
PantryFS Specification
Mitchell Gouzenko

PantryFS Layout

● Each slice shown to the right is one block.

● Each block is 4096 bytes.

Data Block N

...

Data Block 2

Data Block 1

Inode Store

Superblock

Data Block N

...

Data Block 2

Data Block 1

Inode Store

Superblock

The Superblock

struct
pantryfs_super_block

● The pantryfs_super_block is padded to be
4096 bytes, so it fits directly in the first block.

● Contains bit vectors representing which inodes
and data blocks are free.

● Bit vectors declared by macros:

DECLARE_BIT_VECTOR(free_inodes, PFS_MAX_INODES);

DECLARE_BIT_VECTOR(free_data_blocks, PFS_MAX_INODES);

● We indicate that an inode or data block is
occupied by setting the corresponding location in
the bit vector to 1

Data Block N

...

Data Block 2

Data Block 1

Inode Store

Superblock

The Inode Store

struct pantryfs_inode

● The inode store is filled with contiguous
pantryfs_inodes. The maximum possible number
of inodes is crammed into the inode store:
#define PFS_MAX_INODES (PFS_BLOCK_SIZE /
sizeof(struct pantryfs_inode))

● pantryfs_inode stores metadata about a file or
directory (size, access times, mode, etc).

● Each pantryfs_inode is associated with a single
data block via data_block_number. The data
block, not the inode stores file or directory contents.

● Each inode is indexed by its position. The 1st inode is
inode 1; the 10th inode is inode 10. Note that inodes
are indexed from 1, not 0. The reason is that
functions in VFS that return inodes return an
unsigned int. On error, they return 0.

struct pantryfs_inode

struct pantryfs_inode

...

Data Block N

...

Data Block 2

Data Block 1

Inode Store

Superblock

The Data Blocks

● Case 1: Inode corresponds to a directory

● Case 2: Inode corresponds to regular file

Data Block N

...

Data Block 2

Data Block 1

Inode Store

Superblock

The Data Blocks: Case 1 (directory)
● Data block is a series of contiguous

pantryfs_dir_entry. The maximum number
of entries that can be crammed into the data block
is given by:

#define PFS_MAX_CHILDREN (PFS_BLOCK_SIZE /
sizeof(struct pantryfs_dir_entry))

● pantryfs_dir_entry maps filename to inode
number.

● Each pantryfs_dir_entry has a flag
indicating whether it’s active or not. When we
unlink a file (rm command), we lazily delete the
file by setting flag to 0.

struct pantryfs_dir_entry

struct pantryfs_dir_entry

struct pantryfs_dir_entry

...

Data Block N

...

Data Block 2

Data Block 1

Inode Store

Superblock

The Data Blocks: Case 2 (regular file)

● Data block is a series of bytes representing
file contents.

● Since each inode can have only one data
block, files must be smaller than 4096
bytes.

File contents

PantryFS Limitations
● Each inode can have only one data block. Thus, a PantryFS file (or directory) cannot be more than

4096 bytes in size!
● For this reason, each directory can only have PFS_MAX_CHILDREN children. Recall that:

#define PFS_MAX_CHILDREN (PFS_BLOCK_SIZE / sizeof(struct pantryfs_dir_entry))

● The number of inodes is limited by the macro PFS_MAX_INODES. Therefore, at any given time:

files + # directories ≤ PFS_MAX_INODES

recall that PFS_MAX_INODES is defined as:

#define PFS_MAX_INODES (PFS_BLOCK_SIZE / sizeof(struct pantryfs_inode))

