
Scheduling II

q Multiprocessor scheduling issues

q Real-time scheduling

q Linux scheduling

q Linux scheduler architecture

1

How to allocate processes to CPUs?

CPU0 CPU1 CPU2 CPU3

processes

2

Symmetric multiprocessing (SMP)

q Multiple CPUs
q Same access time to main memory
q Private cache

CPU0 CPU1 CPU2 CPU3

Shared Memory

$ $ $ $

3

Global queue of processes

q One ready queue shared across all CPUs

q Advantages
§ Good CPU utilization
§ Fair to all processes

q Disadvantages
§ Not scalable (contention for global queue lock)
§ Poor cache locality

q Linux 2.4 uses global queue

CPU0 CPU1 CPU2 CPU3

4

Per-CPU queue of processes

q Static partition of processes to CPUs

q Advantages
§ Easy to implement
§ Scalable (no contention on ready queue)
§ Better cache locality

q Disadvantages
§ Load-imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilization

CPU0 CPU1 CPU2 CPU3

5

Modern OSes take hybrid approaches

q Use both global and per-CPU queues
q Migrate processes across per-CPU queues

q Processor Affinity
§ Add process to a CPU’s queue if recently run on the CPU

• Cache state may still present

CPU0 CPU1 CPU2 CPU3

6

Real-time scheduling

q Real-time processes have timing constraints
§ Expressed as deadlines or rate requirements
§ Ex) gaming, video/music player, autopilot

q Hard real-time systems – required to complete a
critical task within a guaranteed amount of time

q Soft real-time computing – requires that critical
processes receive priority over others

q Linux supports soft real-time

7

Linux: multi-level queue with priorities
q Soft real-time scheduling policies

§ SCHED_FIFO (FCFS)
§ SCHED_RR (round robin)
§ Priority over normal tasks
§ 100 static priority levels (1..99)

q Normal scheduling policies
§ SCHED_NORMAL: standard

• SCHED_OTHER in POSIX
§ SCHED_BATCH: CPU bound
§ SCHED_IDLE: lower priority
§ Static priority is 0

• 40 dynamic priority
• “Nice” values

q sched_setscheduler(), nice()
q See “man 7 sched” for detailed overview

Nice 0

Real Time 1

Real Time 99

Real Time 2

Real Time 3

…

Nice 19

Nice -20

…
…

8

Linux scheduler history
q O(N) scheduler up to 2.4

§ Simple: global run queue
§ Poor performance on multiprocessor and large N

q O(1) scheduler in 2.5 & 2.6
§ Good performance: per-CPU run queue
§ Complex and error prone logic to boost interactivity
§ No fairness guarantee

q Completely Fair Scheduler (CFS) in 2.6 and later
§ Currently default scheduler for SCHED_NORMAL
§ Processes get fair share of CPU
§ Naturally boosts interactivity

q BFS and MuQSS
§ Linux scheduler for hippies
§ Available as kernel patches on the street

9

Ideal fair scheduling
q Infinitesimally small time slice
q n processes: each runs uniformly at 1/nth rate

q Various approximations of the ideal
§ Lottery scheduling
§ Stride scheduling
§ Linux CFS

•1 Process

•3 Processes 1/3rd progress

10

q Approximate fair scheduling
§ Run each process once per schedule latency period
• sysctl_sched_latency

§ Time slice for process Pi: T * Wi/(Sum of all Wi)
• sched_slice()

q Too many processes?
§ Lower bound on smallest time slice
§ Schedule latency = lower bound * number of procs

q Introduced in Linux 2.6.23

Completely Fair Scheduler (CFS)

11

Picking the next process
q Pick proc with weighted minimum runtime so far

§ Virtual runtime: task->vruntime += executed time / Wi
q Example

§ P1: 1 ms burst per 10 ms (schedule latency)
§ P2 and P3 are CPU-bound
§ All processes have the same weight (1)

Ready P1
P2
P3

Slice 3ms 5ms

P2
P3 P2

P3 P1
P2
P3

1
5
5

5
0

3ms

12

Finding proc with minimum runtime fast
q Red-black tree

§ Balanced binary search tree
§ Ordered by vruntime as key
§ O(lgN) insertion, deletion, update, O(1): find min

cfs_rq->min_vruntime

300

150

100
400

41030

q Tasks move from left of tree to the right
q min_vruntime caches smallest value
q Update vruntime and min_vruntime

§ When task is added or removed
§ On every timer tick, context switch

13

Converting nice level to weight

q Table of nice level to weight
§ static const int prio_to_weight[40] (kernel/sched/sched.h)

q Nice level changes by 1 è 10% weight

q Pre-computed to avoid
§ Floating point operations
§ Runtime overhead

14

Fsck all that…

Enter BFS

The scheduler that shall not be named

(now replaced by MuQSS, sadly…)

15

