
for COMS 3157 Advanced Programming



What you need to know for AP

1. Understanding version control, repositories
2. Configuring Git
3. Cloning, adding, committing
4. Submitting your solutions

That’s it!



Why learn more about Git & GitHub?

● Shareable online code backups 
○ GitHub == Google Docs for programming projects
○ People can contribute to your copy on the server

● An industry standard for a programming 
portfolio
○ Tech companies want to see your GitHub
○ You can upload school* or personal projects

● Octocat (GitHub logo) is adorable
*Do not make school projects public if your professor doesn’t want you to! Jae doesn’t want you to! It counts as cheating.



This presentation is not meant to...

● replace Jae’s Git tutorial or lab submission 
instructions. Go read them.

● even begin to cover everything Git does and 
how awesome it is.

● teach you how to use Git commands.
● teach you about GitHub.



This presentation is meant to...

● clarify basic Git concepts needed for this 
class.

● complement Jae’s Git tutorial and lab 
submission instructions.

● provide additional resources if you wish to 
learn more about Git.



So let’s go!

1. Understanding version control, repositories
2. Configuring Git
3. Cloning, adding, committing
4. Submitting your solutions



Version control

“Version control is a system that records 
changes to a file or set of files over time so that 
you can recall specific versions later.”

http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

● Git essentially takes snapshots
● It records the entire state of your project at different 

moments in time

http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control


Git repository

● A repository is just a directory that 
somebody has initialized with Git
○ This is done with the simple command git init

● If you copy somebody else’s repository, you 
don’t have to (and should not!) initialize it 
again
○ Only the original creator needs to init



Git repository (repo)

● Let’s say you initialized your-project
○ You should see a new subfolder called .git
○ That’s the actual repository where Git tracks 

changes
● The entire folder (your-project) is also 

often referred to as the repository, or repo
● Short version: A repo is a set of files and 

subfolders that Git is tracking for you



Git repository (repo)



1. Understanding version control, repositories
2. Configuring Git
3. Cloning, adding, committing
4. Submitting your solutions



Configuring Git

● You need to set up your name and email
● Why? Multiple people can make changes to 

repos
○ Git needs to keep track of who is making which 

changes
● This is how we’ll identify your submissions

○ See Jae’s Git tutorial and lab submission instructions
○ Make sure it’s your Columbia email!



1. Understanding version control, repositories
2. Configuring Git
3. Cloning, adding, committing
4. Submitting your solutions



Cloning repositories

● You can clone someone else’s repo instead 
of initializing your own
○ You get copies of their current files
○ You also get their entire history (the .git folder)

● This is how you will start all of your labs
○ You will clone Jae’s code
○ This means you all get a copy of his repo
○ This means you all start from the same point
○ This is how we grade (more on this later)



Cloning repositories



Adding and committing changes
(in imprecise terms)
● There are two parts to keeping track of 

changes: adding and committing

● Adding a file (git add) tells Git: 
“Next time I take a snapshot, include these changes.”

● Committing (git commit) tells Git: 
“Take a snapshot of all the changes I added.”



Adding and committing files
(in technically correct terms)
● Terminology clarification

○ Working directory: the directory you are currently in 
(not all files necessarily being tracked by Git)

○ Staging area: where files are stored before commit
● git add actually adds files to staging area
● git commit moves changes out of the 

staging area and into the .git folder (where 
all commit info is kept)



Putting it all together



Putting it
all together



1. Understanding version control, repositories
2. Configuring Git
3. Cloning, adding, committing
4. Submitting your solutions



Submitting your code

● Run Jae’s provided submit script
● The script gives us a patch

○ This is a record of all of your changes
● Two things happen with this patch

○ The script sends us (the TAs) a copy of the patch
○ The script clones the skeleton code into a new 

subfolder called labN-TIMESTAMP and applies your 
patch for you



Submitting your code



Wait, why do the TAs get a patch?

● The TAs cannot 
access your CLIC 
account directly
○ That would be creepy

● Instead, we just get 
a copy of your patch

● Then we can see the 
changes you made 
without hacking your 
account



What was that second part with the 
clone and the patch and the things?
● The script creates a new subfolder in your 

labN folder called labN-TIMESTAMP
● It then clones the skeleton code into that 

folder
● It then applies your patch to the cloned 

skeleton code



What was that second part with the 
clone and the patch and the things?
● Do you see why this works?

○ You start in the same place (Jae’s cloned skeleton 
code)

○ You apply the same changes (the ones you’ve been 
committing throughout the lab)

○ Which means you end up in the same place (the 
work you’re trying to submit)

● This is exactly how we’re going to grade 



Quick sidenote: clone vs. init

● You should ALWAYS start labs by cloning 
Jae’s skeleton code

● Trying to apply a patch to a repository that’s 
not related doesn’t make any sense

● You should NEVER git init 
○ Then we cannot apply your patch to Jae’s skeleton 

code
○ That means you get a zero



Okay, so what happens again?

● Having your patch lets us see your work
● Applying your patch to the labN-

TIMESTAMP folder lets you see exactly what 
changes you just sent us

● You should always run make in this folder 
after submitting
○ If your code does not build for you, it won’t build for 

us either! You’re going to get a ZERO! Fix it!



So I fixed my mistakes - I’m good?

● Not unless you add, commit, and re-submit 
your changes

● Do you understand why?
○ We only get your most recently submitted patch
○ We cannot access your CLIC account
○ If you make changes in your directory but do not 

resubmit, we’ll never see them
○ You need to send us a new patch with your new 

commits by running the submit script



tl;dr
● ALWAYS clone Jae’s skeleton code
● NEVER run git init for labs
● ALWAYS commit all changes you want us to see
● ALWAYS run the submit script
● DON’T FORGET to test your code after submitting

○ If make fails for any reason, you get a ZERO
● ALWAYS resubmit if you commit new changes
● GO READ the Git tutorial and lab submission 

instructions carefully
○ Email the listserv or come to office hours with any questions



Additional resources

● http://rogerdudler.github.io/git-guide/
○ “No deep shit” quick guide

● http://blog.interlinked.org/tutorials/git.html
○ More extensive overview, good diagrams

● http://ktown.kde.org/~zrusin/git/
○ Commands cheatsheet

http://rogerdudler.github.io/git-guide/
http://rogerdudler.github.io/git-guide/
http://blog.interlinked.org/tutorials/git.html
http://blog.interlinked.org/tutorials/git.html
http://ktown.kde.org/~zrusin/git/
http://ktown.kde.org/~zrusin/git/


Additional additional resources

● https://guides.github.com/
○ Guides for higher-level Git and GitHub concepts

● https://help.github.com/articles/good-
resources-for-learning-git-and-github/
○ Even more resources

https://guides.github.com/
https://guides.github.com/
https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://help.github.com/articles/good-resources-for-learning-git-and-github/

