure must not result in a
complete system failure. In our system, partial failures caused
by power outage or structural damage in the building result in
gradual degradation of performance.

In this paper, we make three contributions. First, we present
a hybrid architecture for floor localization with emergency calls
in mind. The architecture strikes the right balance between
accurately determining a user’s location and minimizing the
required infrastructure.

Second, we present the elevator module for tracking a
user’s movement in an elevator. The elevator module calcu-
lates the elevator’s displacement by double-integrating vertical
acceleration. Double integration is considered too noisy for
tracking human movements in general. However, we show that
the constrained movement of an elevator enables a number of
error correction techniques, making double integration a viable
method.
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Fig. 1. Architecture overview.

Third, we present the stairway module which determines
the number of floors a user has traveled on foot. Previous
proposals counted a user’s steps on stairs [10], [11]. This
approach has a critical limitation that it cannot account for
a user walking up multiple stairs in each step. Instead, our
stairway module counts landings, the level areas either at the
top of a staircase or in between flights of stairs.

This paper is organized as follows. Section II presents
our overall architecture. Section III describes the design and
algorithms of our three analysis modules and the activity
manager. Section IV provides our evaluation results. Section V
discusses related work. Lastly, we conclude and discuss future
work in Section VI.

II. ARCHITECTURE OVERVIEW

Figure 1 shows the overall architecture of our vertical
positioning system. We describe each component in detail in
the following subsections.

A. Sensor array

The sensor array includes different kinds of sensors avail-
able in most of today’s smartphones. The Inertial Measurement
Unit (IMU) integrates a three-axis accelerometer, a three-axis
gyroscope, and a three-axis magnetometer. The accelerometer
measures linear accelerations along the three spatial axes.
The measured accelerations can be used to detect whether
a user is moving, and if so, the user’s velocity or traveled
distance can be derived from them. The gyroscope measures
the angular velocities of rotations around the three spatial
axes. The orientation of the device can be derived from
the gyroscope measurement. The magnetometer is a digital
compass that measures the strength of the Earth’s magnetic
field. The compass provides the heading of the device. Heading
refers to the angle which the device forms with the magnetic
north on a level plane.

B. Analysis modules

The analysis modules collect data from the sensor array and
compute a user’s location. There are three analysis modules in
our architecture: the elevator module, the stairway module, and
the escalator module.

The elevator module calculates the vertical displacement
of an elevator by measuring its linear acceleration. The linear

acceleration is measured using the device’s accelerometer.
Integrating the linear acceleration twice with respect to time
yields the distance that the elevator has traveled.

The stairway module determines the number of floors a
user has traveled by counting the number of landings in
stairways. Our landing detection algorithm is based on an
intuitive fact that there is less vertical movement on landings
than on steps. The stairway module utilizes the accelerometer,
the gyroscope, and the magnetometer.

The escalator module also calculates the vertical distance
that a user has traveled by double-integrating the vertical
acceleration, as we did in the elevator module. In both escalator
and elevator modules, the vertical distance is converted to the
number of floors by looking up the floor-to-floor heights. The
user’s smartphone receives the floor height information from
the infrastructure components.

C. Activity manager

The activity manager coordinates the interactions between
the sensor array and the analysis modules. The activity man-
ager monitors the sensors to detect changes in a user’s activity,
such as indoor-outdoor transitions, riding an elevator, or walk-
ing on a stairway. Once the user’s activity is identified, the
activity manager selects the proper analysis module to process
the data from the sensor array.

D. Infrastructure

The elevator, stairway, and escalator modules perform well
within limited ranges, but the modules cannot reliably capture
the user’s movement over longer vertical distances. Further-
more, the sensor-based components can only report relative
location, i.e., the number of floors that the user has traveled.
Therefore, the initial anchor location must be provided in order
to obtain the absolute location.

These problems can be solved by deploying an infrastruc-
ture for indoor positioning. Densely deployed infrastructure,
such as beacons installed every floor and every entrance, can
provide accurate location, but the high cost of such installation
is a hindrance to ubiquitous deployment. On the contrary,
sparsely deployed infrastructure will not be able to provide
the required level of accuracy.

Our architecture combines sensor-based dead reckoning
with minimum and practical beacon-based infrastructure. First,
the infrastructure includes location beacons deployed at each
entrance of a building. The beacons provide the location of a
user’s entry to the building. The floor of entry becomes the
anchor for all subsequent calculations of the user’s vertical
location. In addition to the floor of entry, the beacons also
provide other building information which is needed by the
analysis modules. The additional building information includes
the floor-to-floor height and the number of landings between
each pair of floors. User devices include the infrastructure
monitor, which interacts with the location beacons to retrieve
floor of entry and other building information.

Second, for the buildings that are not equipped with these
beacons, we propose that central authorities such as local
governments maintain well-known building database servers.
When a user enters a building not equipped with the beacons,



the infrastructure monitor sends the last known GPS location
to the building database server to retrieve the same building
information that the location beacons would have provided.
This GPS-based entrance detection is not as reliable as the
beacon-based approach, especially in urban canyons. Thus, we
only use it as a fallback.

Lastly, the limited range of the sensor-based components
can be overcome by sparsely deploying location beacons at
the edge of the range. For example, if the location tracked by
the elevator module is reliable up to 20 floors, beacons can be
placed at elevator entrances every 20 floors.

One advantage of our hybrid architecture is that partial
failures caused by power outage or structural damage result
in gradual degradation of performance rather than a complete
system failure. If an entrance beacon fails, the smartphone
will not have the initial anchor location and other building
information, but it can still keep track of the user’s relative
location. If some location beacons are unavailable to provide
periodic corrections, the system simply produces less accurate
locations. This is an important characteristic of an emergency
call system because even incomplete information can be help-
ful to first responders.

III. SYSTEM DESIGN AND ALGORITHMS

A. Elevator module

There are three challenges in accurately measuring the
vertical distance that a user has traveled in an elevator. The
three challenges are how to extract the vertical component in
the accelerometer reading, how to subtract Earth’s gravitational
acceleration, and how to eliminate noise and errors.

The accelerometer returns linear accelerations along the
three axes. Those three axes are not aligned with the world
coordinate system. Instead, they are aligned with the frame of
the device. Thus, the axes in the device coordinate system keep
changing as the orientation of the device changes. One way to
extract vertical acceleration is to combine the accelerometer
measurement with the gyroscope measurement. In fact, we
do this in the stairway and escalator modules. In the elevator
module, however, we take advantage of the fact that, in the
elevator, the dominant movement of the device is in the vertical
direction. We simply assume that the measured acceleration is
close to vertical, and approximate the vertical projection with
the vector itself. Thus, the vertical acceleration is calculated
as follows:

avertical ≈ |−→a | =
√

x2 + y2 + z2 (1)

where x, y, and z are three-axis accelerometer measurements.
We do not need a gyroscope in this calculation. We justify our
approach by making the following two observations. First, a
user’s sudden movements in the elevator will be filtered out
by the low-pass filter, which we will describe shortly. Second,
users typically stand still in the elevator, and when they move,
the accelerations of the movements are small compared to
the vertical acceleration of the elevator. The consequence
of this approximation is that whenever there is non-vertical
acceleration, we overestimate the vertical acceleration by 1

cos θ
,

where θ is the angle that the measured acceleration vector
makes with the vertical axis. This overestimation is small, and
we compensate it by applying zero velocity update (ZUPT),
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Fig. 2. Velocity and distance calculations with and without ZUPT.

which we describe later. Our measurement shows that the ap-
proximation does not affect the resulting distance calculation.

The vertical acceleration calculated above includes the
gravitational acceleration (g), which we need to subtract be-
fore computing the traveled distance. In theory, g should be
constant at 9.8 m/s2, but we found slight variations in our
experiments. We measured g by sampling the accelerations
of smartphones sitting still on a desk. The measured values
deviated slightly from g, and moreover, the variations were
different on different devices. Smartphone SDKs provide APIs
returning g-free acceleration, but they exhibited the same
deviation. We eliminate the effect of the deviation in g as
follows. We take advantage of the fact that, if we take g out
of the acceleration, the integral of the acceleration taken over
the duration of the trip must be zero because the elevator is
not moving at the end of the trip. Thus we can deduce that
the value of g measured by the device is the mean of the
acceleration samples taken over the trip.

The accelerometer output contains a significant amount
of noise. We apply two existing techniques to tackle this
problem. First, we apply a low-pass filter to the accelerometer
output. This filters out the user’s sudden movements and the
accelerometer’s inherent noise which we refer to as drift.
Second, we apply a technique called zero velocity update
(ZUPT) [12] to eliminate accumulated errors. Integrating the
acceleration yields the velocity of the elevator. We reset the
velocity to zero during the period when the acceleration is
zero and the velocity is within a predefined threshold. The
threshold value we choose is small compared to the speed of
the elevator, so that we do not mistakenly zero out the velocity
of an elevator moving at a constant speed. The accuracy of the
distance calculation is improved in that, at each stop, ZUPT
has an effect of wiping out the accumulated errors due to the
drift and the user’s non-vertical movements.

Figure 2 demonstrates the effectiveness of ZUPT. We com-
pare the computed velocities and distances when an elevator
traveled from the first, to the second, and then to the third floor.
Without ZUPT, the accumulated acceleration errors result in
non-zero velocities when the elevator is at the second and the
third floor. This in turn results in an error of approximately
one meter in distance at the end.

In general, double integration is considered too noisy for
tracking human movements. In our case, however, an elevator
moves only in the vertical axis, making it easy to extract the
vertical component of the acceleration. An elevator also comes
to a zero velocity when it stops at a floor, making it possible
to apply ZUPT to eliminate the accumulated errors.
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B. Stairway module

The stairway module determines the number of floors a
user has traveled using our landing counting algorithm. To the
best of our knowledge, landing detection has not been used
for vertical positioning systems.

First, the stairway module calculates vertical acceleration
from the accelerometer and gyroscope measurements. Unlike
an elevator’s movement, a user’s movement on a stairway is
more complex. A gyroscope is needed to transform the acceler-
ation in the device coordinate system to the world coordinate
system. We convert the accelerometer measurements in the
device coordinate system to the world coordinate system using
a rotation matrix as shown below:

−→a ′ = R−→a (2)

where −→a ′ is the acceleration in the world coordinate system,
−→a is the acceleration in the device coordinate system, and R
is the rotation matrix. Most smartphone platforms provide an
API to obtain R. We then take the resulting z-axis acceleration
in the world coordinate system and subtract g from it. We
calculate g in the same way as in the elevator module.

The landing counting algorithm compares the amplitude of
vertical acceleration between steps and landings. The algorithm
is based on the intuitive fact that the amplitude of the vertical
acceleration is much smaller on landings than on steps because
there are less vertical movements on landings.

Figure 3(a) shows a measurement of a user’s vertical
acceleration when she walks down four floors passing eight
landings. The amplitude difference between steps and landings
is clearly observed. Figure 3(b) is the magnitude spectrogram
|X(t, f)| in dB scale, transformed from Figure 3(a)’s accel-
eration data. The regions of small amplitude in Figure 3(a)
manifest as reduced magnitude in the frequency range between
0.5 to 2 Hz, which corresponds to human walking.
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Fig. 4. Three landing detection cases.

We define pwalk(t) to extract human walking activity from
the magnitude spectrogram:

pwalk(t) =
∑

0.5 Hz<f<2 Hz

10 log
10

|X(t, f)| (3)

where t is time and f is frequency. Figure 3(c) shows pwalk(t),
where we can clearly observe the dips at landings.

Our landing counting algorithm traces the pwalk level
shown in Figure 3(c) to count the number of landings. Fig-
ure 4(a) illustrates this process. Each landing is characterized
by a dip below its mean value. The fall and rise of the level
crossing the mean value indicate the beginning and end of
a landing, respectively. The beginning and end of a landing
are shown as the bumps of the “Landing detection” line in
Figure 4(a).

In addition to vertical acceleration, the stairway module
uses heading information from the magnetometer to improve
the accuracy of landing detection. We observe that, most of
the time, users turn around 180 degrees on landings. We use
such heading changes to correct errors in landing detection,
specifically to remove incorrectly identified landings. Since
we are only interested in 180 degree turns, our magnetometer
reading does not require calibration.

Figure 4(b) shows a case where our algorithm removes two
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Fig. 5. Velocity measurements of a user walking on a stairway.

incorrectly identified landings using the heading information
from the magnetometer. The dotted line labeled “Heading”
shows the heading changes reported by the magnetometer.
The heading largely stays the same from 15 sec to 25 sec, and
changes from 220◦ to 40◦ in the next two seconds. This 180◦

turn, combined with the bumps on the landing detection line,
confirms a landing. Note that the seeming discontinuity in the
heading from 20◦ to 330◦ at 37 sec is in fact a steady change
from 20◦ to −30◦, wrapping around. The two rectangles in
the figure highlight two incorrectly identified landings being
removed because the heading did not change during the period.

This heading-based verification of landings makes it un-
likely that our algorithm produces false positives. If the
acceleration-based landing detection misses a landing to begin
with, however, the heading information does not help recover
it. Figure 4(c) shows this case. Therefore, our algorithm
produces a conservative estimate of the number of landings.

We determine whether a user is moving up or down by
comparing the average vertical velocity on steps and landings.
Figure 5 shows the vertical velocity measurements when a
user walks up and down two floors passing four landings. The
figure clearly illustrates the difference in the velocity patterns
between the up and down cases. We determine that the user is
ascending if the velocity on steps is higher than the velocity on
landings, and vice versa. In theory, the average vertical velocity
should be zero on landings, positive when the user walking
up steps, and negative when walking down. But in practice,
the velocity values can shift due to the noise and errors that
have been introduced while extracting vertical acceleration and
subtracting g.

The stairway module returns a relative location which is
the number of floors the user has traveled from the initial
floor. Like the elevator module, the stairway module relies
on the information from the infrastructure monitor to get the
initial anchor location. The infrastructure monitor also provides
the number of landings between each pair of floors. There
are typically two landings per floor but the number can vary
depending on the design of a building. In some buildings, for
example, there are more landings between the lobby and the
second floor.

C. Escalator module

The escalator module combines the elements of both
elevator and stairway modules. The escalator module uses
double integration like the elevator module. However, the
user’s movement on an escalator is not vertical, so we use
the gyroscope measurements to extract the vertical component
from the measured acceleration, as in the stairway module.
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D. Activity manager

The activity manager classifies a user’s movements as
one of the following activities: elevator riding, walking, and
standing. The classification is based on the user’s vertical
acceleration. The current version of the activity manager does
not identify escalator riding. Vertical acceleration does not
work well for escalators because of the complexity of a
user’s movement. We are investigating other ways to detect
escalators, such as the technique of magnetic field variance
proposed by Wang et al. [13].

Figure 6(a) depicts the pattern of a user’s vertical acceler-
ation in an elevator. The elevator starts with zero acceleration
(1), accelerates to a steady velocity (2), moves at a constant
speed (3), decelerates (4), and stops (5). When the activity
manager detects this pattern, the sensor measurements during
that period are passed to the elevator module.

Figure 6(b) shows a user’s vertical acceleration when the
user walks a few steps, stops for a bit, and then resumes walk-
ing. The activity manager detects human steps by identifying
local extrema of amplitude in vertical acceleration. One step
contains exactly one maximum and one minimum in a short
time interval. The period (1) and (3) in Figure 6(b) contain
human steps so they are walking periods.

The period (2) in Figure 6(b), where the vertical acceler-
ation is under a threshold, is classified as a standing period.
The activity manager uses the standing period to partition the
sensor measurements.

Each walking period, separated by the standing periods, is
passed to the stairway module. A single walking period can be
either walking on the stairway (stairway walking) or walking
on the same floor (same-floor walking). Ideally, the activity
manager should detect all periods of same-floor walking, and
filter them out, so that they do not get passed to the stairway
module. The current version of our activity manager does not
implement this filtering. Thus, the stairway module needs to
handle not only stairway walking, but also same-floor walking.

To detect same-floor walking, the stairway module cal-
culates the total distance that a user has traveled during the
walking period, and see if the distance turns out to be close to
zero. If so, the walking period is considered to be an instance
of same-floor walking.

Normally, a single walking period does not contain both
stairway and same-floor walking. A user would typically
stop to open a door to the stairway, producing a standing
period which separates them into two walking periods. It is
possible, however, that both stairway and same-floor walking



Building name Reference height Average error Error-to-height ratio

CEPSR 4.65 m 0.08 m 1.6%

Mudd 3.67 m 0.06 m 1.7%

Pupin 3.48 m 0.09 m 2.7%

TABLE I. ERRORS IN ONE FLOOR DISTANCE CALCULATED BY

ELEVATOR MODULE.

are included in a single walking period if the user avoids
stoppage in the middle. In this case, the same-floor walking
portion will be detected as a landing by the stairway module,
assuming that the user has made a significant change in the
heading during the same-floor walking. The only case that the
stairway module will not be able to handle is the one where
the user walks a long straight corridor between two flights of
stairs without stoppage. Our stairway module will not identify
this as a landing due to the lack of any heading change.

IV. EVALUATION

We built a prototype of our system on iPhone. The details
of our implementation are described in the companion techni-
cal report [14].

Using the prototype system, we first evaluate the algorithms
of our elevator, stairway, and escalator modules individually.
The individual evaluation scenarios assume that the activity
manager correctly identifies the user’s activity and selects the
proper analysis module. Then, we present a combined case
where the user’s travel involves multiple types of movements
including riding an elevator, walking on a stairway, and walk-
ing around on the same floor, which are all detected by the
activity manager.

A. Elevator module

We evaluated the elevator module in three different research
and classroom buildings at Columbia University: CEPSR,
Mudd, and Pupin. They have 10, 15, and 13 floors, respec-
tively. Table I shows the reference floor-to-floor height of each
building, which we measured using a tape measure, followed
by the error of the result from the elevator module. The error
is the difference between the reference height and the distance
calculated by the elevator module when a user moves one floor
in an elevator in each building. The error is an average of ten
trials, five moving up and five moving down.

Errors are small in all three buildings, indicating that the
elevator module can provide accurate vertical location up to
a reasonable number of floors. We can extend the range by
strategically deploying location beacons. For example, in the
Pupin case in Table I, the error is under 3%, so the elevator
module will be accurate up to about 15 floors. Thus, location
beacons can be deployed conservatively in every 10 floors to
cover the entire building.

Figure 7(a) shows distance errors from the elevator module
as we increase the number of floors traveled in an elevator
without stopping. The graph shows that the errors accumulate
as the elevator travels farther. The error of 0.82 m when the
user traveled nine floors is about 22% of the floor-to-floor
height, which is well within the margin of error for accurately
determining the destination floor.

Figure 7(b) plots the distance errors of traveling nine
floors in an elevator as we vary the number of stops that the
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user has made during the travel. The graph shows that the
error decreases as the user makes more stops. This shows the
effectiveness of applying ZUPT in the distance calculation. At
each stop, ZUPT eliminates accumulated errors by removing
residual velocity. Therefore, if the elevator makes stops during
the trip, the elevator module’s distance estimation becomes
much more accurate, extending the upper bound of the elevator
module’s distance limitation.

B. Stairway module

We evaluated the stairway module in two buildings. One
was an office building and the other was a residential building.
Both buildings have two landings between each pair of floors.

Figure 8 shows our stairway module measurements. In each
building, we performed 50 trials of walking four floors. The
graph compares the landing counting results with and without
our heading-based correction. Our heading-based correction
was able to eliminate all miscounted landings in both buildings,
producing the correct landing count in all 50 trials. Without the
heading-based correction, only 44 and 32 trials produced the
correct landing count in the residential and the office build-
ing, respectively. The graph shows the number of trials that
produced one or more miscounted landings in each building.
For instance, two trials in the office building miscounted four
landings, which would have resulted in an error of two floors,
if the heading-based correction had not been applied.

Figure 8 also shows that, without the heading-based cor-
rection, the stairway module performs better in the residential
building than in the office building. We attribute this difference
to the steeper stairs in the residential building. The difference
in the vertical acceleration between steps and landings is
more pronounced on the steeper stairs. In general, our landing
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detection works better when the amplitude difference in the
acceleration is pronounced. This is also in line with our
observation that the waveforms are generally cleaner in the
walking-down cases than in the walking-up cases. Human steps
are typically a bit bouncier when walking down.

We note that, in all trials in Figure 8, the user moved at
a normal walking speed. If the user walks very fast or very
slowly, the amplitude difference of the accelerometer reading
between steps and landings is much less pronounced. We can
address this issue by giving more weight to the heading infor-
mation from the magnetometer. In the extreme case, we can
reverse the roles of the accelerometer and the magnetometer,
i.e., instead of using the magnetometer to make adjustments
to the landings identified by the accelerometer, we can use the
magnetometer first to identify landings. The relative weights
of the two sensors can be dynamically determined depending
on how pronounced the amplitude difference is.

The iPhone’s magnetometer readings, however, often
showed large fluctuations in our experiments even when the
user did not change direction. For this reason, we chose to use
the magnetometer conservatively, i.e., only for correcting false
positives. In order to see the effectiveness of the magnetometer-
first approach, we conducted the same experiment with the
user walking very fast and very slowly, and selected the
measurements that did not contain incorrect magnetometer
readings. We confirmed that the magnetometer-first approach,
when the magnetometer readings are reliable, can cover a
wider range of human walking speed.

C. Escalator module

We evaluated the escalator module in a building where the
escalator connects the second and the fourth floor. We used a
tape measure to obtain the reference height between the two
floors: 7.3 m.

Figure 9 shows the CDFs of the error in the distance
reported by the escalator module. The figure compares two
cases. In one case, the user stood still while riding the escalator.
In the other case, the user was also walking during the ride.
For each case, the user took the escalator 50 times.1

1Out of the 50 walking trials, the user walked during the entire ride 20
times, only the first half 15 times, and only the second half 15 times. We do
not show these cases separately because there was no significant difference
between them.
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Fig. 10. A person’s travel between 7th and 10th floor including elevator
riding, stairway walking, and same-floor walking.

# of trials (0) (1) (2) (3) (4) (5) (6) (7)

8x 7 10 10 8 8 10 10 7

2x 7 10 10 8 8.5 10.5 10.5 7.5

TABLE II. FLOOR LEVELS REPORTED AT EACH STAGE.

In the case without walking, the 50% and 80% of the
results are within 0.75 m and 1.5 m, respectively. In the case
with walking, 50% and 80% are within 1.1 m and 2.1 m, re-
spectively. As we expected, walking on the escalator generates
more noise in the vertical acceleration, causing larger errors
in the distance calculation.

The 2.1 m error–the 80th percentile in the case with
walking–is about 29% of the reference height between the 2nd
and 4th floors. This error-to-height ratio is large compared to
the elevator cases. This is because, unlike an elevator where
the movement starts and ends at a standstill, users step on and
off an escalator that is constantly moving, making it harder to
separate the acceleration purely due to the escalator.

However, an escalator typically covers no more than 2-3
floors, so the error in the distance measurement will still not
cause an error in determining the number of floors. If a user
rides a series of escalators one after another, the error from
one ride will not carry over to the next one because we can
apply ZUPT at landings.

D. Combined case

Figure 10 shows our evaluation scenario of a case involv-
ing multiple types of movement: elevator up/down, stairway
up/down, and same-floor walking. The activity manager de-
tects each activity and sends the sensor measurements to the
corresponding modules.

The travel scenario consists of seven steps. First, a user
takes an elevator on the 7th floor (0), and gets off on the 10th
floor (1). The user then walks on the 10th floor to the door to
the stairway (2). She walks down the stairway from the 10th
to the 8th floor (3). On the 8th floor, she comes out of the
stairway, walks to the other side of the floor to enter another
stairway (4). She walks up the stairway from the 8th back to
the 10th floor (5). On the 10th floor, she comes out of the
stairway, and walks to the elevator entrance in the middle of
the floor (6). Finally, she takes the elevator on the 10th floor
and goes down to the 7th floor, back to where she started (7).

Table II shows the floor levels reported at each stage in
Figure 10 when we repeated the travel ten times. In the eight
trials, the correct floor was reported at every stage. In the two
remaining trials, the stairway module failed to recognize the



walking period between (3) and (4) as same-floor walking. The
module incorrectly reported one landing instead of zero. This
caused an error of 1

2
floor in the subsequent stages.

The combined case shows that our system can track the
user’s complex movements in general. At the same time, the
errors in the two trials reveal the weakness in our system: it
may fail to distinguish between stairway walking and same-
floor walking. This is indeed a difficult problem that remains
as an active research area. At the time of this writing, other
activity recognition systems have similar success rates [15].

V. RELATED WORK

A. Fingerprinting

Fingerprinting identifies signals that have long-term sta-
bility at each location. During the offline phase, the signal
strengths at different location coordinates are recorded to build
a fingerprinting database. During the online phase, the real-
time signal measurement is looked up in the fingerprinting
database to find a matching location.

Many kinds of signals have been used for fingerprinting
systems. RADAR [16], Place Lab [17], Horus [18], and
Ekahau [19] use ubiquitous Wi-Fi signals. WALRUS [20]
combines Wi-Fi and acoustic localization. SkyLoc [8] uses
GSM signals. There are also a number of systems that use
the distortions of Earth’s magnetic field caused by the steel
structure of a building [9].

Some of the fingerprinting-based systems consider vertical
location. SkyLoc [8] was in fact the first floor localization
paper. SkyLoc was also motivated by the importance of floor
localization in emergency situations, and it tackled the problem
using GSM fingerprinting. Shin et al. [21] and Chung et al. [9]
also considered floor-level vertical localization as part of their
system using Wi-Fi signals and geo-magnetism, respectively.

One disadvantage of fingerprinting is the effort required
to conduct offline surveys. To achieve an acceptable accuracy,
signals should be sampled at every meter, and on top of that,
at least toward four different directions at each location [16],
which generates an enormous amount of data.

Moreover, fingerprinting-based approaches are vulnerable
to transient conditions like interfering electromagnetic signals,
or on-going changes like rearranged equipment and furniture.
This characteristic makes fingerprinting an unsuitable approach
for emergency call systems.

B. Dead reckoning

Systems based on dead reckoning typically measure a
user’s acceleration, and calculate the distance by double in-
tegration. The main disadvantage of double integration is
that the accumulation of errors degrades the accuracy of the
distance estimation over time. For this reason, many indoor
location systems instead count human steps to estimate the
distance traveled. A step-based system usually requires an
initial training period to determine the length of a user’s stride.
Yet another way to implement dead reckoning is to measure
the travel time. The traveled distance can then be calculated
from the predetermined velocity, which is commonly obtained
through training.

Among the systems based on double integration, two
systems [22], [23] use foot-mounted IMU. Mounting a sensor
on the user’s foot enables ZUPT to achieve a significant
reduction of errors. Xuan et al. [24] and Shanklin et al. [25]
use smartphones to develop indoor positioning systems. Both
systems do not reach the accuracy of the foot-mounted systems
because of the lack of adequate mechanisms to handle the
accelerometer drift.

Our elevator module calculates the elevator’s displacement
by double-integrating vertical acceleration captured by smart-
phones. Unlike the other smartphone-based systems, we are
able to apply ZUPT and other error correction techniques
because an elevator moves only in the vertical axis, and its
velocity becomes zero when it stops at a floor.

Step-based systems [26], [27] detect human steps by iden-
tifying the local maximum and minimum of vertical acceler-
ation. A pair of local maximum and minimum within a short
time period identifies one human step. Our activity manager
uses this approach to detect the act of walking, but it does not
need to count the steps.

Our stairway module similarly monitors the amplitude
of vertical acceleration. The difference is that, instead of
trying to identify each and every step by scrutinizing vertical
acceleration, we detect landings by focusing on large amplitude
changes in acceleration, which are easier to identify.

Two systems [10], [11] implement floor localization us-
ing the time-based approach. Both systems track a user’s
movement in elevators and on stairways. In [10], a user’s
current activity is classified into one of four classes, elevator
up/down and stairs up/down, using the smartphone’s real-time
accelerometer data. The system then estimates the number
of floors that the user has traveled simply by dividing the
total travel time by the time it takes to travel one floor.
This system requires a training period to build a classifier
for each activity and to calculate the average times needed
to travel one floor. FTrack [11] takes a similar approach, but
uses a novel crowdsourcing technique to construct a mapping
from the starting floor and travel time to the destination floor.
Crowdsourcing, however, requires the willing participation of a
large number of users, which may not be feasible. In addition,
there is still a privacy concern during FTrack’s offline map
construction phase.

The main disadvantage of the two time-based approaches
is that it cannot take account of speed variations. Different
elevators can have different speeds. Users may walk at different
speeds on stairs, or may even climb up multiple stairs in each
step. Our system do not have such limitations. Our elevator
and escalator module is distance-based, rather than time-based.
Our stairway module works by counting landings, rather than
counting individual steps or measuring the travel time.

C. Hybrid systems

Hybrid systems combine infrastructure and dead reckoning
to overcome the shortcomings associated with taking a single
approach. The estimated locations from dead reckoning are pe-
riodically adjusted by the information from the infrastructure,
such as RFID beacons [28] or Wi-Fi fingerprinting [29]. Bea-
cons in this case can be deployed in much coarser granularity
compared to the systems purely based on infrastructure.



Woodman and Harle [29] proposed a hybrid indoor lo-
calization system that uses dead reckoning and Wi-Fi finger-
printing to track a pedestrian through multiple floors. Their
system tracks the user’s movement using a foot-mounted IMU,
and aligns the user’s path with the floor plan of the building.
Wi-Fi fingerprinting constrains the possible initial locations
into a particular region of the building, which in turn reduces
the complexity of the alignment algorithm, and resolves the
ambiguity arising from the symmetries in the floor plan.

Our system can be viewed as a hybrid system because we
primarily rely on dead reckoning, but we anchor the user’s
location using the information from the entrance beacon. The
user’s location is also checked and adjusted by the location
beacons sparsely deployed throughout the building.

VI. CONCLUSION AND FUTURE WORK

This paper makes three contributions toward improving
vertical accuracy of indoor positioning. First, we present
a hybrid architecture for floor localization with emergency
calls in mind. The architecture combines beacon-based infras-
tructure and sensor-based dead reckoning, striking the right
balance between accurately determining a user’s location and
minimizing the required infrastructure. Second, we present the
elevator module for tracking a user’s movement in an elevator.
The elevator module addresses three core challenges that make
it difficult to accurately derive displacement from acceleration.
Third, we present the stairway module which determines the
number of floors a user has traveled on foot. Unlike previous
systems that track users’ foot steps, our stairway module uses
a novel landing counting technique.

We recognize that there are many hurdles to overcome
before our system can be deployed in the real world. For
instance, our elevator module assumes that the acceleration
inside an elevator is mostly vertical. This will not be the case
if a user happens to pace back and forth during the ride. Similar
shortcomings also exist in the stairway module. The stairway
module can produce false positives in some unusual cases. For
example, a user can stop in the middle of a stairway, slowly
turn around 180 degrees, and walk the rest of the stairway
backward. This is highly unlikely, but it illustrates the general
limitation of our approach that relies on behavioral norms. As
future work, we plan to study the effects of various unusual
behaviors, and explore possible solutions to address them.

We also plan to improve activity detection using am-
bient signals. For example, an entry to a building can be
detected using the RFID signals from anti-theft gates, which
are typically installed at the entrances of libraries and retail
stores. Identifiable magnetic signatures can be detected around
elevators and escalators. Even though we have argued against
relying on a barometer for vertical location, a barometer can be
useful as an additional input to distinguish between stairway
and same-floor walking.
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