
02 - Lecture - C language basics

Data types in C

char <= short <= int <= long <= long long

 - C standard does not specify byte sizes of these types.

 - on most systems:

 char is 1 byte, short is 2, int is 4, long long is 8.

 - long is the problematic one:

 Most 32-bit systems and 64-bit Windows: 4 bytes
 64-bit UNIX (such as our Linux system): 8 bytes
 Java: 8 bytes

 - if you need to ensure byte sizes, use int<N>_t types:

 - int8_t, int16_t, int32_t, int64_t
 - #include <stdint.h>
 - defined in C99 standard

 - binary numbers and their hexadecimal representations

 Binary Dec Hex Binary Dec Hex
 0000 0 0 1000 8 8
 0001 1 1 1001 9 9
 0010 2 2 1010 10 A
 0011 3 3 1011 11 B

 0100 4 4 1100 12 C
 0101 5 5 1101 13 D
 0110 6 6 1110 14 E
 0111 7 7 1111 15 F

 - two’s-complement encoding for representing negative numbers

 - assign negative weight to the most significant bit (MSB)

 - results in asymmetry - there is one more negative number

 - some important numbers at the boundaries:

 0x00....00
 0x7F....FF
 0x80....00
 0xFF....FF

 - to negate n-bit integer:

 binary-subtract the number from 2^n, or equivalently,
 flip the bits and binary-add 1.

 - examples of integer variable decralations:

 int x;
 int x, y;
 int x = 0, y;

 char c = ’x’;
 char c = ’\n’;
 char c = ’\13’;

 char c = ’0’;
 char c = ’\0’;
 char c = 0;

 long x = 0L;

unsigned version of all of the above

 unsigned long x = 0, y = 0xff00ff00ff00ff00UL

 uint32_t x = 0xffffffff

 - conversion between signed and unsigned preserves bit patterns:

 char c = -1;
 unsigned char uc = c;
 int i = uc;
 printf("%d\n", i); // prints 255

float is 4 bytes and double is 8 bytes

 123.4f
 123.4

arrays and pointers

no strings!

Expressions

literals and variables

function calls

assignment:

 lvalue = rvalue

pre/post-inc/decrement

 x = i++;
 x = ++i;

operations

 arithmetic: +, -, *, /, %

 comparison: <, >, ==, !=, <=, >=
 logical: &&, ||, !
 bitwise: ˜, &, |, ^, <<, >>

 - assignment versions of arithmetic and bitwise ops

 - short-circuit evaluations in logical ops

comma expression

conditional expression (ternary operator)

 z = (a > b) ? a : b;

 z = max(a, b);

any integral expression is also a boolean expression

Statements

if-else:
 - which if does else bind to?

switch:
 - another form of else-ifs.
 - don’t forget "break;"!

loops:
 - for, while, do-while
 - memorize idioms for looping from 0 to n-1 (i.e., n times)
 - break, continue

goto
 - not as evil as you might have heard

Variable scoping

 int x;
 x = 0;

 {
 int x;
 x = 1;
 printf("%d", x);
 }

 printf("%d", x);

Storage class

1) automatic variables

 - also called stack variables, since they are usually stored in
 process stack (we’ll see what this means later)

 - scope: local to a block

 - lifetime: created on block entrance, destroyed on exit

 - example:

 int foo(int auto_1)
 {
 int auto_2;

 {
 int auto_3;

 ...
 }

 ...
 }

2) static variables

 - "static" has so many meanings in C/C++/Java, so brace yourself!

 - stored in global data section of process memory

 - scope depends on where it is declared: global, file, or block

 - lifetime: created and initialized on program start-up, and
 persists until the program ends

 - example:

 int global_static = 0; // visible to other files

 static int file_static = 0; // only visible within this file

 int foo(int auto_1)
 {
 static int block_static = 0; // only visible in this block

 ...
 }

Definition and declaration of global variables

1) *defining* a global variable:

 int x = 0;

 extern int x = 0;

2) *declaring* a global variable that is defined in another file:

 extern int x;

3) defining a global variable *tentatively*

 int x;

 - same as "int x = 0;" if no other definition of x appears in the
 same file

 - same as "extern int x;" if something like "int x = 5;" appears
 in the same file

 - the moral of the story is: don’t do it!

Process address space

Every single process (i.e., a running program) gets 512GB of memory space:

 operating system
 code & data
 512G ---------------------
 stack

 |
 V

 ^
 |

 heap

 static variables

 program code
 0 ---------------------

Obviously, computers don’t have that much RAM. It’s virtual memory!

