
Using the page cache
Mitchell Gouzenko



Block Devices
● Filesystem are mounted on top of block devices

○ Ex: /dev/sda1

● Each device consists of contiguous data blocks.

● If you just try to read the raw bytes, it will look like garbage with bits of files 
scattered around.

○ But filesystems know how to treat the structure of data on disk, such 
that it makes sense to that specific FS.

○ Ex: ReiserFS will not be able to make sense out of a disk laid out in the 
format of ext4.

● You can write to device files, and the data WILL get written to the underlying 
disk.

○ If /dev/sdb is a USB drive, “echo foo > /dev/sdb” will write to that drive. 
dd utility often used for doing this.

Data Block N

...

Data Block 4

Data Block 3

Data Block 2

Data Block 1



Block Devices (continued)
● When writing to regular file (for example, a file on an EXT4-formatted drive), 

data doesn’t go to disk right away.

○ Note: device files like /dev/sda1 are not “regular” files.

● Data sits in kernel buffer, eventually will get synced to disk.

○ Advantage

■ Writing to buffer in kernel memory is much faster than writing 
to disk.

○ FS Buffer layer used to be called “Buffercache”, but now the “Page 
Cache” (a different kernel subsystem) is used.

● Codepath for actually getting data to disk is lower-level than we need to 
worry about.

○ Involves disk scheduling and speaking to disk drivers (SATA II 
drivers, for instance)

Data Block N

...

Data Block 4

Data Block 3

Data Block 2

Data Block 1



Block Devices: The Page Cache

● Page cache can read individual disk blocks whose size is determined by the 
filesystem (must be multiple of 512).

● We will use 3 important functions to interface with page cache:

static inline struct buffer_head *
sb_bread(struct super_block *sb, sector_t block);

void mark_buffer_dirty(struct buffer_head *bh);

static inline void brelse(struct buffer_head *bh);

Data Block N

...

Data Block 4

Data Block 3

Data Block 2

Data Block 1



The Page Cache: sb_bread
static inline struct buffer_head *
sb_bread(struct super_block *sb, sector_t block);

● VFS superblock struct has the name of the device upon 
which filesystem is mounted.

● sb_bread reads the corresponding block from the device 
specified in sb and stores it in a buffer. 

● Example shown in diagram: sb_bread(sb, 2)

● Note: if data and buffer_head for block 2 are still in memory, 
sb_bread doesn’t need to read from the disk. It just returns 
the buffer_head. Data Block N

...

Data Block 4

Data Block 3

Data Block 2

Data Block 1
Contents of 
data block 2

struct buffer_head

b_data



The Page Cache: mark_buffer_dirty
void mark_buffer_dirty(struct buffer_head *bh);

● b_data points to a contiguous chunk of bytes that is backed 
by Block 2 on device.

● If you modify these bytes, you want the changes to get onto 
the device eventually.

● This function flags the buffer_head as dirty.

● Dirty buffer_heads need their data to be synced to disk 
eventually!

Data Block N

...

Data Block 4

Data Block 3

Data Block 2

Data Block 1
Contents of 
data block 2

struct buffer_head

b_data



The Page Cache: brelse
static inline void brelse(struct buffer_head *bh);

● After sb_bread, buffer_head and data block contents are 
pinned in memory. The page cache won't remove them.

● brelse will “release” the buffer_head

○ Kernel may or may not free the buffer_head.

■ Only frees when there is memory pressure.

■ This is why computers seem to use up all the 
RAM. Most available memory is used to hold 
caches of file contents to speed up I/O.

○ If kernel decides to free buffer_head, it will sync its 
data to disk, but only if buffer_head marked dirty!

● Note: from now on, I represent all buffer_heads in red. 
When the buffer_head is released with brelse(), I will 
color it green.

Data Block N

...

Data Block 4

Data Block 3

Data Block 2

Data Block 1
Contents of 
data block 2

struct buffer_head

b_data



The Page Cache: Example Write
// Read 3rd data block
bh = sb_bread(sb, 3);

// Copy 10 bytes from src to data buffer.
memcpy(bh->b_data, src, 10); 

// Mark the buffer_head dirty so that kernel will
// eventually sync it to disk.
mark_buffer_dirty(bh);

// Release the buffer. Kernel will decide to
// either keep buffer_head around, or free
// the buffer_head and flush its data.
brelse(bh);


