COMS E6998-9:

Software Security and
Exploitation

Lecture 8: Fall Secure; DoS Prevention,
Evaluating Components for Security

Failing Securely and Denial of
Service Prevention

Gb (COLUMBIA

== [JNIVERSITY

Overview

o We’ll begin this section by looking at three of
the most important concepts in computer
security:

— Defense in depth
— Compartmentalization
— Principle of least privilege
 Applying these three principles can greatly

reduce (and sometimes eliminate) the impact
of a vulnerability

Gb (COLUMBIA

== [JNIVERSITY

Defense in depth - intro

Medium
Sensitivity

High

Sensitivity

m COLUMBIA
© Hugh Thompson 2010 === [UNIVERSITY

Compartmentalization

e Closely related to defense in depth is
compartmentalization

e The idea is to separate processes, applications
and functionality so that a compromise of one
system doesn’t mean a compromise of them all

e Partitioning can happen at the
— Network level: Firewalls, routers, etc.
— Operating system level: ACLs, containers, VMs, etc.

— Application level: forked processes, exception
handling, etc.

Gb (COLUMBIA

== [JNIVERSITY

Least Privilege

e An application or process should only be given the

permissions it needs to complete a task; no more and
no less

e Some immediate consequences:

— Big applications that have to do certain tasks with elevated

privileges (root, administrator) should be broken up into
components

— Many of the applications that run as administrator have a
very small amount of code that needs that permission

— You shouldn’t just assign a high permission level to make

something work; understand what permissions are needed
and why

Gb (COLUMBIA

== [JNIVERSITY

Security and Exception Handling

One of the biggest software security sins is not
planning for failure

Environmental failures, bugs and exceptions will occur:
it’s how they’re handled that makes the difference
When writing exception handlers consider:

— What data needs to be saved (what was the application
doing)

— What data needs to be purged

— Degrade functionality and security commensurately (eg.
Don’t just stop logging if you get a disk full message)

— Calls to APIs can fail so check return values

Gb (COLUMBIA

== [JNIVERSITY

Error Handling Tips

Have a clear understanding of the API you are calling

— Does it set the error code variable to give more information?
(errno, SetLastError())

— Does it return an error value?

Carefully write error handlers
— Use try/catch to handle exceptions
— Return values can be handled with if statements
— Where relevant use information like GetLastError() inside your
error handling code to better understand the error**

WARNING: Make sure your APl actually sets an error
code before making decisions based on it
Test your error handler

— Most error handlers are woefully under-tested

— Use fault injection techniques to execute them

(COLUMBIA
== [JNIVERSITY

Beware of disclosing too much
information

e The natural developer tendency is to be as detailed as
possible in an error message for debugging

e Detail can give attackers a HUGE advantage
e Common offenses:

— ODBC Errors — Disclose SQL query strings, settings,
implementation details, etc.

— Login failure — Disclose whether the Username or
Password was wrong

e Remember, generic error messages to a user is good

— Can also include an incident number where details are
stored in a secure log

Gb (COLUMBIA

== [JNIVERSITY

Patchability

e Vulnerabilities are inevitable so the system must be
designed so that it is patchable with minimal user

Impact
e Consider how patches:
— Will be delivered to users
— Can be applied to systems
— Will impact the system (reboot, re-image, downtime, etc.)
— Can be distributed simply (consider patch size)
— Can be distributed if the system is being actively attacked
— Can be authenticated as from the vendor

Gb (COLUMBIA

== [JNIVERSITY

Race Conditions

e Also called Time Of Check To Time Of Use
(TOCTTOU) vulnerabilities

e Happens because we assume that a sequence
of actions are continuous and that no
resources are modified in the middle

Gb (COLUMBIA

== [JNIVERSITY

Understanding DoS weaknesses

Motivations of attackers may be simply to interrupt service

Security is also about ensuring that a user cannot deny
other users legitimate access to functionality and data

Some of the most difficult attacks to prevent against
May include starving: memory, disk space, bandwidth, CPU

Consider carefully:
— How the application receives data

— If safeguards (such as login attempt lockout) can be leveraged by
an attacker

— That point loads can and will occur
— How the system should respond under heavy load

Gb (COLUMBIA

== [JNIVERSITY

Throttling for DoS prevention

The reason that many actual outages occur is
poor failure planning

One technique to deal with DoS attacks is
throttling

The idea is to degrade service selectively
under attack as opposed to cutting it off

Remember: Attackers may use a reactive
defense against you

Gb (COLUMBIA

== [JNIVERSITY

Gt? COLUMBIA
© Hugh Thompson 2010 == UNIVERSITY

To begin, a few definitions

e [dentification is the act of professing that you
are something or someone

e Authentication is the act of proving
authenticity (or proving identity)

e Authorization is associating privileges with
that one entity has on another entity (such as
privileges a user has over a file)

Gb (COLUMBIA

== [JNIVERSITY

Authentication

 There are several ways to authenticate:
— Something you are
— Something you have
— Something you know

— *Something you do (often considered to be a
subset of something you are)

e Using any n of the above is described as n-
factor authentication

— E.g. Using an ATM card with a PIN

Gb (COLUMBIA

== [JNIVERSITY

Authorization - Types of Access Control

e Mandatory Access Control — Access control
based on the sensitivity of the object

e Discretionary Access Control — Access control
nased on the discretion of the object owner

e Role-Based Access Control — Access control
nased on an entities role

Gb (COLUMBIA

== [JNIVERSITY

Authentication Technologies

Basic authentication

Digest authentication
X.509 certificates

Kerberos

SSL/TLS

*LDAP and Active Directory

Gb (COLUMBIA

== [JNIVERSITY

OS Security Models - Windows

Uses Access Control Lists (ACLs) to protect
resources by restricting what can be done
with them

Discretionary ACLs (DACLs) define what can be
done to objects

System ACLs (SACLs) determine what to log
when a resource is accessed

DACLs and SACLs are composed of a list of
zero or more Access Control Entries (ACE)

Gb (COLUMBIA

== [JNIVERSITY

Windows Warnings

Analyze business logic to set ACLs appropriately
— Formalize access control requirements in a specification
— Ensure the resources are deployed, implemented, and

tested to meet specifications

Never use a NULL DACL

— This defaults to everyone, full control

Be careful with ACE order — it matters
— Specify deny permissions before allow

Be careful with ACL inheritance

Gb (COLUMBIA

== [JNIVERSITY

OS Security Models — Linux/Unix

Permissions are defined for:
USER (u), GROUP (g) and OTHERS (o)

Permissions can be set for:
READ (r), WRITE (w) or EXECUTE (x)

Some flavors of Linux/Unix support more
granular ACLs

Setuid allows users to run executables with
temporarily elevated privileges in order to
perform specific tasks (e.g. passwd)

Gb (COLUMBIA

== [JNIVERSITY

Unix/Linux tips and warnings

* Chroot() system call enables you to “change
the filesystem root” to a specific directory and
confine an application

e Beware the symbolic link — many UNIX
exploits take advantage of insecure temporay
file creation

— Result: Bait and Switch

Gb (COLUMBIA

== [JNIVERSITY

3 Party and OS Component
Security

Understanding the “Weakest Link”

Principle

Software is only as secure as its weakest
component

Whenever something is added to a system we
inherit both its utility and its vulnerabilities

A heroic security effort on one component can
be negated by adding a weaker component

Need to focus on addressing risk broadly

Gb (COLUMBIA

== [JNIVERSITY

Inherited risks from 3™ party components

e Several risk come from external components:
— Coding flaws

— Mismatch in handling data (not sanitizing
memory, etc.)

— Updates and patches that could become a product
liability

— A broader audience of folks looking for
vulnerabilities

— Licensing issues

— Maintenance issues

Gb (COLUMBIA

== [JNIVERSITY

Evaluation: Security Quality versus Quality
of Security Service

e When we evaluate a component for security
we must also look carefully at its supplier

* Need to ensure that the software is at a
comparable level in terms of security quality

* Need to ensure that lifecycle practices include
security too because you are essentially signing
up for a “service”

Gb (COLUMBIA

== [JNIVERSITY

Questions to start asking vendors or component
providers about security

Do you have a dedicated team to assess and respond to
security vulnerability reports in your products?

What is your vulnerability response process?

What process improvements have you made as a result
of vulnerabilities reported in your software?

What is your patch release strategy?

What training does your development and testing
organizations receive on security?

What level is this product certified to: EAL, CC, ...?

Gb (COLUMBIA

== [JNIVERSITY

Some Questions about Security Showing to consider
in RFPs

How is security involved in your SDLC?

What percentage of your dev and test team is focused on
security?

Does your company monitor the latest attack trends in the
underground community and consider how those trends may
affect your software?

Do you offer organizations secure implementation guidance?

Do you patch all currently supported and vulnerable versions
of your applications / platforms at the same time?

What are the terms and period of your security support
agreement?

Does your development team perform regular audits

Gb (COLUMBIA

== [JNIVERSITY

Creating a safety net around other people’s
code

e Be suspicious of data received

e Remember that an external component may not
handle data the same way you do

e Updates may change the way the component
works or the bounds of data that is returned
— Particularly a concern for web services

e Enforce assumptions about data in your own

code — especially the 3" party code is beyond
your control

e Remember that external API calls can fail and
create error handlers accordingly

Gb (COLUMBIA

== [JNIVERSITY

