Four Components of a Computer System

- User 1
- User 2
- User 3
- User n

- Compiler
- Assembler
- Text Editor
- System and Application Programs
- Database System

- Operating System

- Computer Hardware
Operating System Definition

- OS is a **resource allocator**
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use

- OS is a **control program**
 - Controls execution of programs to prevent errors and improper use of the computer
Operating System Definition (Cont.)

- No universally accepted definition
- “Everything a vendor ships when you order an operating system” is a good approximation
 - But varies wildly
- “The one program running at all times on the computer” is the kernel.
- Everything else is either
 - a system program (ships with the operating system), or
 - an application program.
Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles
Computer-System Operation

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt
Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the **interrupt vector**, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- A **trap** or **exception** is a software-generated interrupt caused either by an error or a user request.
- An operating system is **interrupt driven**.
I/O Structure

- After I/O starts, control returns to user program only upon I/O completion
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing
- After I/O starts, control returns to user program without waiting for I/O completion
 - **System call** – request to the OS to allow user to wait for I/O completion
 - **Device-status table** contains entry for each I/O device indicating its type, address, and state
 - OS indexes into I/O device table to determine device status and to modify table entry to include interrupt
Storage Structure

- Main memory – only large storage media that the CPU can access directly
 - Random access
 - Typically volatile
- Secondary storage – extension of main memory that provides large nonvolatile storage capacity
- Hard disks – rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer
- Solid-state disks – faster than hard disks, nonvolatile
 - Various technologies
 - Becoming more popular
Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility

- **Caching** – copying information into faster storage system; main memory can be viewed as a cache for secondary storage

- **Device Driver** for each device controller to manage I/O
 - Provides uniform interface between controller and kernel
Storage-Device Hierarchy

- registers
- cache
- main memory
- solid-state disk
- hard disk
- optical disk
- magnetic tapes
Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy
Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than the one interrupt per byte
How a Modern Computer Works

A von Neumann architecture
Operating System Structure

- **Multiprogramming** *(Batch system)* needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via **job scheduling**
 - When it has to wait (for I/O for example), OS switches to another job

- **Timesharing** *(multitasking)* is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating *interactive* computing
 - **Response time** should be < 1 second
 - Each user has at least one program executing in memory ⇒ **process**
 - If several jobs ready to run at the same time ⇒ **CPU scheduling**
 - If processes don’t fit in memory, **swapping** moves them in and out to run
 - **Virtual memory** allows execution of processes not completely in memory
Memory Layout for Multiprogrammed System

- operating system
- job 1
- job 2
- job 3
- job 4
Operating-System Operations

- **Interrupt driven** (hardware and software)
 - Hardware interrupt by one of the devices
 - Software interrupt (**exception** or **trap**):
 - Software error (e.g., division by zero)
 - Request for operating system service
 - Other process problems include infinite loop, processes modifying each other or the operating system
Operating-System Operations (cont.)

- **Dual-mode** operation allows OS to protect itself and other system components
 - **User mode** and **kernel mode**
 - **Mode bit** provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as **privileged**, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
- Increasingly CPUs support multi-mode operations
 - i.e. **virtual machine manager (VMM)** mode for guest **VMs**
Transition from User to Kernel Mode

- Timer to prevent infinite loop / process hogging resources
 - Timer is set to interrupt the computer after some time period
 - Keep a counter that is decremented by the physical clock.
 - Operating system set the counter (privileged instruction)
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

```
user process

user process executing  calls system call  return from system call

kernel

trap mode bit = 0

execute system call

return mode bit = 1

user mode (mode bit = 1)

kernel mode (mode bit = 0)
```

Timer to prevent infinite loop / process hogging resources

- Timer is set to interrupt the computer after some time period
- Keep a counter that is decremented by the physical clock.
- Operating system set the counter (privileged instruction)
- When counter zero generate an interrupt
- Set up before scheduling process to regain control or terminate program that exceeds allotted time
Performance of Various Levels of Storage

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>registers</td>
<td>cache</td>
<td>main memory</td>
<td>solid state disk</td>
<td>magnetic disk</td>
</tr>
<tr>
<td>Typical size</td>
<td>< 1 KB</td>
<td>< 16MB</td>
<td>< 64GB</td>
<td>< 1 TB</td>
<td>< 10 TB</td>
</tr>
<tr>
<td>Implementation technology</td>
<td>custom memory with multiple ports CMOS</td>
<td>on-chip or off-chip CMOS SRAM</td>
<td>CMOS SRAM</td>
<td>flash memory</td>
<td>magnetic disk</td>
</tr>
<tr>
<td>Access time (ns)</td>
<td>0.25 - 0.5</td>
<td>0.5 - 25</td>
<td>80 - 250</td>
<td>25,000 - 50,000</td>
<td>5,000,000</td>
</tr>
<tr>
<td>Bandwidth (MB/sec)</td>
<td>20,000 - 100,000</td>
<td>5,000 - 10,000</td>
<td>1,000 - 5,000</td>
<td>500</td>
<td>20 - 150</td>
</tr>
<tr>
<td>Managed by</td>
<td>compiler</td>
<td>hardware</td>
<td>operating system</td>
<td>operating system</td>
<td>operating system</td>
</tr>
<tr>
<td>Backed by</td>
<td>cache</td>
<td>main memory</td>
<td>disk</td>
<td>disk</td>
<td>disk or tape</td>
</tr>
</tbody>
</table>

Movement between levels of storage hierarchy can be explicit or implicit.
Migration of data “A” from Disk to Register

- Multitasking environments must be careful to use most recent value, no matter where it is stored in the storage hierarchy

- Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache

- Distributed environment situation even more complex
 - Several copies of a datum can exist
 - Various solutions covered in Chapter 17
System Calls

- Programming interface to the services provided by the OS
- Typically written in a high-level language (C or C++)
- Mostly accessed by programs via a high-level Application Programming Interface (API) rather than direct system call use
- Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)

Note that the system-call names used throughout this text are generic
Example of Standard API

As an example of a standard API, consider the `read()` function that is available in UNIX and Linux systems. The API for this function is obtained from the `man` page by invoking the command

```
man read
```

on the command line. A description of this API appears below:

```c
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)
```

A program that uses the `read()` function must include the `unistd.h` header file, as this file defines the `ssize_t` and `size_t` data types (among other things). The parameters passed to `read()` are as follows:

- `int fd`—the file descriptor to be read
- `void *buf`—a buffer where the data will be read into
- `size_t count`—the maximum number of bytes to be read into the buffer

On a successful read, the number of bytes read is returned. A return value of 0 indicates end of file. If an error occurs, `read()` returns -1.
System Call Implementation

- Typically, a number associated with each system call
 - **System-call interface** maintains a table indexed according to these numbers
- The system call interface invokes the intended system call in OS kernel and returns status of the system call and any return values
- The caller need know nothing about how the system call is implemented
 - Just needs to obey API and understand what OS will do as a result call
 - Most details of OS interface hidden from programmer by API
 - Managed by run-time support library (set of functions built into libraries included with compiler)
API – System Call – OS Relationship

user application

open ()

user mode

system call interface

kernel mode

Implementation of open () system call

return
System Call Parameter Passing

- Often, more information is required than simply identity of desired system call
 - Exact type and amount of information vary according to OS and call
- Three general methods used to pass parameters to the OS
 - Simplest: pass the parameters in registers
 - In some cases, may be more parameters than registers
 - Parameters stored in a block, or table, in memory, and address of block passed as a parameter in a register
 - This approach taken by Linux and Solaris
 - Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating system
 - Block and stack methods do not limit the number or length of parameters being passed
Parameter Passing via Table

X: parameters for call
load address x
system call 13

user program

X
register

use parameters from table x

code for system call 13

operating system
Examples of Windows and Unix System Calls

<table>
<thead>
<tr>
<th>Windows</th>
<th>Unix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Control</td>
<td></td>
</tr>
<tr>
<td>CreateProcess()</td>
<td>fork()</td>
</tr>
<tr>
<td>ExitProcess()</td>
<td>exit()</td>
</tr>
<tr>
<td>WaitForSingleObject()</td>
<td>wait()</td>
</tr>
<tr>
<td>File Manipulation</td>
<td></td>
</tr>
<tr>
<td>CreateFile()</td>
<td>open()</td>
</tr>
<tr>
<td>ReadFile()</td>
<td>read()</td>
</tr>
<tr>
<td>WriteFile()</td>
<td>write()</td>
</tr>
<tr>
<td>CloseHandle()</td>
<td>close()</td>
</tr>
<tr>
<td>Device Manipulation</td>
<td></td>
</tr>
<tr>
<td>SetConsoleMode()</td>
<td>ioctl()</td>
</tr>
<tr>
<td>ReadConsole()</td>
<td>read()</td>
</tr>
<tr>
<td>WriteConsole()</td>
<td>write()</td>
</tr>
<tr>
<td>Information Maintenance</td>
<td></td>
</tr>
<tr>
<td>GetCurrentProcessID()</td>
<td>getpid()</td>
</tr>
<tr>
<td>SetTimer()</td>
<td>alarm()</td>
</tr>
<tr>
<td>Sleep()</td>
<td>sleep()</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>CreatePipe()</td>
<td>pipe()</td>
</tr>
<tr>
<td>CreateFileMapping()</td>
<td>shmget()</td>
</tr>
<tr>
<td>MapViewOfFile()</td>
<td>mmap()</td>
</tr>
<tr>
<td>Protection</td>
<td></td>
</tr>
<tr>
<td>SetFileSecurity()</td>
<td>chmod()</td>
</tr>
<tr>
<td>InitializeSecurityDescriptor()</td>
<td>umask()</td>
</tr>
<tr>
<td>SetSecurityDescriptorGroup()</td>
<td>chown()</td>
</tr>
</tbody>
</table>
Example: MS-DOS

- Single-tasking
- Shell invoked when system booted
- Simple method to run program
 - No process created
- Single memory space
- Loads program into memory, overwriting all but the kernel
- Program exit -> shell reloaded

At system startup

running a program
Example: FreeBSD

- Unix variant
- Multitasking
- User login -> invoke user’s choice of shell
- Shell executes fork() system call to create process
 - Executes exec() to load program into process
 - Shell waits for process to terminate or continues with user commands
- Process exits with:
 - code = 0 – no error
 - code > 0 – error code
Operating System Structure

- General-purpose OS is very large program
- Various ways to structure ones
 - Simple structure – MS-DOS
 - More complex -- UNIX
 - Layered – an abstraction
 - Microkernel - Mach
Simple Structure -- MS-DOS

- MS-DOS – written to provide the most functionality in the least space
 - Not divided into modules
 - Although MS-DOS has some structure, its interfaces and levels of functionality are not well separated
Non Simple Structure -- UNIX

UNIX – limited by hardware functionality, the original UNIX operating system had limited structuring. The UNIX OS consists of two separable parts

- Systems programs
- The kernel
 - Consists of everything below the system-call interface and above the physical hardware
 - Provides the file system, CPU scheduling, memory management, and other operating-system functions; a large number of functions for one level
Traditional UNIX System Structure

Beyond simple but not fully layered

<table>
<thead>
<tr>
<th>System-call interface to the kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>signals terminal handling</td>
</tr>
<tr>
<td>character I/O system</td>
</tr>
<tr>
<td>terminal drivers</td>
</tr>
<tr>
<td>file system</td>
</tr>
<tr>
<td>swapping block I/O system</td>
</tr>
<tr>
<td>disk and tape drivers</td>
</tr>
<tr>
<td>CPU scheduling</td>
</tr>
<tr>
<td>page replacement</td>
</tr>
<tr>
<td>demand paging</td>
</tr>
<tr>
<td>virtual memory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernel interface to the hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminal controllers terminals</td>
</tr>
<tr>
<td>device controllers disks and tapes</td>
</tr>
<tr>
<td>memory controllers physical memory</td>
</tr>
</tbody>
</table>
Layered Approach

- The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.

- With modularity, layers are selected such that each uses functions (operations) and services of only lower-level layers.
Microkernel System Structure

- Moves as much from the kernel into user space
- **Mach** example of microkernel
 - Mac OS X kernel (Darwin) partly based on Mach
- Communication takes place between user modules using message passing
- Benefits:
 - Easier to extend a microkernel
 - Easier to port the operating system to new architectures
 - More reliable (less code is running in kernel mode)
 - More secure
- Detriments:
 - Performance overhead of user space to kernel space communication
Microkernel System Structure

- Application Program
- File System
- Device Driver

- Interprocess Communication
- memory management
- CPU scheduling

- microkernel

- hardware

user mode

kernel mode
Many modern operating systems implement **loadable kernel modules**
- Uses object-oriented approach
- Each core component is separate
- Each talks to the others over known interfaces
- Each is loadable as needed within the kernel

Overall, similar to layers but with more flexible
- Linux, Solaris, etc
Solaris Modular Approach

- Device and bus drivers
- Scheduling classes
- File systems
- Miscellaneous modules
- Loadable system calls
- STREAMS modules
- Executable formats
Hybrid Systems

- Most modern operating systems are actually not one pure model
 - Hybrid combines multiple approaches to address performance, security, usability needs
 - Linux and Solaris kernels in kernel address space, so monolithic, plus modular for dynamic loading of functionality
 - Windows mostly monolithic, plus microkernel for different subsystem \textit{personalities}
- Apple Mac OS X hybrid, layered, \textit{Aqua} UI plus \textit{Cocoa} programming environment
 - Below is kernel consisting of Mach microkernel and BSD Unix parts, plus I/O kit and dynamically loadable modules (called \textit{kernel extensions})
Mac OS X Structure

graphical user interface
Aqua

application environments and services
Java
Cocoa
Quicktime
BSD

kernel environment
Mach
BSD

I/O kit
kernel extensions
iOS

- Apple mobile OS for *iPhone, iPad*
 - Structured on Mac OS X, added functionality
 - Does not run OS X applications natively
 - Also runs on different CPU architecture (ARM vs. Intel)
 - **Cocoa Touch** Objective-C API for developing apps
 - **Media services** layer for graphics, audio, video
 - **Core services** provides cloud computing, databases
 - Core operating system, based on Mac OS X kernel
Android

- Developed by Open Handset Alliance (mostly Google)
 - Open Source
- Similar stack to IOS
- Based on Linux kernel but modified
 - Provides process, memory, device-driver management
 - Adds power management
- Runtime environment includes core set of libraries and Dalvik virtual machine
 - Apps developed in Java plus Android API
 - Java class files compiled to Java bytecode then translated to executable than runs in Dalvik VM
- Libraries include frameworks for web browser (webkit), database (SQLite), multimedia, smaller libc
Android Architecture

Application Framework

Libraries
- SQLite
- surface manager
- webkit
- openGL
- media framework
- libc

Android runtime
- Core Libraries
- Dalvik virtual machine
System Boot

- When power initialized on system, execution starts at a fixed memory location
 - Firmware ROM used to hold initial boot code
- Operating system must be made available to hardware so hardware can start it
 - Small piece of code – bootstrap loader, stored in ROM or EEPROM locates the kernel, loads it into memory, and starts it
 - Sometimes two-step process where boot block at fixed location loaded by ROM code, which loads bootstrap loader from disk
- Common bootstrap loader, GRUB, allows selection of kernel from multiple disks, versions, kernel options
- Kernel loads and system is then running