
Polygon Simplification for Location-Based Services
Using Population Density
Wonsang Song, Jae Woo Lee, and Henning Schulzrinne

Department of Computer Science, Columbia University
Email: {wonsang, jae, hgs}@cs.columbia.edu

Abstract—An important group of location-based services
(LBS), including 9-1-1 service, rely on the mapping between
a user’s location and a service boundary in order to select
the appropriate service provider. In such cases, mobile clients
can cache the mapping information to reduce service latency
and server load. However, caching such a mapping can be
burdensome on mobile devices because representing the polygon
that defines a service boundary requires a large amount of data.

We present GeoPS-PD, a polygon simplification algorithm de-
signed for LBS applications. Unlike existing algorithms, GeoPS-
PD never produces a false positive, is tunable at runtime for
the desired balance between target polygon size and area cov-
erage, and optionally takes into account the population density.
We demonstrate the efficacy of GeoPS-PD using the US state
boundary data. For New York, GeoPS-PD produces a simplified
polygon which is only 3% of the original size, yet covers 95% of
the original area, and makes the LBS queries 3.17 times faster.

I. I NTRODUCTION

The explosive growth of mobile devices with GPS ca-
pability has brought location-based services (LBS) into the
mainstream. Pedestrians with smartphones looking for nearby
restaurants are commonplace in city blocks. Typical LBSs
provide the location of desired services based on the distance
from a user’s current location [1]. There are, however, an
important group of LBSs that use the user’s location in
a slightly different way. Rather than calculating the direct
distance to the user’s location, they first map the user’s location
into a predefined area, and then return a service provider
responsible for the area. For example, a 9-1-1 call must be
routed to the police station whose jurisdictional boundary
includes the caller’s location.

Such a mapping between the user location and the service
boundary is common in many LBS systems, and thus can be
implemented using a generic component, such as a Location-
to-Service Translation (LoST) [2] system. The mapping server
maintains a set of polygons which represent geographic areas,
which in turn represent service boundaries. Given a point on
earth, the server will find the polygon enclosing the point.
When a user uses a mobile device to contact the server, the
mobile device can cache polygon information so that multiple
queries originating from nearby locations can be processed
locally by the mobile device without contacting the server.
This reduces the service latency as well as the load on the
mapping server. It works well in many LBS situations, such
as 9-1-1 calls, where the user’s location is relatively static.

However, storing service boundaries and processing them
can be a significant burden on typical mobile devices which

have limited processing power and storage. The number of
vertices of a polygon required to accurately represent a geo-
graphic area can be very large. We will refer to the number
of vertices of a polygon asthe size of a polygonfor the rest
of the paper. For example, the polygon size of the jurisdiction
of the Austin police department in Texas is 41,151 [3]. In
addition, the large polygon size might be problematic with
the limited bandwidth of current mobile networks. The poly-
gon for the Austin police department encoded in Geography
Markup Language (GML) [4] is approximately 2 MB.

One way to address this problem is for the mobile client
to store a simplified version of a polygon rather than the
large original one. A number of polygon simplification al-
gorithms have been developed in digital cartography for map
generalization [5], such as the Douglas-Peucker algorithm[6],
the Visvalingam-Whyatt algorithm [7], and the bend-simplify
algorithm [8]. None of these algorithms, however, satisfiesone
critical requirement for mappings used in LBS applications:
the simplified polygon should be fully enclosed in the original
polygon so that the simplified polygon should never produce
false positives. For example, if there is an area included inthe
simplified polygon, but not in the original polygon, a 9-1-1
call from that area will be mistakenly routed to the authority
responsible for the original polygon, when in fact, the callhas
originated from outside of its jurisdiction. This can lead to a
significant delay in emergency response.

We present GeoPS-PD, a polygon simplification algorithm
designed with LBS in mind. Our GeoPS-PD is based on an
algorithm in computer graphics by Cohen-Oret al. [9], which
generates an inner cover of a shape. We modified Cohen-Or’s
algorithm for LBS applications, and the resulting GeoPS-PD
has the following features:

• It never produces false positives.
• It can be tuned at runtime by providing target polygon

size and required area coverage.
• It takes population density into account during the sim-

plification process.
We implemented GeoPS-PD in the LoST server of our

Next Generation 9-1-1 (NG9-1-1) prototype system [10]. Our
evaluation shows a significant performance improvement of
LBS queries when a mobile client caches simplified polygons
instead of original polygons.

The rest of the paper is organized as follows. We discuss the
requirements of the polygon simplification algorithm for LBS
in Section II. We describe our algorithm in Section III and

the implementation details in Section IV. Section V provides
performance evaluation. Lastly, we conclude in Section VI.

II. REQUIREMENTS OFPOLYGON SIMPLIFICATION

ALGORITHM FOR LBS

A polygon simplification algorithm for LBS applications
must fulfill the following requirements:

• Reduction: the size of the simplified polygon should be
significantly smaller than the original polygon.

• Inclusion: the simplified polygon must be fully enclosed
in the original polygon.

• Coverage: the simplified polygon should contain most of
the area of the original polygon.

A. Reduction

Reduction is the primary purpose of polygon simplification.
A simplification algorithm should produce a polygon which
consists of a much smaller number of points. The performance
of an algorithm can be measured by the ratio of the simplified
size to the original size.

B. Inclusion

The inclusion requirement prevents the cached polygon
from producing false-positives. A false-positive directsa user
to an incorrect service provider, as shown in Figure 1. Assume
that a polygonP represents the boundary of a service provider
S, and a polygonP ′ is the simplified version ofP . If P ′ is
not entirely enclosed inP , there is an areaA which is inside
P ′, but outsideP . If a user inA makes an LBS query, she
will be directed toS, the wrong service provider, even though
her location is outsideS’s service boundary.

User’s

Location

P

P’
A

Fig. 1. False positive case.

The simplified polygon must also retain the topology of the
original polygon. If there is a hole in the original polygon,it
should remain or be replaced by a bigger hole. Otherwise, the
simplified polygon will violate the inclusion requirement.

C. Coverage

One disadvantage of using a simplified polygon for the
client cache is that the users in some areas near the border
will experience constant cache miss due to the fact that the
simplified polygon does not cover those particular areas. To

minimize the number of users not covered by the simplified
polygon, it should cover as much of the original area as
possible. The area coverage, which is the ratio of the simplified
area to the original area, is another performance measure ofa
polygon simplification algorithm.

III. G EOPS-PD: GEODESICPOLYGON SIMPLIFICATION

WITH POPULATION DENSITY

GeoPS-PD is based on Cohen-Or’s polygon simplification
algorithm [9], which was proposed as the first step to find
an inner cover of a non-convex shape in computer graphics.
Cohen-Or’s algorithm produces a reduced polygon that is fully
enclosed within the original polygon, satisfying our inclusion
requirement in Section II. We take the core method of Cohen-
Or’s algorithm, make it tunable, and enhance it to provide
better user coverage.

GeoPS-PD takes an adaptive approach in order to produce
simplified polygons with better user coverage. The goal is
to prevent the simplification process from losing areas where
many users make LBS queries. To this end, GeoPS-PD uses
query density to guide the polygon simplification process.
Query density can be calculated from query history data. Since
we do not have such data at this point, we approximate query
density using population density.

A. Population density

In general, urban areas have higher population density than
rural areas. In New York State, for example, New York City
has a population density of 26,402 per mile2, while Hamilton
County has 3.1 per mile2 [11]. A polygon simplification
algorithm for LBS applications should take into account the
population density so that it does not lose a highly populated
area during the simplification process. A simplified polygon
that lost a small fraction of New York City would result in a
lot more cache misses than the one that lost the same amount
of area of Hamilton County.

Fig. 2. Census tracts around New York City.

In order to take the population density into account, GeoPS-
PD uses the census tracts boundary information published by
the U.S. Census Bureau. A census tract is a small geographic
region used by the Census Bureau. The census tracts cover the

entire United States and one census tract generally contains
between 1,500 and 8,000 people [12]. Since a single census
tract contains a comparable number of people, the spatial sizes
of census tracts depend on their population density. Figure2
shows that the census tracts in New York City are much
smaller in size than those in the nearby counties.

B. Polygon simplification

Algorithm 1 describes GeoPS-PD in pseudo-code.

Algorithm 1 GeoPS-PD(Porg, Ntarget, Rreq)

1: P ← Porg

2: P ′ ← P

3: while (area(P ′)
area(Porg)

> Rreq) do
4: if size(P ′) ≤ Ntarget then
5: return (success, P ′)
6: end if
7: P ′ ← {p1}
8: pprev ← p1
9: for i = 2 to size(P) do

10: triangleT = {pprev, pi, pi+1}
11: if P does not containT

or
area(T)
area(P) ≥ ǫ

or num tracts in(T) ≥ δ then
12: // pi is kept in simplified polygon
13: addpi to P ′

14: pprev ← pi
15: else
16: // pi gets removed
17: end if
18: end for
19: P ← P ′

20: end while
21: // failed to reachNtarget while keepingRreq

22: return (failure, P ′)

There are three input parameters:Porg, Ntarget andRreq.
Porg is the original polygon which consists of a set of
vertices,p1, p2, . . . , pn. Ntarget is the desired polygon size. A
successful execution of the algorithm will return a simplified
polygon whose size is less than or equal toNtarget. Rreq is the
required area coverage. For example, ifRreq is 0.9, GeoPS-
PD must produce a simplified polygon that covers at least 90%
of the original area. If it cannot reachNtarget while keeping
Rreq, GeoPS-PD will return its best effort.

For each pointpi in the polygonP , GeoPS-PD considers if
pi can be eliminated in the simplified polygonP ′ by checking
three conditions (line 11). First, we consider the triangleT

formed bypi and its two neighboring pointspprev, pi+1. The
point pprev is the last point kept. IfT is fully enclosed in
P , T indicates a convex region inP , and thuspi can be
safely eliminated without violating the inclusion requirement.
Second, we make sure that eliminatingpi does not lose
too big an area. We define an acceptable loss threshold,ǫ,
which is typically a small percentage (we used 0.2% in our

evaluation), and compare it with the ratio of the area ofT

to the area ofP . Lastly, we take the population density into
consideration. We count the number of census tracts within
T and compare it with a predefined thresholdδ (we used 10
in our evaluation). We eliminatepi only if T contains fewer
census tracts thanδ. This prevents the simplified polygon from
losing highly populated areas. The algorithm runs repeatedly
until the simplified polygon’s size reachesNtarget (line 4) or
the area coverage drops belowRreq (line 3).

Note that, for clarity, the pseudo-code omits a few details
of our implementation. Checking for population density can
be turned on and off. Determining when to terminate the
algorithm is slightly more complicated than it is shown in
Algorithm 1 because we make sure that the area does not
dip below Rreq during the last iteration, and that the loop
terminates when the algorithm fails to converge. We also take
into account various holes in a polygon caused by lakes or
autonomous jurisdictions.

IV. I MPLEMENTATION

We applied GeoPS-PD to the LoST server. We use the LoST
server to route emergency calls in our NG9-1-1 system, but it
is a generic component which can be used for any LBS appli-
cation that maps the user’s location to the service boundary.
The client-side application first determines its location and
sends a request to the LoST server. The server then replies
with a response containing the appropriate service provider’s
URL and a polygon representing the service boundary. After
receiving the response, the LoST client caches the polygon for
later queries.

A. Client

We implemented our LoST client on an Android Dev Phone
1, equipped with Qualcomm 528 MHz processor and 192 MB
RAM [13]. It communicated with the LoST server using
802.11g wireless LAN.

The XML description of a polygon in a LoST response
message was converted to two arrays–one for latitude and the
other for longitude of double precision floating point numbers,
and then stored as BLOBs in a SQLite database along with
other information. Before making a LoST request, the client
first checks the user’s location against all polygons storedin
the database. For point-in-polygon test, we used thePNPOLY
function [14].

B. Server

The LoST server hosted on a Dell PowerEdge 1950 Server,
equipped with dual Intel Xeon 1.6 GHz CPUs and 2 GB RAM
running Linux 2.6.18. We implemented the LoST server as a
Java Servlet running on Apache Tomcat [15] web application
server. We used the PostgreSQL database [16] to store LoST
mappings. A service boundary was stored in the database as
a geometric object. PostGIS extension [17] adds geometric
objects and functions to the PostgreSQL database. PostGIS
provides theST_Contains function for point-in-polygon
test.

C. GeoPS-PD function

We implemented the GeoPS-PD algorithm as a function
written in PL/pgSQL [18], the procedural language for the
PostgreSQL database system. We compute the simplified poly-
gon for each service boundary using the GeoPS-PD function,
and store it in the database along with the original polygon.
The computation is done offline.

D. Geographical data set

We used the actual state boundaries of the United States as
the polygons representing service boundaries. In our NG9-1-1
system, 9-1-1 calls are first routed to a statewide emergency
service routing proxy (ESRP), and the ESRP further routes
the calls to local authorities [19]. From the user’s perspective,
therefore, the state boundaries make up the 9-1-1 service
boundaries.

We used the state boundary data available from the U.S.
Census Bureau [20]. The original data file is in the ESRI
shapefile [21] format. We loaded it into the PostgreSQL
database using theshp2sql data loader included in PostGIS.
The census tracts data file was loaded in the same way.

V. EVALUATION

A. Polygon simplification

We evaluated the performance of GeoPS-PD using the size
and area coverage of the simplified polygons. We did not
measure the running time of GeoPS-PD. The running time of
the algorithm is not critical because the simplified polygons
need to be recalculated only when the service boundaries
change and the calculation is done offline.

For our evaluation, we picked five US states (or state equiv-
alent areas), and simplified their boundaries using GeoPS-PD.
The five states are District of Columbia, Utah, Massachusetts,
New York, and Texas. They represent various points in the
polygon size spectrum, ranging from 229 to 6,534.

TABLE I
GEOPS-PDRESULTS FOR5 STATES.

(Ntarget = 100, Rreq = 0.9, PD = off)

State Original Simplified Simplification Area coverage
size size ratio (%) (%)

DC 229 61 26.64 97.01
UT 533 97 18.20 98.12
MA 1,421 100 7.04 92.55
NY 3,093 94 3.04 95.05
TX 6,534 91 1.39 94.77

Table I shows the performance of GeoPS-PD. The popu-
lation density option (PD) was turned off. The simplification
ratio is the ratio of the simplified polygon’s size to the original
size in percentage, and the area coverage is the ratio of the
simplified polygon’s area to the original area. In the case of
New York, for example, the original polygon size is 3,093 and
the simplified polygon size is 94, which is only about 3% of
the original size but still covers more than 95% of the original
area.

TABLE II
STATES THAT WERE AFFECTED BYPD.

State Cities with high population density

California San Francisco, Long Beach, and San Diego
Florida St. Petersburg
Illinois Chicago
Kentucky Covington
Michigan Detroit
Missouri St. Louis
New York New York City
Pennsylvania Philadelphia
Texas McAllen
Virginia Arlington
Washington Seattle

When we ran GeoPS-PD with the population density option
turned on, 11 out of the 50 states produced different results.
Table II shows the 11 states along with the densely populated
cities in each state that caused the differences.

TABLE III
SIMPLIFICATION OF NEW YORK WITH AND WITHOUT PD.

(Ntarget = 100, Rreq = 0.9)

Polygon Area coverage Census tracts
size (%) included

Original polygon 3,093 100.00 4,711
Simplified w/o PD 94 95.05 2,611
Simplified with PD 100 95.43 4,186

The results for New York clearly demonstrate the effective-
ness of the population density option. Table III compares the
results for New York with and without the population density
option. While the polygon size and the area coverage remain
similar between the two cases, the number of census tracts in-
cluded in the simplified polygon is increased by 60%, jumping
from 2,611 to 4,186. Put another way, the simplification using
population density covers 6.3 million more people, according
to the U.S. Census Bureau’s statistics which states that the
average population of all census tracts is about 4,000 [12].
This is about 1/3 of the total population of New York State.

Figure 3 illustrates how such a huge difference in population
coverage is possible when the area coverage is almost same.
Figure 3(a) shows that, without the population density option,
most of New York City gets cut off during simplification.
Figure 3(b) shows that the population density option prevents
the loss of New York City.

B. LoST query performance

In order to measure the performance benefit of caching
simplified polygons, we analyzed the expected LoST query
time for two cases. In one case, the LoST server sends the
original polygon which the client then caches. In the other,the
server sends the client the simplified polygon. The simplified
polygon was computed in advance.

The expected query time is given by the following formula:

E(Query time) = Hit time+Miss penalty ×Miss rate

We measuredHit timeorg, Miss penaltyorg, Hit timesimp

andMiss penaltysimp as follows. (org andsimp denote the

Orig. Polygon

Simp. Polygon

(a) without population density option (b) with population density option

Fig. 3. Polygon simplification of New York State near New YorkCity.

original and simplified polygon being cached, respectively.)
For the miss penalty, we let the client issue a query with an
empty cache and measured the response time. At that point,
the client cached the polygon that it received from the server.
We let the client issue the same query again, which caused
a cache hit, to measure the hit time. We selected the query
location to ensure the cache hit.

For the case of original polygons, the only cache miss
will occur for the first query in each service boundary. All
subsequent queries within the same boundary will result in
cache hits. Thus, as the number of query increases, the
expected query time converges to the hit time:

E(Query timeorg) → Hit timeorg

For the case of simplified polygons, a cache miss will occur
every time the query location is in a region that is included
in the original polygon but not in the simplified polygon. The
total percentage of such regions in a service boundary is1−
Area coverage, which is theMiss ratesimp. The expected
query time for the simplified polygon case becomes:

E(Query timesimp) = Hit timesimp

+ Miss penaltysimp × (1 −Area coverage)

TABLE IV
LOST QUERY TIME FOR5 STATES. (IN MILLISECONDS)

State
Original Polygon Simplified Polygon
Size Hit time Size Hit time Miss penalty Miss rate

DC 229 67 61 43 466 0.029
UT 533 84 97 58 511 0.018
MA 1,421 148 100 61 516 0.074
NY 3,093 263 100 59 527 0.045
TX 6,534 566 91 46 526 0.051

Fig. 4. Expected LoST query time for 5 states.

Table IV shows our measurements for five states: hit time,
miss penalty, miss rate, and the polygon sizes. Figure 4
compares the resulting query times between the two cases.
The expected LoST query times using simplified polygons are
faster in all five states, and the bigger the original polygon
size, the larger the performance improvement.

To see where the performance improvement comes from,
let us look more closely at the numbers for New York. The
expected query time using the simplified polygon is 3.17
times faster–82 ms versus 263 ms. This comes from the large
difference in hit time–59 ms versus 263 ms. It takes a long time
to access and process the cache of the original polygon due to
the large size of 3,093 points. On the other hand, the simplified
polygon case incurs a heavy penalty of 527 ms on every cache
miss, but the low cache miss rate of 0.045 mitigates the effect
of the penalty on the expected query time.

VI. CONCLUSION

We presented GeoPS-PD, a polygon simplification algo-
rithm for LBS. GeoPS-PD produces a simplified polygon that
is fully enclosed in the original one so it never produces
false positives. It can be tuned at runtime by providing target
polygon size and required area coverage. It also provides an
option to take the population density into consideration, which
can result in better population coverage in certain cases.

Our measurements with real US state boundary showed that
GeoPS-PD produces simplified polygons that are much smaller
in size but still cover most of the original areas. Enabling the
population density option prevented GeoPS-PD from losing
highly populated areas near the state borders. We have shown
that the performance of LBS queries can be improved if mobile
clients cache simplified polygons produced by GeoPS-PD,
especially when the size of the original service boundary is
large.

VII. A CKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 0751094.

REFERENCES

[1] A. Küpper, Location-Based Services: Fundamentals and Operation.
Wiley, 2005.

[2] H. Schulzrinne, H. Tschofenig, A. Newton, and T. Hardie,“LoST: A
Protocol for Mapping Geographic Locations to Public SafetyAnswering
Points,” in Proc. IEEE IPCCC, 2007.

[3] “Texas 9-1-1 GIS Collaboration Portal - Download GIS Data,”
https://tx911map.911.state.tx.us/download/.

[4] Open Geospatial Consortium, Inc., “OpenGIS Geography Markup Lan-
guage (GML) Encoding Standard,” 2007.

[5] R. B. McMaster and K. S. Shea,Generalization in Digital Cartography.
Association of American Geographers, 1992.

[6] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, no. 2, pp. 112–122, December 1973.

[7] M. Visvalingam and J. D. Whyatt, “Line generalisation byrepeated
elimination of points,”Cartographic Journal, vol. 30, no. 1, pp. 46–
51, June 1993.

[8] Z. Wang and J. Muller, “Line Generalization Based on Analysis of Shape
Characteristics,”Cartography and Geographic Information Science,
vol. 25, no. 1, pp. 3–15, Jaunary 1998.

[9] D. Cohen-Or, S. Lev-Yehudi, A. Karol, and A. Tal, “Inner-cover of Non-
convex Shapes,”International Journal of Shape Modeling, vol. 9, no. 2,
pp. 223–238, December 2003.

[10] W. Song, J. Y. Kim, H. Schulzrinne, P. Boni, and M. Armstrong, “Using
IM and SMS for Emergency Text Communications,” inProc. IPTComm,
2009.

[11] U.S. Census Bureau, “Census 2000 Summary File 1,” 2001.
[12] U.S. Census Bureau,Geographic Areas Reference Manual, November

1994.
[13] B. Chun and P. Maniatis, “Augmented Smartphone Applications

Through Clone Cloud Execution,” inProc. HotOS, 2009.
[14] W. R. Franklin, “PNPOLY - Point Inclusion in Polygon Test.”

[Online]. Available: http://www.ecse.rpi.edu/Homepages/wrf/Research/
Short Notes/pnpoly.html

[15] “Apache Tomcat,” http://tomcat.apache.org/.
[16] “PostgreSQL,” http://www.postgresql.org/.
[17] “PostGIS,” http://postgis.refractions.net/.
[18] “PL/pgSQL - SQL Procedural Language.” [Online]. Available:

http://developer.postgresql.org/pgdocs/postgres/plpgsql.html
[19] H. Schulzrinne and R. Marshall, “Requirements for Emergency Context

Resolution with Internet Technologies,” RFC 5012, 2008.
[20] “Census 2000 State and State Equivalent Areas Cartographic Boundary

Files.” [Online]. Available: http://www.census.gov/geo/www/cob/st2000.
html

[21] “ESRI Shapefile Technical Description,” 1998. [Online]. Available:
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

