
Synchronization I

COMS W4118

1

References: Operating Systems Concepts, Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

Critical section

• Critical section: a
segment of code that
accesses a shared
resource

• No more than one
thread in critical section
at a time

// ++ balance
mov 0x8049780,%eax
add $0x1,%eax
mov %eax,0x8049780
…

// -- balance
mov 0x8049780,%eax
sub $0x1,%eax
mov %eax,0x8049780
…

2

Implementing critical section using locks

• lock(l): acquire lock exclusively; wait if not
available

• unlock(l): release exclusive access to lock

void* deposit(void *arg)
{

int i;
for(i=0; i<1e7; ++i) {
pthread_mutex_lock(&l);

++ balance;
pthread_mutex_unlock(&l);

}
}

void* withdraw(void *arg)
{

int i;
for(i=0; i<1e7; ++i) {

pthread_mutex_lock(&l);
-- balance;
pthread_mutex_unlock(&l);

}
}

pthread_mutex_t l = PTHREAD_MUTEX_INITIALIZER

3

Critical section requirements
• Safety (aka mutual exclusion): no more than one thread in critical

section at a time.

• Liveness (aka progress):
– If multiple threads simultaneously request to enter critical section,

must allow one to proceed
– Must not depend on threads outside critical section

• Bounded waiting (aka starvation-free)
– Must eventually allow waiting thread to proceed

• Makes no assumptions about the speed and number of CPU
– However, assumes each thread makes progress

4

Critical section desirable properties
• Efficient: don’t consume too much resource while waiting

– Don’t busy wait (spin wait) for a long time. Better to relinquish
CPU and let other thread run

• Fair: don’t make one thread wait longer than others. Hard to
do efficiently

• Simple: should be easy to use

5

Version 1: Disable interrupts

• Can cheat on uniprocessor: implement locks by disabling and
enabling interrupts

• Good: simple!
• Bad:

– Both operations are privileged -- can’t let user program use
– Doesn’t work on multiprocessors
– Can’t use for long critical sections

lock()
{

disable_interrupt();
}

unlock()
{

enable_interrupt();
}

6

Version 2: Software Locks

• Peterson’s algorithm: software-based lock
implementation (2 page paper with proof)

• Good: doesn’t require much from hardware
• Only assumptions:
– Loads and stores are atomic
– They execute in order
– Does not require special hardware instructions

Reference: G. L. Peterson: "Myths About the Mutual Exclusion Problem", Information
Processing Letters 12(3) 1981, 115–116

7

Software-based lock: 1st attempt

• Idea: use one flag, test then set; if unavailable, spin-wait

• Problem?
– Not safe: both threads can be in critical section

lock()
{

while (flag == 1)
; // spin wait

flag = 1;
}

unlock()
{

flag = 0;
}

// 0: lock is available, 1: lock is held by a thread
int flag = 0;

8

Unsafe software lock, 1st attempt

In general, adversarial scheduler model useful to
think about concurrency problems

lock()
{

1: while (flag == 1)
; // spin wait

2: flag = 1;
}

unlock()
{

3: flag = 0;
}

Thread 0: Thread 1:
call lock()
1: while (flag ==1) // it is 0, so

continue
call lock()
1: while(flag == 1) // it is 0, so

continue
2: flag = 1;

2: flag = 1; // ! Thread 0 is already
in critical section

flag=0;

9

Software-based locks: 2nd attempt

• Idea: use per thread flags, set then test, to achieve mutual
exclusion

• Why doesn’t work?
– Not live: can deadlock

lock()
{

flag[self] = 1; // I need lock
while (flag[1- self] == 1)

; // spin wait
}

unlock()
{

// not any more
flag[self] = 0;

}

// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

10

Deadlock: 2nd attempt

lock()
{

flag[self] = 1; // I need lock
while (flag[1- self] == 1)

; // spin wait
}

unlock()
{

// not any more
flag[self] = 0;

}

// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

Thread 0 Thread1
call lock()
flag[0] = 1;

flag[1] = 1;
while (flag[0] == 1) ;
//spins forever!
...

while (flag[1] == 1) ;
// spins forever too!

11

Software-based locks: 3rd attempt

• Idea: strict alternation to achieve mutual exclusion

• Why doesn’t work?
– Not live: depends on threads outside critical section
– Can’t handle repeated calls to lock by same thread

lock()
{

// wait for my turn
while (turn == 1 – self)

; // spin wait
}

unlock()
{

// I’m done. your turn
turn = 1 – self;

}

// whose turn is it?
int turn = 0;

12

Software-based locks: final attempt (Peterson’s algorithm)

• Why works?
– Safe?
– Live?
– Bounded wait?

// whose turn is it?
int turn = 0;
// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

lock()
{

flag[self] = 1; // I need lock
turn = 1 – self;
// wait for my turn
while (flag[1-self] == 1
&& turn == 1 – self)

; // spin wait while the
// other thread has intent
// AND it is the other
// thread’s turn

}

unlock()
{

// not any more
flag[self] = 0;

}

13

Multiprocessor Challenges
• Modern processors are out-of-order/speculative
– Reorder instructions to keep execution units full
– Try very hard to avoid inconsistency
– Guarantees valid only within single execution stream

• Memory access guarantees on x86
– x86 is relatively conservative with reordering
– Loads not reordered with other loads
– Stores not reordered with other stores
– Stores not reordered with older loads
– All loads and stores to same location are not reordered
– Load can reorder with older store to different addr

• Breaks Peterson’s algorithm!

14

Reference: http://www.linuxjournal.com/article/8211
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

http://www.linuxjournal.com/article/8211

Instruction Reordering affects Locking

• Possible for mutual exclusion to be violated?
– Yes!

15

Thread 0 Thread 1

Lock: flag[0] = 1; // I need lock
turn = 1;
while (flag[1]==1 && turn==1) ;

}

Lock: flag[1] = 1; // I need lock
turn = 0;
while (flag[0]==1 && turn==0) ;

}

Lock: r1 = Load(flag[1])

turn = 1;
flag[0] = 1; // I need lock
while (r1==1 && turn==1);
// flag[1]==0

}

Lock: flag[1] = 1; // I need lock
turn = 0;
while (flag[0]==1 && turn==0);
// flag[0]==0

}

Reorder

Memory Barriers
• A memory barrier or fence
– Ensures that all memory operations up to the barrier

are executed before proceeding
• x86 provides several memory fence instructions
– Relatively expensive (100s of cycles)
– mfence: all prior memory accesses completed
– lfence: all prior loads completed
– sfence: all prior stores flushed

16

lock() {
flag[self] = 1; // I need lock
turn = 1 – self;
sfence; // Store barrier
while (flag[1-self] == 1 && turn == 1 – self);

}

Version 3: Hardware Instructions

• Problem with the test-then-set approach: test and set are not atomic

• Fix: special atomic operation
– int test_and_set (int *lock) {

int old = *lock;
*lock = 1;
return old;

}
– Atomically returns *lock and sets *lock to 1

lock()
{

while(test_and_set(&flag))
;

}

unlock()
{

flag = 0;
}

// 0: lock is available, 1: lock is held by a thread
int flag = 0;

17

Implementing test_and_set on x86

• xchg reg, addr: atomically swaps *addr and reg
• Spin locks on x86 are implemented using this instruction
• x86 also provides a lock prefix that allows bus to be locked for inst
• In Linux:

– Arch independent: kernel/spinlock.c
– Arch dependent: arch/x86/include/asm/spinlock.h

long test_and_set(volatile long* lock)
{

int old;
asm("xchgl %0, %1"

: "=r"(old), "+m"(*lock) // output
: "0"(1) // input
: "memory“ // can clobber anything in memory
);

return old;
}

18

Limitations of spin locks

• Spin lock is heavily used in Linux kernel
– Kernel preemption disabled while spin lock is held

• Available in user space, but of limited use
– pthread_spin_init man page says:

Spin locks should be employed in conjunction with real-time
scheduling policies (SCHED_FIFO, or possibly SCHED_RR). Use of spin
locks with nondeterministic scheduling policies such as
SCHED_OTHER probably indicates a design mistake. The problem is
that if a thread operating under such a policy is scheduled off the
CPU while it holds a spin lock, then other threads will waste time
spinning on the lock until the lock holder is once more rescheduled
and releases the lock.

19

Version 4: Sleep Locks

• The idea: add thread to queue when lock
unavailable; in unlock(), wake up one thread in
queue

• Problem I: lost wakeup

• Problem II: wrong thread gets lock

lock() {
while (test_and_set(&flag)))

add myself to wait queue
yield

…
}

unlock() {
flag = 0
if(any thread in wait queue)

wake up one wait thread
…

}
Lock from another
thread?

20

Lost wakeup
lock() {
1: while (test_and_set(&flag)))

2: add myself to wait queue
3: yield

…
}

unlock() {
4: flag = 0
5: if(any thread in wait queue)

6: wake up one wait thread
…

}

Thread 0: Thread 1
call lock()
while (test_and_set(&flag)) {

call unlock()
flag = 0
if (any thread in wait queue) // No!

wake_up_one_wait_thread
add myself to wait queue
yield

} // wait forever (or until next unlock)!

21

Wrong thread gets lock

• Fix: unlock() directly transfers lock to waiting thread

lock() {
1: while (test_and_set(&flag)))

2: add myself to wait queue
3: yield

…
}

unlock() {
4: flag = 0
5: if(any thread in wait queue)

6: wake up one wait thread
…

}

Thread 0: Thread 1 Thread 2
call lock()
while (test_set(&flag))

add myself to wait queue
yield call unlock()

flag = 0
if (thread in wait queue)

wake_up_thread call lock()
while (test_set(&flag))

22

Implementing locks: version 4, the code
typedef struct __mutex_t {

int flag; // 0: mutex is available, 1: mutex is not available
int guard; // guard lock to avoid losing wakeups
queue_t *q; // queue of waiting threads

} mutex_t;

void lock(mutex_t *m) {
while (test_and_set(m->guard))

; //acquire guard lock by spinning
if (m->flag == 0) {

m->flag = 1; // acquire mutex
m->guard = 0;

} else {
enqueue(m->q, self);
m->guard = 0;
yield();

}
}

void unlock(mutex_t *m) {
while (test_and_set(m->guard))

;
if (queue_empty(m->q))

// release mutex; no one wants mutex
m->flag = 0;

else
// direct transfer mutex to next thread
wakeup(dequeue(m->q));

m->guard = 0;
}

23

Fixing the last race condition
typedef struct __mutex_t {

int flag; // 0: mutex is available, 1: mutex is not available
int guard; // guard lock to avoid losing wakeups
queue_t *q; // queue of waiting threads

} mutex_t;

void lock(mutex_t *m) {
while (test_and_set(m->guard))

; //acquire guard lock by spinning
if (m->flag == 0) {

m->flag = 1; // acquire mutex
m->guard = 0;

} else {
enqueue(m->q, self);
prepare_to_yield();
m->guard = 0;
yield();

}
}

void unlock(mutex_t *m) {
while (test_and_set(m->guard))

;
if (queue_empty(m->q))

// release mutex; no one wants mutex
m->flag = 0;

else
// direct transfer mutex to next thread
wakeup(dequeue(m->q));

m->guard = 0;
}

24

Reader-Writer problem

• A reader is a thread that needs to look at the shared
data but won’t change it

• A writer is a thread that modifies the shared data

• Example: making an airline reservation

• Courtois et al 1971

25

Readers-writer lock

• read_lock: acquires lock in read (shared) mode
– Lock is not acquired or is acquired in read mode è success
– Otherwise (lock is in write mode) è wait

• write_lock: acquires lock in write (exclusive) mode
– Lock is not acquired è success
– Otherwise è wait

rwlock_t lock;

Writer

write_lock (&lock);
. . .
// write shared data
. . .
write_unlock (&lock);

Reader

read_lock (&lock);
. . .
// read shared data
. . .
read_unlock (&lock);

26

Implementing readers-writer lock

struct rwlock_t {
int nreader; // init to 0
lock_t guard; // init to unlocked
lock_t lock; // init to unlocked

};

write_lock(rwlock_t *l)
{

lock(&l->lock);
}

write_unlock(rwlock_t *l)
{

unlock(&l->lock);
}

read_lock(rwlock_t *l)
{

lock(&l->guard);
++ nreader;
if(nreader == 1) // first reader

lock(&l->lock);
unlock(&l->guard);

}

read_unlock(rwlock_t *l)
{

lock(&l->guard);
-- nreader;
if(nreader == 0) // last reader

unlock(&l->lock);
unlock(&l->guard);

}
Problem: may starve writer!

27

Driving out readers in a RW-Lock
struct rwlock_t {

int nreader; // init to 0
lock_t guard; // init to unlocked
lock_t lock; // init to unlocked
lock_t writer; // init to unlocked

};

write_lock(rwlock_t *l)
{

lock(&l->writer);
lock(&l->lock);
unlock(&l->writer);

}

write_unlock(rwlock_t *l)
{

unlock(&l->lock);
}

read_lock(rwlock_t *l)
{

lock(&l->writer);
lock(&l->guard);
++ nreader;
if(nreader == 1) // first reader

lock(&l->lock);
unlock(&l->guard);
unlock(&l->writer);

}

read_unlock(rwlock_t *l)
{

lock(&l->guard);
-- nreader;
if(nreader == 0) // last reader

unlock(&l->lock);
unlock(&l->guard);

}
Q: In write_lock, can we just use guard instead of writer lock?

28

