COMS E6998-9:

Software Security and
Exploitation

Lecture 7: Vulnerabilities Cont. +
Data Security and Cryptography

Gﬁ? COLUMBIA
© Hugh Thompson 2010 == UNIVERSITY

XSS

Cross site scripting (XSS) vulnerabilities come
from user data being displayed on web pages

If that data is malicious, attackers can gain
access to account information, data, and
functionality accessible by the victim

Can be one of the easiest attacks to carry out

Fortunately there are many anti-XSS libraries
available (depending on your platform) that
you can use to sanitize data

Gb (COLUMBIA

== [JNIVERSITY

Command Injection

e Command injection is not limited to SQL or
JavaScript

 Any time user data is mixed with executable
code there is the potential of command
Injection

* You should never mix code with data given the
potential for manipulation

Gb (COLUMBIA

== [JNIVERSITY

Beware 2"9 Order Attacks

e 2d grder attacks occur when malicious data
passes through initial defenses, is stored, and
then accessed later by a vulnerable function

e Particularly dangerous because they are
almost always missed by security testing

e The threat of 2"d order attacks builds a strong
case for properly sanitizing data that is to be
stored

Gb (COLUMBIA

== [JNIVERSITY

Canonicalization Problems

e Canonicalization is the process of converting
data that has multiple representations to a
single standard “canonical” form

 The problem is that there are alternate ways
to represent things:

— Files, URLs, IP addresses, Paths, etc.

e Sometimes there are strange representations
you don’t expect...

Gb (COLUMBIA

== [JNIVERSITY

Canonicalization Problems

Windows example:
“securecoding.txt” # “secure~1.txt”

BUT...the OS can treat all of the following as the same:
— securecoding.txt

— secure~1.txt

— securecoding.txt::SDATA

— securecoding.txt.

— Many more!

Attackers can leverage this fact to create inputs that

sneak past filters yet force the application to access an
unintended resource

Gb (COLUMBIA

== [JNIVERSITY

Unicode Threats

* When dealing with Unicode strings, string

comparison failure can cause unexpected
results

e Always consider:

— When evaluating size, what’s being measured

— Some string comparisons are byte-wise

Gb (COLUMBIA

== [JNIVERSITY

Gt? COLUMBIA
© Hugh Thompson 2010 == UNIVERSITY

Developer’s Cryptography Primer

 Cryptography is good at protecting data at rest or
in transit. It does little for data in use and
protects against only a very narrow set of threats

e Symmetric Cryptography - a single shared secret
is used to encrypt and decrypt

Methods: 3DES, AES, etc.

 Asymmetric Cryptography — a different secret is
used to encrypt and decrypt

Methods: RSA, etc.

Gb (COLUMBIA

== [JNIVERSITY

Symmetric vs. Asymmetric
Cryptography

Symmetric Key Asymmetric Key

Requires a shared secret to be maintained There are two keys used

Computationally cheap Computationally expensive

Difficulties in transporting the key Public Key Infrastructure (PKI) can be used
securely (key exchange problems) to distribute keys via a trusted 3™ party
Used widely because of computational Typically used to verify authenticity

ease (through an encrypted hash) or to

exchange a private key

(COLUMBIA
== [JNIVERSITY

On the Replace-ability of Algorithms

As computational power increases, the effectiveness of
some cryptographic implementations decreases

Many companies have switched from DES to 3DES to
AES

This speaks to the fact that we need to write code with
the foresight that the cryptographic implementation
used may need to change

One of the biggest reasons that encryption breaks
down is through improper implementation: don’t code
your own implementation or create your own
algorithm

Gb (COLUMBIA

== [JNIVERSITY

Practical key management

 Poor key management is one of the biggest

weaknesses in a cryptographic
implementation

e Top things to remember:
— A key stored in source code can be found through
simple reverse engineering
— A key stored in a configuration file can be found
even more simply

— A key stored in your application can be replaced (if
the attacker has access to the application)

Gb (COLUMBIA
== [JNIVERSITY

Hashes

e A cryptographic hash function is a reproducible

method of turning a large message into a small digest
(hash) of that message

e Hashes are good to help verify the integrity of data
e [t should have the following properties:

— One-way: It should be hard to find a message that yields a

given digest (basically we shouldn’t be able to reconstruct
the message from the digest)

— No collisions: It should be difficult to find two messages
that produce the same hash

— No iterative refinement: A small change in the message
should result in an unpredictable change in the hash

Gb (COLUMBIA

== [JNIVERSITY

Hashes

 Popular cryptographic hashing algorithms are
MD5 and SHA1

This text is going to change slightly

SHA1 Hash: 2eal565ca629e2c¢1562d9a7aa5d1b15dbc2604e7
MD5 Hash: 700a21e5bceef03b1ada0b59bf98705¢

This text is going to change slightli

SHA1 Hash: 5e6a81193372ac6b2450d3a17156079c264dfbea
MD5 Hash: b594837fd1c1dd53c2db5c34ee52b7c5

e Hashes are often encrypted using asymmetric
cryptography to create digital signatures that can
verify a message’s authenticity and integrity

m (COLUMBIA

== [JNIVERSITY

Data Integrity

e Data integrity means that data has not been
tampered with and is complete

e A common means of ensuring data integrity is
to use digital signatures (encrypted hash
values)

e Remember that if you store a hash or a key in
your code that it can be both reverse
engineered out and replaced

Gb (COLUMBIA
== [JNIVERSITY

Memory protection - Dangers

e Secrets left in memory are risky for the
following reasons:

— A crash could cause memory data to be dumped
to disk

— Data may remain in memory long after it is
addressable

— Memory locations can be reclaimed by the JVM
and thus be used in ways never expected (such as
to pad packets)

Gb (COLUMBIA

== [JNIVERSITY

Memory protection — Solutions

 Overwrite sensitive data before freeing or
returning from a function

e Consider in-memory encryption
— (CryptProtectMemory() in Windows for example)

e Lock sensitive data so that it cannot be paged
to disk (mlock(), mlockall(), and VirtualLock())

— Warning: This can have sever performance impact

Gb (COLUMBIA

== [JNIVERSITY

Random number generation

Don’t use RAND — it has poor entropy and
predictability

Use a cryptographically secure pseudo-
random number generator (CSPRNG)

These are available in crypto libraries such as
OpenSSL

Consider the consequences of a user being
able to predict random number values:

— Cookies; encryption keys; filenames; behavior; etc.

Gb (COLUMBIA

== [JNIVERSITY

Introduction to secure audit and log

 Tipson Logs:
— Should only be writable by administrator/root and the
application that is logging
— Should be considered highly sensitive

— You should ensure that attackers cannot fill logs by
checking on length and taking standard precautions (such
as a new log file every day)

— Remember that sometimes regulations dictate some
information that must be logged and some information
that cannot be logged

— Failed password attempts can hold sensitive data!

— Consider using hashed if the only purpose of a piece of
information is confirmation

Gb (COLUMBIA

== [JNIVERSITY

Reverse Engineering and Avoiding Security
by Obscurity

You must assume that if users have your binaries
then they have your source code

The compiler is not an encryption tool

— Any encryption keys can be easily located using an
entropy scanner

Tools such as IDA Pro, JAD, etc. make

decompilation incredibly simple

Commercial solutions to obfuscation exist but
they serve to further delay reverse engineering,
not prevent it (code eventually must be
decrypted to run)

Gb (COLUMBIA

== [JNIVERSITY

UuzZzi

Gt? COLUMBIA
© Hugh Thompson 2010 == UNIVERSITY

Introduction to Fuzzing

What is fuzz testing (or “fuzzing”)? Answer: Data corruption,
plain and simple

Fuzzing catches the cases you wouldn’t think about...weird
input, corner and fringe cases, cases that you may not expect to
be bug revealing

Tend to find: Buffer Overflows, Format String issues, traversal
problems, and many others --- it all depends on the symptoms
you look for

Great because its automated

A few things to define up front
— Which interfaces does your application have?
— What protocol/format/etc. is used?

— What to define as a symptom of failure? (needed for automation ---
(COLUMBIA

more on this later) WAL {UNIVERSITY

Benefits of Fuzzing

Highly automatable

Finds vulnerabilities that wouldn’t normally be
detected during functional testing

Inexpensive...free tools, low cost tools, or grow
your own

Can unearth some of the most critical
vulnerabilities in software

Gives a good sense of how robust an
application is
mCOLUMBlA

== [JNIVERSITY

What can be fuzzed?

 Anything that accepts input:
— APIs
— File parsers
— Network protocols
— GUIs
— ClLls
— Web services calls
— URLs
— Script

Gb (COLUMBIA

== [JNIVERSITY

Data Corruption

— Long strings
— Special characters (general strings)

o %s, /n, " AUX, “./.”, ..

e Canonicalized forms of these can also be cool!
— Special values (numeric types)

« 127,0,-128, 32756, ...

e Boundary values and boundary values + 1 have been particularly
interesting

— Other variable types and interesting strings

e domain names, company names, ...

— Other techniques: Flipping bits, swapping data, removing
delimiters, incrementing values, ...

(COLUMBIA
== [JNIVERSITY

Delivering the data to the
application

e Fuzzers need to create a container to deliver data

e May have to do things like:
— Recalculate checksums
— Add special identifiers
— Mark certain sections to NOT corrupt (header tags, etc)
— Encode your corrupted data (Baseb64, etc)

— Encrypt your data (best in this case to corrupt BEFORE data
hits encryption routines ((unless you’re testing the parser)))

— Create/Maintain containers (SOAP, HTTP, etc.)
— Maintain type (for APl parameters for example)

Gb (COLUMBIA

== [JNIVERSITY

Types of Fuzzing

e Random (dumb)
— Inserts random characters and strings

— Not aware of much ... may require a wrapper to be effective
(eg SOAP, TCP/IP, file header,)

* Context-Aware
— Has some notion of format and type (XML, APlIs, etc.)
— May use a bounded set of “random” data (integers, script
tags, ...)
e Adaptive
— Changes the next corruption data based on execution
— May be used to “cover” more of the application

Gb (COLUMBIA

== [JNIVERSITY

lllustrating the difference...Random

Pure random
fuzzing may
only test initial
routines and
not pass a
formatting /
protocol check
by the
application

A WinGraph32 - Graph of start [._JLEJ%
File Wiew Zoom Mowe Help
S| alalxe+| [+ oleE=m Ny
start: 1
push Zfh
00401480: push offset unk_402140
mov esp, [ebp-18h] mall sub_401530
may es1, [ebp-3dh] =ar edi, edi
cmp dword ptr [ebp-1Ch], 0 push edi ; 1pModuleNams
jnz short Toc_401433 call ds:GetModuleHandled
cmp word ptr [eax], SA4Ch
Jnz short Toc_401348
| [
faise irue true fa{se
l - l
10401323
n04014Aac : mov ecx, [eax+dCh]
push CER add ECx, B3N
call ds:_exit cmp dward ptr [ecx], 4550h
Jnz short Toc_401348
L
Toe_401433:
call ds:_c_exit true falie __J
00401336 -
mawzx eas, word ptr [ecws+16h]
cmp eax, 10Eh
Iz short Toc_4013810
true false
Toc_401350: g0401341:
cmp dword ptr [ecx+74h], 0Eh cmp eax, Z0Bh
Jhe short Toc_40134A Iz short Toc_401340
| |
true false fa#se true
— | l
+ +
Toc_401348: 10401366 Toc_401340:
mo [ebp-1Ch], edi war Bak, B3 B cmp duord ptr [ecx+84h], OEh =
Kl _ o

82,19% (0,00

22 nodes, 56 edge segments, 2 crossings

lllustrating the difference...Context-Aware

« Context-Aware testing may
be necessary to get deeper
Into the application

 May need to bypass things
like checksums, etc.

* May also included wrappers
for protocols, formats, SOAP,
web services, RPC, ..., you
name it!

Likely to get more “coverage”
of the application binary

L 1 U‘TUJIJ...L-_JEJW
File ‘Wiew Zoom Mowve Help
S| a2+ [ole=mE [y
L] T :
e
il][|
. T I -
#fj gas

BIA

SITY

lllustrating the difference...Adaptive

WinGraph32 - Graph of start E]@

o Adaptlve fUZZ|ng uses File View Zoom Mowe Help
S| ala|me |+ [T oe== [y

feedback from the application | -

or the debugger to modify the AL —

data that's sent. £ e
k.

» Can be used to get in-depth &SI e

coverage on a binary L L

040173
vz e, word pir [echeifn]
Bh

*Will adapt the data to get il
through branching “gates” :

i [83
1 :
=g
35"
3
JEE
)
8 '
¥
9
g?
118

Can find some really g e
interesting m—t e
vulnerabilities...especially R

combined with a binary F R |
scanner (like the BugScam E g

IDC package) o e -

55.05% [i0,13) 22 nodes, 88 edge segments, 2 crossings

A Word on Oracles

or-a-cle - Function: noun Etymology: from Latin
oraculum, from orare to speak

a : person giving wise or authoritative decisions

or opinions

b : an authoritative or wise expression or
answer

* In testing, an “oracle” is something that gives you the right answer

*For fuzzing, we can only identify problems if an output is different than what we
expected and we can compare the two (i.e. given by the oracle)

*For example, how would you automate the testing of a scientific calculator?

Gb (COLUMBIA

== [JNIVERSITY

Things to look for (oracle)

(EASY) Exceptions (first or second chances, read/write
Av, ...)

— Tools: Debugging APls

(MEDIUM) Resource consumption (memory, disk,
network, CPU)

— Tools: Debugging APls, Resource Monitors, Memory leak
detectors

(MEDIUM) Sandbox escape (folders, IP address ranges,
APls, registry, ...)
— Tools: Holodeck/HEAT APIs, Detours, FileMon, RegMon, ...

(ADVANCED) Binary/Data coverage or pattern changes

Gb (COLUMBIA

== [JNIVERSITY

Stopping Criteria

The decision that you’ve done “enough” fuzzing is really based
on internal quality tolerance --- BUT --- in many cases it makes
sense to continue fuzzing even after product release.

There aren’t great answers here but here are some criteria:

— Business tells you to ship the product - even then it may
make sense to fuzz till EOL

— Binary coverage (we’ve touched x% of the reachable code
through fuzzed inputs)

— No differential coverage (only already-traversed paths get
explored)

— X number of “clean” runs

Gb (COLUMBIA

== [JNIVERSITY

Challenges / Future of Fuzzing

Metrics!
Distributed fuzzing (divide and conquer)

“Oracling” agents on server (used by some folks
now)

Good tools designed for fuzzing in a broader
environment

Knowledge sharing on fuzzing

Gb (COLUMBIA

== [JNIVERSITY

Summary

* Fuzzing is interesting but it should only be part
of an overall security strategy

e |f there is poor coverage as you fuzz, its likely
that the application may be rejecting large
chunks of data because it’s malformed — fuzz
more granularly

* Fuzzing has already made its way into web
application testing tools — expect broader tool
support to exist

Gb (COLUMBIA

== [JNIVERSITY

