
CCNxServ: Dynamic Service Scalability in
Information-Centric Networks

Suman Srinivasan†, Amandeep Singh†, Dhruva Batni†, Jae Woo Lee‡,
Henning Schulzrinne‡, Volker Hilt� and Gerald Kunzmann�

†‡ Columbia University, �Alcatel-Lucent Bell-Labs USA, �DOCOMO Communications Laboratories Europe
†{srs2117,as3947,dlb2155}@columbia.edu, ‡{jae,hgs}@cs.columbia.edu,

�volker.hilt@alcatel-lucent.com, �kunzmann@docomolab-euro.com

Abstract—Content-centric networks promise to address con-
tent networking issues in a better way than today’s host-based
networking architecture. But content-centric networking does
not inherently address the issue of services, particularly service
scalability and mobility. We present our work on CCNxServ, a
system that allows for dynamic service deployment and scalability
in a content-centric networking implementation (CCNx) through
an intuitive use of the content naming scheme. It thus extends
the concept of content-centric networking towards services.

I. INTRODUCTION

Content-centric networking (also known as Information-

Centric Networking) (ICN) aims to address a key problem

in computer networking: content constitutes a large portion of

bandwidth and hence cost in computer networking. However

networking today is host-based, and allows nodes to address

each other for communication. However, requests are more

often made for a specific piece of content rather than for a

specific node. Content-centric networking projects, such as

CCNx [1], XIA [2] and Nebula [3], aim to improve content

networking by providing an entire network stack centered

around content and handling content requests. Information-

centric networking typically focuses on static content objects,

but many content services do not deliver the same bits to

every receiver, but transform and personalize them, examples

including personalized advertisements.

We believe that a complete networking architecture will

focus not only on content-centric networking, but will involve

services as well. In this paper, we present our architecture

and implementation of CCNxServ which allows for dynamic

services and service scalability on top of the CCNx content-

centric networking framework. We present how we use the

CCNx naming scheme to add service functionality to the

purely content-centric CCNx architecture, thereby leveraging

the existing content-centric features of CCNx and allowing for

service scalability and mobility in CCNx. We add composable

media transformation services as an integral component of the

CCNx framework.

In addition, running services over CCNx and similar

content-centric networks will allow for services to be de-

ployed and scale dynamically, as they can be distributed

and duplicated dynamically similar to how content would

be replicated in such networks. In contrast, today’s host-

based networks require precise information of the network

topology as well as knowledge of node location in order to

be able to deploy services to those locations. For example,

the popular content delivery network Akamai [4] offers some

value-added services on top of its content delivery network,

such as its ”Advertising Decision Solutions”, which allows

for companies to ”seamlessly incorporate real-time anonymous

Web browsing information with anonymous online purchasing

data from advertisers’ websites to present the most relevant ad”

[5]. However, such services provided by Akamai and other

large players are still restricted to predefined services and

statically located data centers and do not allow for dynamic

deployment of services in the network, while our services

framework running on top of a content-centric network can

provide such services and dynamic deployability. In addition,

by being able to replicate services on demand, CCNxServ can

scale dynamically and be replicated closer to hotspots where

there is a lot of demand for similar services.

In addition, there is a class of services that run based on

information from the end user at the edge of the network.

For instance, when a user requests a YouTube page or a

website from a content provider, it is not uncommon for an

advertisement to show up alongside the video or webpage.

However, these advertisement requests involve a separate

request for the advertisement content which is still served

from an origin server. This is a separate request, and as such,

could be potentially blocked by the end user by ad blocking

software. If instead the advertisement was served to the end

user after being processed at an edge node that had a replica

of the service, it would be one piece of content that would be

customized to the user but indistinguishable from the original

content request. (We are not trying to argue for or against

advertisement on video or other pieces of content; this is just

an example of how in-network service processing would differ

dynamically from current service requests.)

We note that in our current service implementation, we are

mainly concerned with media transformation services which

provide transformative processing services on media without

having to maintain state for each request or user. We acknowl-

edge that there are a wide variety of services that require some

maintenance of state, databases and personal information (such

as social media and banking applications, to name just two

IEEE ICC 2012 - Next-Generation Networking Symposium

978-1-4577-2053-6/12/$31.00 ©2012 IEEE 2617

Fig. 1. Our overall CCNxServ architecture. The CCNx controller (called CCNxServiceProxy) handles service requests and passes them onto a service
framework (such as NetServ), where the content is processed and sent back into CCNx space.

such examples), and we believe that a complete treatment of

such services in a content-centric network is beyond the scope

of this paper.

II. SCALING SERVICES DYNAMICALLY IN CCNX

In our paper, we present our implementation of service-

centric networking on top of CCNx [1]. We believe that CCNx

and its current implementation (available as open-source on

the CCNx website [6]) are a solid starting point for building

a service networking architecture.
The architecture for our current implementation is shown

in Figure 1. Our current CCNxServ implementation allows

for a single service to be invoked alongside the content name

(our naming scheme is contentname+servicename). When

such a name is seen by a content router, the content router

is able to parse the name into the content name and the

corresponding service that is to be invoked on it. If it does

not yet have a copy of the requested content, it retrieves

the file via CCNx. Also, if it does not yet have a copy of

the service module corresponding to the requested service, it

fetches the corresponding service module via CCNx. Then, the

content router invokes the service on the content and, after the

processing is complete, it serves the processed content to the

requesting client. In addition, it places the processed content

back into the CCNx namespace so that future requests for

this combination of contentname+servicename will directly be

able to fetch the processed content.
Today’s data center infrastructures usually require data to

be moved to central locations where they are processed and

transformed. CCNxServ allows for services to be moved

right to where the data are situated, thereby enabling service

mobility to locations where they are most needed, and allowing

for transfer of lightweight executable modules rather than

requiring large data sets to be moved around.
Note that in CCNx, we can also define such services

implicitly in the content request: because CCNx allows for

the concept of ”prefix matching,” any content router that

implements our architecture could add a service name to the

end of the name. Our current implementation will work in both

centralized and distributed infrastructures that are supported by

content-centric networking.

III. ARCHITECTURE

For our current implementation, we focused on creating and

running three exemplary services on top of the framework we

describe below. The ”weather” service takes a video file as

input and generates output with the latest weather information

from www.weather.gov as an overlay on top of the video. The

”ads” service inserts a random video advertisement (from a

given list of ad files in a certain directory) in the middle of

the video. The ”news” service generates an output with the

latest newsfeed (from BBC) as a marquee on top of the video.
An application running on a client device or a network node

makes a request for a content name and a service it wishes to

invoke on the content (e.g. ccnx://video.mp4+ad). The request

is converted to a CCNx interest packet and forwarded to

CCNx. The request is intercepted by any of the nodes that

operate as a Content Router (1), and if the (processed) content

”video.mp4+ad” does not exist, the Content Router looks for

a service corresponding to the service name. If it does not

find a service in its local cache, it fetches it by issuing a

CCNx interest packet for that service module (2). The same

is true for the content; if the file (video.mp4) is not in the

local cache, it is fetched from the content-centric network

(2). Once both content and the service module are located

and downloaded on the Content Router, the service module is

installed (4) and executed on the content (5), thus producing

a processed version of the content, which is returned to the

client (6). In addition, the processed content is put back into

the CCNx namespace for future requests (7).
In order to demonstrate that we are able to provide ”plugin”

functionality for a fully robust service platform, we integrated

2618

the CCNx services implementation with the NetServ service

virtualization framework [7]. NetServ was used because it is a

robust service virtualization architecture for routers that allows

custom service modules to process packets in the network core.

It uses a general purpose open-source operating system as the

forwarding engine, and layers a dynamic module system on

top of it where new functions can be added. With NetServ, an

edge router can become a platform for publishers’ content and

services, allowing content publishers to dynamically deploy

within NetServ their services on these edge routers.

We created a CCNx controller that signals the NetServ

service stack and runs service functionality through NetServ

and its OSGi stack [8], while still using the content network-

ing functionality provided by CCNx. The NSIS signalling

protocols [9] [10] help to instantiate modules. The NSIS

protocol is used for the routing and transport of per-flow

signaling messages along the path taken by that flow through

the network. The CCNx controller complements the IP-based

signaling controllers with CCNx-based signaling.

In addition, as a result of our network-based signaling, one

CCNx controller will be able to signal and control multiple

NetServ nodes. This mode of operation could be useful in large

data centers, where some of the nodes could be CCNx-enabled

and others only IP-enabled, with some running a service

framework and others a content-networking framework. In

addition, such a topology would allow for services and content

transformations to be scaled and moved to appropriate nodes

depending on load factors.

IV. IMPLEMENTATION

We implemented our solution on top of the open-source

implementation of CCNx provided by PARC [6]. The refer-

ence implementation provides the core CCNx protocol stack

implementation along with a few sample applications and

utilities. We use some of the existing utilities in the CCNx

implementation, and have modified and implemented our own

functionality on top of it.

One of the utilities that we use is the ccnfileproxy,

a proxy for the file system that makes files on the local file

system available over CCNx. It takes a directory from which

to serve files, which it treats as the root of its content tree,

and an optional CCNx URI to serve as the prefix for that file

content as represented in CCNx. For example, if there is a

directory /foo in the file system and the CCNx URI is defined

as ccnx://testprefix, ccnfileproxy is called with the arguments

-/foo ccnx://testprefix, and a request for ccnx://testprefix/file.txt
would return file.txt.

For our implementation, we modified the ccnfileproxy as

follows: we intercept the interest packet and scan the content

name to see if any service names are included. If no service

name is included, we allow the ccnfileproxy to continue its

normal mode of execution. If there is a service name specified,

we map it to an internal service module file name, issue

another interest for the corresponding service file (a JAR file

in our implementation) using ccngetfile, and dynamically

load it. Then we find the appropriate class in the JAR file, and

Fig. 2. The architecture of our CCNxServiceProxy implementation and how
it interacts with the various CCNx utilities.

call the appropriate service method in the class on the content

file. We call this modified proxy CCNxServiceProxy.

The pseudocode for our implementation (in pseudo-Java) is

shown below:

ccnName = "ccnx://content+service";
array(service, file) = parse(ccnName);
bundleFile = download("ccnx://service"

+ ".jar");
content = download("ccnx://content/");
controller = intializeOSGi();
serviceBundle = controller.installBundle(

bundleFile);
processedFile = serviceBundle.execute(

content);
putFileIntoCCNx(processedFile);

To add a new service to our implementation, a new JAR

file with the service has to be created. The most important file

in the JAR file is the service class, which has to implement

our CCNxService interface for the service implementation.

The execute(Object param) method has to be overridden in

this service class to provide service functionality specific to

the class. When creating an OSGi bundle, the CCN-Service

attribute is used in the manifest file of the JAR, and this points

to the class which implements the CCNxService interface. An

Activator class (for OSGi) can be included in the service

bundle as well. All the service related class files are packaged

into a service.jar file. The JAR files are then loaded into

CCNx namespace through ccnxfileproxy or a similar utility.

The overall architecture of our CCNxServiceProxy is shown

in Figure 2. When the CCNx interest reaches a CCNxService-

Proxy, we invoke the ccnNameToFile() method on the interest

object. This function call translates the CCNx content name

into the corresponding file name while parsing it. If any service

is found in the content name, the ccnServiceBridge() method

is invoked. This method handles the loading of the service

module, invoking it on the content, and returning the processed

content into the CCNx space.

When the ccnServiceBridge method is invoked,

we check whether the output file, of the form

2619

Fig. 3. A screenshot showing the processing of CCNx content after the
Content Router interprets the content request.

Fig. 4. The transformed content being played in VLC player. There is an
overlay containing weather information at the bottom right of the video. This
corresponds to the invoked ”weather” service.

CONTENT_NAME%2B%SERVICE_NAME, is present in the

file repository. If the file is present, we check for any further

service invocations. If the file is not present, we check whether

the OSGi bundle corresponding to the service name is already

installed. If the bundle is installed, we invoke executeModule()
method on the OSGi controller with the bundleID and content

name as the parameters. The executeModule call returns

the file name of the processed file which is used as the

input content for the next service in the chain. This way we

can execute multiple services on a single content through

chaining, for, e.g, ccnx://content+service1+service2; this call

will result in two service invocations, service1 on ”content”

and service2 on the ”content+service1” content file.

When the executeModule method is called, we load the CCN

Service class using the bundle header, CCN-Service. After

creating an instance of the CCNxService type class, we can

invoke the execute method of CCNxService interface directly

on this class instance. The invocation returns the file name of

the processed file.

Videos are requested as shown below:

ccngetfile -timeout <value> --loggingoff
ccnx://video.mp4+weather <output file>

Figures 3 and 4 show screenshots from the CCNxServ

testbed. Figure 3 shows the processing of CCNx content

after the Content Router interprets the above content re-

quest for the weather service invoked on a video file

(ccnx://animal.mp4+weather2). After intercepting the interest

packet, the content name is scanned and the service name

”weather2” is detected. An interest for the corresponding

service file weather2.jar is issued using ccngetfile. After suc-

cessfully downloading the JAR file, the service is dynamically

loaded and the content is processed. Finally, the file is returned

into the CCNx space and to the requesting user. Figure 4 shows

the processed content being played at the client device. The

invoked services added an overlay containing the local weather

information at the bottom right of the video.

V. CHALLENGES AND INCENTIVES

In this section, we present the economic incentives for the

CCNxServ work as well as the technical challanges that we

faced while implementing it.

A. Economic Incentives

Video and content consumption on the Internet are rapidly

growing and require enormous amounts of bandwidth. At the

network core, the increasing consumption of multimedia con-

tent on the existing wired networks and in mobile systems is

putting a strain on the network core. Cisco Systems estimates

that video will constitute 90% of all Internet traffic by 2013

[11]. Content distribution networks (CDNs) are becoming

more and more popular as a means of efficiently distributing

multimedia content to end-users on the Internet. Pallis and

Vakali [12] show that CDNs can reduce ”traffic jams” for

web traffic, since data is closer to user and there is no need

to traverse all of the congested pipes and peering points.

Content-centric networks (CCN) take the CDN argument and

implementation further with the concept that content, not

hosts, are the cornerstone of the Internet today.

CCN proponents [1] have argued that CCNs can decrease

the cost of content delivery on the Internet. Park et al [13]

argue that a backbone network provider could see as much as

30 percent traffic reduction using content-centric networks. In

this light, the CCNxServ work that we are doing will enable

a new class of services to run on top of the emerging CCNx

architecture at reduced cost. In addition, as mentioned in the

Introduction, CCNxServ enables lightweight executables to be

migrated to locations of ”big data”, achieving service mobility

to cover large datasets, further reducing networking costs.

B. Technical Challenges

We will briefly describe some of the technical challenges

that we faced while building CCNxServ.

The first challenge was making CCNxServ work on a

completely content-centric network infrastructure. Because the

entire foundation of CCN networks rests on the concept of

content, CCNxServ needs to share services by expressing them

as a form of content, and at the same time, use the naming

mechanism to indicate their use as executable services and not

static content. This can be thought of as introducing ”active

networking” into a content-centric network. We believe our

2620

mechanism of addressing this solves the services problem

while constraining it to work in a content-centric network.

The second challenge was integrating systems that com-

bined the best features of content-centric networking and

the traditional networking model, particularly for services.

We chose to integrate our CCNxServ implementation with

NetServ [7]. We were helped by the fact that while NetServ

was initially built for IP networks and for host-based commu-

nication, its core service modularity allowed its networking

layer to be reworked to support content-centric networking.

Through refactoring CCNxServ, we were able to expose its

core functionality as a controller to NetServ, and thus leverage

NetServ’s service APIs while being able to use CCNxServ’s

naming and service delivery mechanism on top of a pure

content-centric network. However, this may prove a challenge

with frameworks and libraries that have been hard-coded to

the IP networking stack, such as OpenFlow [14] and others.

VI. RELATED WORK

While there has been a lot of work done in the field of

information-centric networking (ICN) the field of service-

centric networking, especially as applied on ICNs, is fairly

new.

SCAFFOLD [15] allows multiple service instances rep-

resented by one common name, which the specific service

represented through serviceIDs being selected through anycast

routing through service routers. MILNGENI (million-node

GENI) [16] allows for services to be deployed and run on top

of many end-systems that are connected via the experimental

GENI testbed. But these projects operate on top of the IP

layer and require host-to-host communication. Hence, their

APIs and middleware are built for host-based networking.

Service-centric networking (SCN) [17] aims to supersede

CCNx and thus involves building a superset of CCNx. In

contrast, we are building a service platform on top of only

CCNx, providing a service stack on top of CCNx, and we have

been able to implement a fully service-oriented networking

architecture on top of a pure ICN stack. We believe this

demonstrates that it is possible to build services on ICN

networks without requiring a superset of the features offered

in ICN implementations. SoCCeR [18] is a related paper that

builds on CCNx, and it works as a control layer to manipulate

the underlying Forwarding Information Base (FIB), thereby

performing distributed best-service selection using an ant

colony optimization (ACO) approach. In contrast to our work,

it requires modifying the CCNx interest and data packets to

enable the control layer to work. In addition, our work deals

with service deployment and dynamic scaling, and thus relates

to the problem of effective service placement, which would

complement SoCCeR’s best service selection algorithm.

Another area that is somewhat related to our CCNx services

work is in the field of data migration to data centers closer

to the services. This work deals with large data sets and

data centers, including tackling design issues to address data

migration and latency. Tiwana et al [19] propose exposing the

network location of data to the service, so that the service

is able to optimize processing of data based on location.

Volley [20] attempts to automate application data placement

across data centers efficiently. PADS [21] provides a data plane

mechanism for transmitting data and maintaining consistency

in large distributed applications and data centers. Time-shifted

TV [22] uses CCNx to improve localized and cooperative

caching using content routers. It takes advantage of proxim-

ity features in CCNx to do cooperative caching of content.

However, all of these approaches only deal with data latency

and moving data across locations to bring them closer to

the application. Our approach, in contrast, is about moving

services themselves to where the data is located, and thus being

able to move small executable modules to places with large

data, allowing the data to be processing more efficiently.

Research on service placement is also related to our work.

Service placement algorithms dynamically try to find the opti-

mal number and locations of service instances given a certain

service demand and network topology. A good overview of

related work in the area of service placement is given in [23].

In contrast to pure caching solutions, service placement tries

to increase the performance of a service based on application-

specific quality metrics, while at the same time minimizing

the overall network load and service costs. Therefore, services

are replicated in the network and the service locations are

dynamically adapted to the changing network conditions and

service demands.

An architecture supporting a dynamic, distributed service

provisioning for mobile users is described in [24]. It supports

both optimized service placement within an operators network

and placement of service components in a foreign network.

This leads to both more efficient resource usage and better

quality for the users.

VII. FUTURE WORK

While our current implementation handles media transfor-

mation service functionality effectively, we have to provide a

more advanced architecture to handle more advanced service

functionality such as database heavy applications and social

media. For these services, we need to consider that they

use state and database information since those need state

information to be moved along with the service. In some cases,

we may need to map a central database and distribute it along

with the service, and allow for distributed transactions on the

data and at the same time maintain data consistency across the

network.

We can currently run a certain function or module on a

piece of content, thus processing it, and also chain these events

so that multiple services can be applied to content through a

single request. However, we plan to extend our implementation

such that more complex requests are supported, which require

multiple services being processed on multiple content files.

This could be achieved by adding a configuration file (e.g.

an XML file) to the CCNx request. Then, for example, the

weather service introduced above could be parameterized by

the application to, e.g., overlay the weather information at

different corners of the video or with a different overlay size.

2621

At the moment, a new JAR file would have to be implemented

in order to show the overlay at the top left corner of the video.

Moreover, there might be some services that may need to do

more than execute certain functions on content. Instead they

may want to control every step of the processing, and apply

certain transformations based on certain conditions. Some

services might require event-based processing and might need

to register event handlers for service functionality. It would

thus be useful to have a feedback or event-based mechanism

in our implementation, so that an event or alert is triggered

and sent out to all objects listening on an event.

VIII. CONCLUSION

We believe that services are central to network operations. In

our work, we aimed to show that it is possible to build service

functionality including dynamic service invocation, scalabil-

ity, and mobility on top of content-centric networking, thus

extending its features towards a service-centric network. We

have a working implementation of scalable, dynamic service

architecture implemented on top of the CCNx protocol stack.

Our implementation enables dynamic invocation of services

and true service mobility and scaling in a purely content-

centric network based on need. By exposing services in a

content-centric networking framework and the intuitive use

of CCNx’s content naming scheme, we are able to provide

true service functionality in a future Internet platform that is

centralized on both content and services.

IX. ACKNOWLEDGMENT

This work was supported by the National Science Founda-

tion (NSF) under Grant 08-31912 and DOCOMO Communi-

cations Laboratories Europe GmbH.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies. New York, NY, USA: ACM, December 2009.

[2] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu,
A. Akella, D. Andersen, J. Byers, S. Seshan, and P. Steenkist, “XIA:
An Architecture for an Evolvable and Trustworthy Internet,” Carnegie
Mellon University, Tech. Rep., January 2011.

[3] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,
M. Freedman, A. Haeberlen, Z. Ives, A. Krishnamurthy, W. Lehr,
B. T. Loo, D. Maziéres, A. Nicolosi, J. Smith, I. Stoica, R. van
Renesse, M. Walfish, H. Weatherspoon, and C. Yoo, “NEBULA -
A Future Internet That Supports Trustworthy Cloud Computing,”
http://nebula.cis.upenn.edu/NEBULA-WP.pdf, University of Pennsylva-
nia, Tech. Rep., 2010.

[4] “Akamai,” http://www.akamai.com/.
[5] “Akamai introduces advertising decision solutions,”

http://www.akamai.com/html/about/press/releases/2008/
press 102108.html, October 2008.

[6] “Project CCNx,” http://www.ccnx.org/.
[7] J. W. Lee, R. Francescangeli, W. Song, J. Janak, S. Srinivasan,

M. Kester, S. A. Baset, E. Liu, H. Schulzrinne, V. Hilt, Z. Despotovic,
and W. Kellerer, “NetServ Framework Design and Implementation
1.0,” http://www.cs.columbia.edu/ jae/papers/netserv-tech-report-1.0.pdf,
Columbia University, Tech. Rep., May 2011.

[8] “OSGi,” http://www.osgi.org/About/Technology.
[9] R. Hancock, G. Karagiannis, J. Loughney, and S. V. den Bosch, “Next

Steps in Signaling (NSIS): Framework,” 2005. [Online]. Available:
http://tools.ietf.org/html/rfc4080

[10] H. Schulzrinne and R. E. Hancock, “GIST: General internet signalling
transport,” Internet Engineering Task Force, RFC 5971, Oct. 2010.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5971.txt

[11] J. Markoff, “Scientists Strive to Map the Shape-Shifting Net,”
http://www.nytimes.com/2010/03/02/science/02topo.html.

[12] G. Pallis and A. Vakali, “Insight and Perspectives for Content Delivery
Networks,” in Communications of the ACM, January 2006.

[13] C. Park, Y. Seo, K. youl Park, and Y. Lee, “The concept and realization
of context-based content delivery of ngson,” in IEEE Communications
Magazine, 2012 January.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., March 2008.

[15] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E. Nordstrom, J. Rex-
ford, and D. Shue, “Service-Centric Networking with SCAFFOLD,”
Princeton University, Tech. Rep., September 2010.

[16] “A Prototype of a Million Node GENI,”
http://groups.geni.net/geni/wiki/MillionNodeGENI.

[17] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and M. Varvello,
“Service-centric networking,” in 2011 IEEE International Conference
on Communications Workshops (ICC), June 2011.

[18] S. Shanbhag, N. Schwa, I. Rimac, and M. Varvello, “SoCCeR: Services
over Content-Centric Routing,” ACM Workshop on Information-Centric
Networking (ICN), August 2011.

[19] B. Tiwana, M. Balakrishnan, M. K. Aguilera, H. Ballani, and Z. M. Mao,
“Location, location, location!: modeling data proximity in the cloud,” in
Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in
Networks. New York, NY, USA: ACM, October 2010.

[20] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated Data Placement for Geo-Distributed Cloud Ser-
vices,” in Proceedings of the 7th USENIX symposium on Networked
Systems Design and Implementation (NSDI’10). USENIX Association,
April 2010.

[21] N. Belaramani, J. Zheng, A. Nayate, R. Soulé, M. Dahlin, and R. Grimm,
“PADS: a policy architecture for distributed storage systems,” in Pro-
ceedings of the 6th USENIX symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association, April 2009.

[22] Z. Li and G. Simon, “Time-Shifted TV in Content Centric Networks:
The Case for Cooperative In-Network Caching,” in 2011 IEEE Interna-
tional Conference on Communications (ICC), June 2011.

[23] G. Wittenburg, “Service Placement in Ad Hoc Networks,” Ph.D. dis-
sertation, Department of Mathematics and Computer Science, Freie
Universität Berlin, October 2010.

[24] H. Lundqvist, Z. Despotovic, G. Kunzmann, J. Frtunikj, and W. Kellerer,
“Service Program Mobility,” in Proceedings of IEEE Globecom 2011,
Mobile Computing and Emerging Communication Networks Workshop
(MCECN), December 2011.

2622

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

