
Cryptographic Strength of SSL/TLS Servers:
Current and Recent Practices

Homin K. Lee
Department of Computer

Science
Columbia University

New York, NY
homin@cs.columbia.edu

Tal Malkin ∗

Department of Computer
Science

Columbia University
New York, NY

tal@cs.columbia.edu

Erich Nahum
Network Server System

Software Dept.
IBM T.J. Watson Research Ctr.

Hawthorne, NY
nahum@watson.ibm.com

ABSTRACT
The Secure Socket Layer (SSL) and its variant, Transport
Layer Security (TLS), are used toward ensuring server se-
curity. In this paper, we characterize the cryptographic
strength of public servers running SSL/TLS. We present a
tool developed for this purpose, the Probing SSL Security
Tool (PSST), and evaluate over 19,000 servers. We expose
the great diversity in the levels of cryptographic strength
that is supported on the Internet. Some of our discourag-
ing results show that most sites still support the insecure
SSL 2.0, weak export-level grades of encryption ciphers, or
weak RSA key strengths. We also observe encouraging be-
havior such as sensible default choices by servers when pre-
sented with multiple options, the quick adoption of AES
(more than half the servers support strong key AES as their
default choice), and the use of strong RSA key sizes of 1024
bits and above. Comparing results of running our tool over
the last two years points to a positive trend that is moving
in the right direction, though perhaps not as quickly as it
should.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.2 [Computer-Communication
Networks]: Network Protocols

General Terms
Measurement, Security

Keywords
SSL, Network Security, Servers

∗This research was supported in part by the New York Soft-
ware Industry Association under grant NYS-CU0232901.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’07, October 24-26, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-908-1/07/0010 ...$5.00.

1. INTRODUCTION
Cryptography is an essential component of modern elec-

tronic commerce. With the explosion of transactions being
conducted over the Internet, ensuring the security of data
transfer is critically important. Considerable amounts of
money are being exchanged over the network, either through
e-commerce sites (e.g., Amazon, Buy.com), auction sites
(e.g., eBay), on-line banking (e.g., Citibank, Chase), stock
trading (e.g., Schwab), and even government (e.g., irs.gov).
Communication with these sites is secured by the Secure
Sockets Layer (SSL) or its variant, Transport Layer Security
(TLS), which are used to provide authentication, privacy,
and integrity. A key component of the security of SSL/TLS
is the cryptographic strength of the underlying algorithms
used by the protocol. It is crucial to ensure that servers using
the SSL protocol have employed it properly. For example, it
should be determined whether site administrators are using
the best practices, are aware of their sites’ vulnerabilities if
they haven’t already been addressed, and are promptly re-
acting to CERT advisories. Poor use of cryptography may
be an indicator of poorly-administered security. Experience
in related areas of patch management and virus/worm prop-
agation is not encouraging. The recent interest in SSL-based
VPNs only increases the need to study SSL.

One key feature of SSL/TLS is that it allows negotiation
between two peers. Different implementations will not nec-
essarily support the same cryptographic algorithms. Thus
SSL allows two peers to determine a subset of common cryp-
tographic routines. This allows for the interoperability and
extensibility of the protocol. For example, SSL allows dif-
ferent algorithms to be used for authentication (e.g., RSA,
DSS), key exchange (RSA, EDH), encryption (RC2, RC4,
DES, 3-DES, AES), and integrity (MD5, SHA-1). This flex-
ibility allows for new, stronger algorithms to be added over
time (such as AES) and reduces dependence on any one al-
gorithm, in case that algorithm is broken or succumbs to
brute-force exhaustive search techniques (as with DES).

While this flexibility improves interoperability, it may also
compromise security. For example, server administrators
may wish to support as wide a range of protocols as possible
in order to maximize the number of clients that can access
a site. However, they may be lax in removing features that
have compromises in security. For example, if a site sup-
ports a weak form of encryption, a client may choose to use
that algorithm for performance or power consumption rea-
sons (e.g., on a wireless PDA), without recognizing the dan-

gers. This could lead to a session being broken, a customer’s
password being cracked, and an empty bank account. While
this could be considered simply a case of clients suffering the
consequences of their actions, there are reasons to prevent
this from happening. This type of experience could alien-
ate a customer, damage the reputation of a business, and
perhaps even lead to legal action. More importantly, ex-
perience shows that clients do not understand security, and
thus steps should be taken to minimize opportunities for
clients to make the wrong decision. For these reasons, we
believe the bulk of the burden for ensuring security falls on
the provider, or server in this case. This then raises the ques-
tion: do servers deployed in the Internet adhere to current
best practices by employing strong cryptography?

This paper characterizes the cryptographic strength of
public servers in the Internet running SSL/TLS. We eval-
uate over 19,000 servers, and present a tool developed for
this purpose, the Probing SSL Security Tool (PSST). We
use PSST to evaluate which protocols and cryptographic
options are supported by the servers, and which are chosen
by the servers as a default when presented with several op-
tions. We show that a great variety of behavior can be found
in the network, with both encouraging and discouraging re-
sults. Examples include:

• 85 percent of SSL sites support the SSL 2.0 protocol,
even though it has significant security problems. More-
over, a small number of sites support only the SSL2
protocol.

• 93 percent of servers support (single) DES, despite the
fact that DES is considered susceptible to exhaustive
search.

• Many servers support the old export-grade encryption
levels, even though US law has changed and these al-
gorithms are considered susceptible to brute-force at-
tacks.

• 765 (almost 4 percent) of the sites use RSA-based au-
thentication with only 512-bit keys, even though RSA
has announced that this level of security is insufficient.
On the other hand, over 1200 sites use 2048 bits or
greater.

• AES is already supported in over 57 percent of sites we
probed. Out of these, about 94 percent default to AES
when presented with all options (and the vast majority
of them use a strong 256 bit key).

We have also run our tool periodically over the last two
years, in order to study the evolution of SSL use (and mis-
use) over time. The overall trend we discovered is a steady,
though a little slow, improvement in cryptographic strength
of SSL/TLS servers. For example, within the past two years:

• Support of the weak SSL2 protocol has been reduced
by over 9 percentage points.

• Support of AES has grown by nearly 16 percentage
points.

• Support of weak public key sizes has gone down by
nearly 2 percentage points.

• Support of very strong public key sizes has gone up by
nearly 2 percentage points.

Thus, our results show that most servers (though not all)
support both weak cryptography and strong cryptography,
while making the correct choice by default, if given the op-
tion. This is in sharp contrast to the situation several years
ago, where 20-30 percent of the servers used only weak cryp-
tography (see [27] and our discussion in Section 5). As a
concrete example, in 2000 25 percent of servers probed by
Murray [27] supported a very weak server key size of at most
512 bits, compared to about 4 percent today.

Our results are also useful in highlighting the most preva-
lent supported choices among the available options, thereby
allowing future efforts on improving performance and en-
hancing security to focus on the most relevant set of cryp-
tographic algorithms.

Finally, our tool can be useful for regular security com-
pliance testing, especially by large organizations that own
multiple servers.

Organization.
The remainder of this paper is organized as follows. In

Section 2, we provide some background on the design and
history of SSL/TLS. In Section 3 we describe the design
of our PSST tool and our probing methodology. Section 4
presents our results in detail, and Section 5 discusses rele-
vant related work. Finally, we conclude and describe some
possibilities for future work in Section 6.

2. SSL AND TLS
In this section we provide a brief overview of the mecha-

nisms and history of SSL/TLS.
SSL is designed to facilitate a communication channel be-

tween two peers, providing mechanisms for secure key ex-
change, authentication, encryption, and integrity. It aims
to be resilient to man-in-the-middle attacks, eavesdropping,
replay attacks, and statistical attacks. While SSL can au-
thenticate two sides of the conversation, in practice it is typ-
ically only the server that authenticates itself. The goals for
SSL/TLS not only include security, but also interoperability,
extensibility, and relative efficiency.

SSL/TLS is composed of two layers: the record layer and
the handshake layer. The record layer takes data provided
by a higher-layer application, fragments the data into man-
ageable blocks, and performs compression, symmetric-key
encryption, and MAC digest generation. The handshake
layer performs session establishment and option negotiation,
determining the per-session symmetric keys which are used
in bulk by the record layer.

SSL/TLS runs “above” the Transmission Control Proto-
col/Internet Protocol (TCP/IP), which governs the trans-
port and routing of data over the Internet, and “below”
higher-level protocols such as the Hypertext Transport Pro-
tocol (HTTP), which use TCP/IP to support typical appli-
cation tasks such as downloading Web pages. SSL lets an
SSL-enabled server to authenticate itself to an SSL-enabled
client and vice-versa, and allows both machines to establish
an encrypted connection. All the while, SSL uses TCP/IP
on behalf of the higher-level protocols.

SSL version 2.0 [22] was introduced by Netscape in 1994
for transmitting private data through the Internet (the first
version of SSL was never deployed). SSL version 2.0 quickly
became the de facto standard for the cryptographic pro-
tection of Web traffic. Unfortunately, SSL 2.0 was quickly
shown to have several flaws [44]:

• SSL 2.0 is vulnerable to “man-in-the-middle” attacks
in which an active attacker can force both the client
and the server to use 40-bit encryption.

• SSL 2.0 exclusively uses the MD5 hash function (the
insecurity of which will be discussed in Section 4.4).

• SSL 2.0 uses a weak message authentication code (MAC).

• SSL 2.0 feeds padding bytes into the MAC in block
cipher modes while leaving the padding-length field
unauthenticated. This could allow active attackers to
delete bytes from the end of messages.

• SSL 2.0 uses the same key for authentication and en-
cryption, which could lead to problems for certain ci-
phers.

SSL version 3.0 [20] was introduced in 1996, to improve
both the security and the functionality of SSL 2.0. SSL
3.0 not only fixes the security flaws mentioned above, but
also reduces the number of network round-trips, lets the
server choose the ciphers, supports more complete key ex-
change and cipher algorithms, and uses separate authentica-
tion and encryption keys. Around the same time, Microsoft
introduced its own version of SSL, Privacy Communication
Technology (PCT), but this never gained as much popular-
ity as SSL 3.0.

The Internet Engineering Task Force (IETF) established
the Transport Layer Security (TLS) Working Group in 1996
to come up with a standardized version of SSL and PCT.
The standardized protocol [14], imaginatively named TLS
version 1.0, is very similar to SSL 3.0. So much so that TLS
1.0 is sometimes referred to as SSL 3.1. The most impor-
tant difference between the two is that TLS uses the keyed-
Hashing for Message Authentication Code (HMAC) algo-
rithm [8] instead of the SSL Message Authentication Code
(MAC) algorithm; HMAC produces more secure hashes than
MAC. There are other minor differences such as the exclu-
sion of the Fortezza algorithms (which are not open for pub-
lic review), and the allowance of certificates to go back to an
intermediary certificate authority (CA) instead of going all
the way back to the root CA. Because of these improve-
ments, the TLS and SSL 3.0 protocols don’t fully inter-
operate, but TLS 1.0 has a mode to fall back to SSL 3.0.

Many Web sites now use SSL to obtain confidential user
information, such as credit card numbers and social secu-
rity numbers. All major Web browsers (Mozilla Firefox,
Netscape Navigator, Internet Explorer, Safari, and Opera)
support SSL. SSL 3.0 and TLS are believed to be reason-
ably secure if used properly. SSL 2.0 has fundamental design
problems and should not be used for sensitive information.

3. METHODOLOGY
PSST is based on httperf [26], a tool for measuring Web

server performance, and utilizes the OpenSSL library [4] for
SSL support. httperf normally establishes an SSL con-
nection advertising the entire available suite of protocols
from the SSL library, allowing the server to choose which
suite to use. We modified httperf’s core HTTP engine to
make an SSL connection with the target server advertising
only one cipher suite. If the server supports that suite, the
SSL handshake is completed successfully; otherwise, an er-
ror code is returned. By connecting to the server multiple

times and iterating through the set of available suites, we
can determine which suites are supported and which ones
are not. Each connection is aborted immediately after the
initial SSL handshake, reducing overhead on the network,
the SSL server probed, and the PSST client machine itself.
We also included an option where all possible protocols and
cipher suites were presented so that what choice the server
defaults to could be observed.

To maximize our statistical confidence, we clearly wished
to probe as many SSL servers as possible. In gathering our
list of SSL/TLS servers, we aimed to gather as many ad-
dresses as possible while making sure that the largest and
most popular sites were included as well. Since a few Web
sites attract a significant portion of all the Web traffic, we
used the rating sites Alexa [1] and Web100 [5] to gather a
list of leading SSL/TLS servers. For breadth we used the
list of target Web servers in Padhye and Floyd’s study of
TCP behavior [34], which in turn came from IRCache, the
NLANR Web Caching Project [2]. This resulted in a list of
19,429 SSL servers that we probed with PSST. The PSST
software used OpenSSL version 0.9.7b and the Linux oper-
ating system version 2.4.24.

Our tests were conducted on February 2005, August 2005,
June 2006, and November 2006 from Columbia University
in New York City. All our numbers are from the November
2006 test, up to Section 4.7, where we consider the other re-
sults in a longitudinal discussion. We discounted any servers
that did not respond in all four surveys to keep the data
comparable. There were also a handful of IP addresses that
provided inconsistent data on SSL/TLS support which are
excluded from our analysis. We speculate that these sites use
network load balancers (i.e., L4/L7 switches) to distribute
traffic across multiple servers with different SSL configura-
tions.

Interestingly, even though our tool could be perceived to
be an attack, and we made no effort to conceal our identity,
we received no complaints or requests to desist. This testifies
to the level of hostile traffic that now pervades the Internet;
our probes were considered noise in comparison.

4. RESULTS
In this section we present our results in detail.

4.1 SSL/TLS Protocol Versions

SSL Type Number Percentage
SSL 2.0 16587 85.37 %
SSL 3.0 19025 97.92 %
TLS1 19111 98.36 %

Table 1: Overall SSL/TLS Support

We first examine the distribution of the different versions
of SSL/TLS supported by the sampled servers. This is
shown in Table 1. Most servers support all three versions
(while the support of SSL2 should arguably be dropped,
given its serious security problems outlined in Section 2).
Moreover, a small percentage support only SSL 2.0, despite
the known problems. The data from Table 1 is broken out
in more detail in Table 2, showing that surprising permu-
tations (in fact, all possible permutations) of the available
support exist. It seems particularly odd that 0.87 percent of

SSL 2.0 SSL 3.0 TLS Number Percentage
Yes No No 24 0.12 %
No Yes No 146 0.75 %
Yes Yes No 148 0.76 %
No No Yes 211 1.09 %
Yes No Yes 169 0.87 %
No Yes Yes 2485 12.79 %
Yes Yes Yes 16246 83.62 %

Table 2: Breakdown of SSL/TLS Support

servers support SSL 2.0 and TLS, yet do not support SSL
3.0.

4.2 Key Exchange and Authentication
SSL uses two common protocols for key exchange and two

common protocols for authentication, used in the following
three combinations. One is to use the Ephemeral Diffie-
Hellman (EDH) key exchange algorithm with the Digital
Signature Standard (DSS) for authentication. Another is to
use the EDH key exchange algorithm with RSA for authen-
tication. The other popular option is to use RSA for both
key exchange and authentication.

The security of the EDH key exchange algorithm is equiva-
lent to the intractability of the Decision Diffie-Hellman prob-
lem, which is in turn based on (though not known to be
equivalent to) the intractability of the discrete logarithm
problem. RSA security is equivalent to the intractability of
the RSA problem [39], which is in turn based on (though
not known to be equivalent to) the intractability of factor-
ing. While solving the discrete logarithm problem will solve
the factoring problem, this has no bearing on the relative
security of the EDH or RSA key exchange algorithms. Both
problems have been subject to intense scrutiny, and are as-
sumed to be hard for now. Based on the best attacks known,
equal key sizes for EDH, DSS, and RSA give comparable lev-
els of security [47].

KeyEx + Auth Number Percentage
EDH + DSS 4 0.02 %
EDH + RSA 11185 57.57 %
RSA + RSA 19401 99.86 %

Table 3: Key Exchange & Authentication Support

Table 3 shows how these algorithms are used in practice.
We see that the RSA key exchange is supported by the vast
majority of servers, while the EDH key exchange algorithm
is supported by slightly more than half the servers. We can
also see that RSA has become the de facto standard for
authentication, with only a few servers supporting DSS. It
is interesting to note that the 3 of the 4 servers that support
DSS use DSS exclusively.

4.3 Key Size
We next turn our attention to the size of the keys used

for authentication. The current industry standard is to use
1024-bit key sizes for RSA keys. Note that a 512-bit key
was factored in 1999, and that this key size is now consid-
ered unsafe [41]. The 1024-bit key size provides comparable
strength to an 80-bit symmetric key, and the National In-

stitute of Standards and Technology (NIST) suggests that
the 80-bit security level is appropriate for protecting data
through the year 2015 [32]. They also suggest that the 112-
bit level is appropriate through the year 2035. RSA Labora-
tories makes a similar recommendation [23, 40]. Specifically,
RSA Laboratories currently recommends key sizes of 1024
bits for corporate use, and 2048 bits for extremely valuable
keys such as the root key pair used by a certifying authority.
They expect that the 80-bit level (corresponding to 1024-
bit RSA keys) should be sufficient at least until 2010, and
that extremely sensitive information should be encrypted at
the 112-bit level (corresponding to 2048-bit RSA key size),
which should protect data at least until 2030. Finally, we
note that in recent NESSIE recommendations, a minimum of
1536 bits is suggested for RSA signature keys [11], though,
according to RSA Laboratories [23], 2048 bits is a better
choice.

Key Size Number Percentage
512 765 3.94 %
768 275 1.42 %

1024 17166 88.35 %
1280 1 0.01 %
2048 1192 6.14 %
4096 36 0.19 %

Table 4: Public Key Size Support

Table 4 presents the distribution of public key sizes sup-
ported by the servers we probed (all but 7 of which only
support one size). We can see that over 5 percent of the
servers only support weak key lengths that are not consid-
ered secure. We note that several odd key sizes appear, such
as 1280, and 1568 in previous runs (as shown in Table 18 of
Section 4.7), although these are relatively rare.

Until December of 1998, US export laws banned the over-
seas sales of US software using encryption with keys over
512 bits. This may explain the fact that we still see some
servers supporting weak 512-bit key sizes. However, since
all but 7 of the servers only support one key size, and thus
the servers that support 512-bit keys also tend to have a
maximum key size of 512 bits.

4.4 Hash Functions
Cryptographic hash functions are vital for the security

of SSL/TLS. For a hash function H, given an input x the
output H(x) should be easy to compute, but given H(x),
finding an inverse should be computationally infeasible to
compute. Also, given x and H(x), it should be computa-
tionally infeasible to compute a y such that H(y) = H(x).
Such hash functions are said to be weakly collision free. If it
is computationally infeasible to find any such pair x, y with
H(x) = H(y) (as opposed to finding a collision for a particu-
lar x), then the hash function is said to be strongly collision
free.

The two most widely used hash functions are MD5 [38]
and SHA-1 [30]. MD5 was created by Rivest, and has been
attacked repeatedly over the years [13, 16, 17]. The fatal
blow came in a work-in-progress session at the Crypto 2004
conference, where Wang announced that there existed a fam-
ily of collisions in MD5 [45]. Even before this announcement,
NIST recommended that only SHA-1 (whose output is 160
bits) and the related SHA-256, SHA-384, and SHA-512 al-

gorithms be used. Then in February 2005, Wang, Yin, and
Yu announced that they were able to significantly reduce
the search space for SHA-1 [46]. Fortunately, SSL 3.0 and
TLS use both SHA-1 and MD5 in a redundant fashion for
its authentication. They may use MD5 or SHA-1 alone in
negotiated cipher suites, but then they are used within the
HMAC construction. Since the HMAC construction works
by nesting two applications of the hash function with two
different keys, breaking it would require finding two related
collisions. Thus, the announced attacks cannot be directly
applied to HMAC at this stage. On the other hand, SSL
2.0 only uses MD5 without HMAC or SHA-1, and is thus
very vulnerable as MD5 is still considered to be much weaker
than SHA-1.

MAC Number Percentage
MD5 19201 98.83 %
SHA-1 19326 99.47 %

Table 5: Symmetric Key MAC Support

Table 5 shows the MAC algorithm support discovered by
PSST. Most servers we surveyed supported both. While
some of the servers that only supported MD5 did so because
they only ran SSL 2.0, there were 79 sites that used SSL 3.0
and TLS that still only supported MD5 cipher suites. This
brings the total number of servers supporting only MD5 to
103.

4.5 Symmetric Encryption
Symmetric encryption is the backbone of secure commu-

nication. Once secret keys have been established, the trans-
mitted data is encrypted using a symmetric encryption al-
gorithm. In this section, we examine both the algorithms
employed and the key sizes used.

Cipher Number Percentage
AES 11107 57.17 %
DES 19168 98.66 %
RC2 17931 92.29 %
RC4 19241 99.03 %

Table 6: Symmetric Key Cipher Support

Table 6 presents an overview of the symmetric key cipher
support in the servers we examined (here, the DES category
includes 3-DES). As can be seen, nearly all the servers we
surveyed support DES, RC2, and RC4. RC4 appears to
be the most frequently supported cipher. The Advanced
Encryption Standard (AES), which is a fairly new cipher,
is already supported by over 57 percent of the servers. We
now look at each cipher in more detail.

The Data Encryption Standard [29], invented by IBM at
the request of the National Bureau of Standards, has been in
use since 1976. DES uses 56-bit keys and has some peculiar-
ities that make it undesirable, but in particular, its short key
length has made it vulnerable to brute-force attacks. When
the US export laws were in effect, the export key length was
artificially reduced to 40 bits, making DES even less secure.

Table 7 shows the DES usage in detail. While the old
US export regulations no longer apply, almost 67 percent of
the servers surveyed still support these weak keys, and most

Cipher Number Percentage
DES-40 12930 66.55 %
DES-56 12102 62.29 %
DES-64 18162 93.48 %
3-DES 18943 97.50 %

Table 7: DES Support

Cipher Number Percentage
DES-40 25 0.13 %
DES-56 35 0.18 %
DES-64 165 0.85 %
3-DES 18943 97.50 %

Table 8: Maximum DES Key Strength

servers support DES-64, which is only slightly stronger. For-
tunately, fewer than 2 percent of the servers support these
weak keys exclusively, as can be seen in Table 8, showing the
maximum DES key strengths supported by the servers. For
example, Table 8 shows that 165 servers support DES with
at most 64 bit keys. Prudence would indicate that support
of such weak keys should be removed altogether.

Triple DES (3-DES) is a variant of DES where the DES
algorithm is applied three times using three different keys.
The effective key length is thus 168 bits, which protects
against brute force attacks, but 3-DES is slower than other
ciphers and is slowly being phased out [33]. Most of the
servers we surveyed support 3-DES, using cipher block chain-
ing (CBC).

Cipher Number Percentage
RC2-40 17546 90.31 %
RC2-56 7360 37.88 %
RC2-128 16278 83.78 %

Table 9: RC2 Support

Another block cipher is RC2, which was developed by
Rivest in 1987. RC2 was originally developed for a 40-bit
key, and is a bit slower than other ciphers. For appropriate
key lengths (128 bits or greater) it is still considered secure
[25].

Table 9 shows the key strengths supported by servers em-
ploying RC2. Most servers support 128 bit keys, but a sig-
nificant number of servers also support the weak 56 and 40
bit key sizes. Table 10 shows the maximum key strength
used by servers that support RC2. Over 8 percent of the
servers exclusively support weak RC2 keys.

The most commonly supported symmetric key cipher is
RC4, which was developed by Rivest in 1987. RC4 is a
stream cipher, which encrypts one bit at time. A num-
ber of attacks on RC4 have been published, and there are
ways of implementing RC4 within a cryptosystem that are
completely insecure [19]. Fortunately, it is used correctly in
SSL/TLS. As with DES, 40, 56, and 64-bit keys are insecure,
and 128-bit keys are considered secure.

Table 11 shows the key strengths supported by servers
utilizing RC4. As can be seen, nearly all servers support
128 bit keys, and very many support 40 bit keys. Table

Cipher Number Percentage
RC2-40 790 4.07 %
RC2-56 863 4.44 %
RC2-128 16278 83.78 %

Table 10: Maximum RC2 Key Strength

Cipher Number Percentage
RC4-40 17827 91.75 %
RC4-56 12173 62.65 %
RC4-64 11030 56.77 %
RC4-128 19154 98.58 %

Table 11: RC4 Support

12 shows the maximum key strength employed by servers
supporting RC4. A small fraction support only weak key
sizes.

The newly favored symmetric encryption algorithm is the
Advanced Encryption Standard (AES) [31], since it is the
new government standard intended to replace DES. AES
was the winning proposal among 15 considered in a 2001
competition. AES is generally considered secure, although
there are some concerns about potential attacks [12].

Table 13 shows the distribution of key size support for
servers using AES. Even though AES has only been defined
for a few years, it is encouraging to see that over 56 percent
of the servers support AES-256. Oddly enough, there are
only a small number of sites supporting AES with both 128
or 256 bits.

4.6 Default Choices
While most of the servers we surveyed support weak cryp-

tography, we suspect that they do so to accept the largest
number of connections, despite the security vulnerabilities.
Thus, we probed the servers specifying the full range of ci-
pher suites to see what they chose by default (as there is
no excuse for choosing a weaker option than the server sup-
ports). Unfortunately, 552 of the 19,429 servers did not
respond properly, thus the following numbers are for the
remaining 18,887 servers.

Only three servers chose a weaker protocol when a stronger
one was available. In particular, they chose SSL 2.0 when
SSL 3.0 was available. All servers that supported TLS, chose
to use TLS. Similarly, only four (different) servers chose to
use a weaker public key size than they supported.

When it came to choosing between the two possible hash
functions, 315 servers only supported one of MD5 and SHA-
1, and thus had no choice. Of those that supported both,
5469 (29 percent of all servers) chose MD5.

As shown in Table 14, none of the servers chose RC2 from
the available symmetric encryption algorithms. However,
657 servers that support AES (namely about 6 percent of
those that support AES) did not choose AES by default.

The combined cipher suite choices are shown in Table 15.
AES-256 with SHA-1 was the most popular choice, while
RC4-128 with MD5 and 3-DES with SHA-1 were second
and third.

4.7 Changes in Support over Time
In order to study the evolution of SSL use (and misuse)

Cipher Number Percentage
RC4-40 48 0.25 %
RC4-56 38 0.20 %
RC4-64 1 0.01 %
RC4-128 19154 98.58 %

Table 12: Maximum RC4 Key Strength

AES-128 AES-256 Number Percentage
Yes No 154 0.79 %
No Yes 10709 55.12 %
Yes Yes 244 1.26 %

Table 13: AES Support

over time, we conducted tests on February and August of
2005 and June and November of 2006.

As seen in Table 16, there are promising trends in SSL
version support. During this time period, the number of
servers supporting SSL 2.0 was reduced by over 9 percentage
points.

We also found similarly heartening news with the change
in symmetric cipher support (Table 17) as the number of
servers supporting AES grew by nearly 16 percentage points.

Finally, we also note that small public key sizes are slowly
losing support (Table 18), while larger ones, in particular
2048-bit keys, are supported by a couple more servers. How-
ever, while this is a change in the right direction, it is too
small for comfort: The fraction of servers supporting weak
key sizes is still significant at about 5 percent (compared to
about 7 percent in our earlier runs).

Overall, while the trend is certainly positive, it may be
too slow. For example, continuing at the same rate, it will
take quite a few years until the support of SSL2 is mostly
abolished.

5. RELATED WORK
In 2001, Murray presented a survey of SSL servers [27].

Murray’s survey generally covered similar issues as in this
paper, though in less detail. In addition, it also consid-
ered whether or not a server’s certificate was expired or self-
signed.

Murray defined weak servers to be those that supported
at least one of the following flaws: 1) only supports SSL
2.0; 2) only supports symmetric encryption using keys with
at most 56 bits; 3) only supports certificate key sizes of at
most 512 bits; 4) uses an expired or self-signed certificate.
Murray defined strong servers to be those that supported
all of the following properties: 1) supports SSL 3.0 or TLS
(can support SSL 2.0); 2) supports symmetric encryption
using keys with at least 64 bits (can support 40-bit keys);
3) supports certificate key sizes of at least 1024 bits (can
support smaller certificate keys). Finally, the rest of the
servers are considered to have a medium level of security.
Note that the levels of security defined by Murray would
not be considered valid today, as new developments in secu-
rity have rendered several cryptosystems insecure that were
previously considered secure. Moreover, servers that sup-
port both strong and weak cryptography are called “strong”
here, while today to provide strong security a server should

Cipher Servers Percentage
RC2 0 0.00 %
RC4 5882 31.16 %
DES 2854 15.12 %
AES 10141 53.72 %

Table 14: Default Symmetric Encryption

Cipher suite Servers Percentage
AES-256 SHA-1 10135 53.69 %

RC4-128 MD5 5611 29.72 %
3-DES SHA-1 2837 15.02 %

RC4-128 SHA-1 259 1.37 %
3-DES MD5 12 0.06 %

RC4-40 MD5 9 0.05 %
AES-128 SHA-1 6 0.03 %
RC4-56 SHA-1 3 0.02 %
DES-64 SHA-1 3 0.02 %
DES-56 SHA-1 2 0.01 %

Table 15: Default Cipher Suites

arguably support only reasonably strong cryptography (and
not support any weak options), as previously discussed.

Table 19 shows a comparison between Murray’s 2000 and
2001 surveys and our 2006 survey, using Murray’s definitions
to allow for comparison. The numbers are not completely
comparable, as Murray surveyed 8081 servers while we ex-
amined 19,429. Another difference is that we did not con-
sider expired or self-signed certificates. The dramatic trend,
however, is the reduction in the percentage of weak servers,
and the rise in the percentage of strong servers. This trend is
exhibited when we compare several specific aspects directly
(Table 20). This is consistent with our results (Section 4.7)
indicating the same positive trend (though less dramatically)
over the last 2 years.

Scanning Approaches to Security
Scanning large numbers of servers is a common approach to
testing server security. Nmap [3] is a well-known security
scanning tool. Provos and Honeyman [35] scanned about
2300 SSH servers to determine which version of SSH was
being used. Similarly, Rescorla [37] probed 891 SSL servers
that used the OpenSSL library to see if they were vulnerable
to a bug in OpenSSL, and whether that vulnerability was
being addressed. Our study differs from the above in that
it focuses on cryptographic security rather than software
vulnerabilities.

SSL/TLS Performance Studies
Researchers have also recently studied the performance of
SSL servers [6, 10, 36]. In these studies, an SSL site is set
up in a lab and evaluated. Each of these studies made cer-
tain choices about the algorithms used and the key sizes
employed. For example, Apostolopoulos et al. [6] varied the
RSA key size between 512 bits and 1024 bits, and studied
the DES, 3-DES, RC4, MD5 and SHA-1 algorithms. Coarfa
et al. [10] used RSA with a key size of 1024, RC4 with 128-
bit keys and MD5. Rescorla varied RSA key sizes from 512
bits to 2048 bits, while studying RC4, DES, 3-DES, SHA-1,
and MD5. While these studies were appropriate for their

SSL type 02/2005 08/2005 06/2006 11/2006
SSL2 94.49 % 93.23 % 87.95 % 85.37 %
SSL3 97.96 % 98.30 % 98.16 % 97.92 %
TLS1 97.51 % 98.32 % 98.28 % 98.36 %

Table 16: Changes in SSL Support Over Time

Cipher 02/2005 08/2005 06/2006 11/2006
AES 41.26 % 48.29 % 55.18 % 57.17 %
DES 99.13 % 99.28 % 98.81 % 98.66 %
Weak DES 97.32 % 97.00 % 94.63 % 93.48 %
RC2 96.52 % 96.20 % 93.63 % 92.29 %
RC4 99.50 % 99.57 % 99.18 % 99.03 %

Table 17: Change in Cipher Support Over Time

times, our results suggest that any future performance stud-
ies should likely look at stronger key sizes (e.g., 2048 for
RSA) and current best practice algorithms (e.g., AES and
SHA-1).

Attacks on SSL/TLS
It should be noted that there has been recent work ([9, 24, 7,
43, 28]) attacking SSL/TLS as well. Most of these attacks,
however, are not directed at the various cryptographic algo-
rithms used by SSL/TLS, but rather in their implementation
or against the peculiarities of SSL/TLS itself. These attacks
can often be prevented by applying particular patches to
the SSL/TLS software, but we do not have a reliable way of
measuring these preventive measures yet.

6. CONCLUSIONS AND FUTURE WORK
We have presented the probing SSL security tool (PSST),

and used it to analyze server security on the Internet, eval-
uating over 19,000 servers. Given the volume of sensitive
Internet-based transactions which utilize SSL/TLS servers,
understanding what security measures are in place today to
protect confidential data, and to what degree, is extremely
important. This is particularly true given the rapid pace at
which our understanding of cryptography evolves, and vul-
nerabilities are discovered in protocols previously believed
to be secure. For example, SHA-1 was considered to be
secure and was even recommended by NIST when we first
ran our experiments in February 2005. By the time we ran
our experiments in August 2005, SHA-1 was found to have
serious flaws. Our results show that there is great variabil-
ity in the level of cryptographic support in Internet servers
running the SSL/TLS protocol, including a significant por-
tion of the servers which support weak, broken, or outdated
cryptography.

In addition to its utility as a security tool, the results gen-
erated using PSST would be useful for SSL/TLS server per-
formance benchmarking. Any effort to improve the perfor-
mance of the cryptographic components of SSL/TLS could
be focused on the most commonly used algorithms.

We see several areas for future work:

• Expired and self-signed certificates. Murray’s study
from 2001 tested for expired and self-signed certifi-
cates; we plan to extend PSST to test those properties
on our set of servers.

Key Size 02/2005 08/2005 06/2006 11/2006
512 5.01 % 5.32 % 4.17 % 3.94 %
768 1.93 % 1.84 % 1.54 % 1.42 %

1024 88.46 % 87.80 % 88.33 % 88.35 %
1048 0.01 % 0.01 % 0.00 % 0.00 %
1280 0.00 % 0.00 % 0.01 % 0.01 %
1536 0.01 % 0.00 % 0.00 % 0.00 %
1568 0.01 % 0.01 % 0.01 % 0.00 %
2048 4.51 % 4.96 % 5.91 % 6.14 %
4096 0.12 % 0.15 % 0.17 % 0.19 %

Table 18: Change in Public Key Size Support

2000 2001 11/2006
Weak Servers 31 % 23 % 4.07 %

Medium Servers 10 % 5 % 1.51 %
“Strong” Servers 57 % 51 % 94.42 %

Table 19: Overall Server Security

• Measuring even larger numbers of servers. While our
list of servers is large, CPU power has increased enough
that a large fraction of the available IPV4 address
space could be probed by randomly choosing IP ad-
dresses to test.

• Measuring SSL VPNs. Since the use of SSL for Virtual
Private Networks has been increasing recently, this is
also an area for further investigation.

• SSH Servers. While authentication is handled differ-
ently in SSH than in SSL, many of the cipher suites
utilized are the same. Since SSH is used as the en-
try point into many organizations, its cryptographic
strength should be ensured.

• Client-Side Studies. This work has examined the avail-
able cryptographic strength on the server side. Clearly,
end-to-end security depends on the support of both
sides of the conversation. It would thus be interesting
to evaluate what is being used by clients on the In-
ternet. One way to do this would be to monitor the
packets into and out of a high-volume SSL server (or
cluster of servers).

We believe PSST can be extended in a relatively straight-
forward way to study several of these issues.

Acknowledgments
We thank Noel Codella for participating in early stages of
this work. Thanks to Ran Canetti, Angelos Keromytis, and
Patrick McDaniel for discussions and constructive comments
on earlier drafts of this paper. Thanks also to Tomer Malkin
Nahum for participating in several brainstorming sessions.

7. REFERENCES
[1] Alexa Web Search - Top 500.

http://www.alexa.com/site/ds/top_500.

[2] IRCache. http://www.ircache.net.

[3] Nmap. http://www.insecure.org/nmap/.

[4] The OpenSSL project. http://www.openssl.org.

2000 2001 11/2006
Server Key ≤ 512 bits 25.0 % 17.0 % 3.94 %

SSL 2.0 only 0.4 % 1.4 % 0.12 %
≤ 56-bit sym. enc. only 9.0 % 6.0 % 0.13 %

Table 20: Weak Server Features

[5] Web100. http://www.web100.com.

[6] George Apostolopoulos, Vinod Peris, and Debanjan
Saha. Transport layer security: How much does it
really cost? In IEEE InfoCom, New York, NY, March
1999.

[7] Gregory V. Bard. The vulnerability of SSL to chosen
plaintext attack. Cryptology ePrint Archive, Report
2004/111, 2004. http://eprint.iacr.org/.

[8] Mihir Bellare, Ran Canetti, and Hugo Krawczyk.
Keying hash functions for message authentication. In
N. Koblitz, editor, Advances in Cryptology —
CRYPTO 1996, volume 1109 of Lecture Notes in
Computer Science, pages 534–545. Springer-Verlag,
1996.

[9] Dan Boneh and David Brumley. Remote timing
attacks are practical. In The 12th USENIX Security
Symposium, August 2003.

[10] Cristian Coarfa, Peter Druschel, and Dan S. Wallach.
Performance analysis of TLS Web servers. ACM
Transactions on Computer Systems, 24(1), February
2006.

[11] NESSIE Consortium. Portfolio of recommended
cryptographic primitives. Internet draft, February
2003. http://www.cryptonessie.org/.

[12] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of
block ciphers with overdefined systems of equations.
In Yuliang Zheng, editor, Advances in Cryptology —
ASIACRYPT 2002, volume 2501 of Lecture Notes in
Computer Science, pages 267–287. Springer-Verlag,
2002.

[13] B. den Boer and A. Bosselaers. Collisions for the
compression function of MD5. In Tor Helleseth, editor,
Advances in Cryptology — EUROCRYPT 1993,
volume 470 of Lecture Notes in Computer Science,
pages 293–304. Springer-Verlag, 1994.

[14] T. Dierks and C. Allen. The TLS protocol, version 1.0,
January 1999. RFC-2246.

[15] Tim Dierks and Eric Rescorla. The TLS protocol,
version 1.1, June 2005. Internet Draft,
http://www.ietf.org/internet-drafts/

draft-ietf-tls-rfc2246-bis-13.txt, expires
December 2005.

[16] Hans Dobbertin. Cryptanalysis of MD5 compress. In
Fast Software Encryption, pages 53–69, 1996.

[17] Hans Dobbertin. The status of MD5 after a recent
attack. CryptoBytes, 2(2), 1996.

[18] N. Ferguson and B. Schneier. Practical Cryptography.
Wiley Publishing, Inc., 2003.

[19] Scott Fluhrer, Itsik Mantin, and Adi Shamir.
Weaknesses in the key scheduling algorithm of RC4.
In Selected Areas in Cryptography, volume 2259 of
Lecture Notes in Computer Science, pages 1–24, 2001.

[20] Alan O. Freier, Philip Karlton, and Paul C. Kocher.

The SSL protocol version 3.0. Internet draft, Netscape
Communications, November 1996.
http://wp.netscape.com/eng/ssl3/ssl-toc.html.

[21] Eu-Jin Goh. SSL sniffer. http://crypto.stanford.
edu/~eujin/sslsniffer/index.html.

[22] Kipp E. B. Hickman. The SSL protocol. Internet
draft, Netscape Communications, February 1995.
http://wp.netscape.com/eng/security/SSL_2.html.

[23] Burt Kaliski. TWIRL and RSA key size. Internet
draft, RSA Laboratories, May 2003. http:
//www.rsasecurity.com/rsalabs/node.asp?id=2004.

[24] Vlastimil Klima, Ondrej Pokorny, and Tomas Rosa.
Attacking RSA-based sessions in SSL/TLS.
Cryptology ePrint Archive, Report 2003/052, 2003.
http://eprint.iacr.org/.

[25] Lars R. Knudsen, Vincent Rijmen, Ronald L. Rivest,
and M. J. B. Robshaw. On the design and security of
RC2. In FSE ’98: Proceedings of the 5th International
Workshop on Fast Software Encryption, pages
206–221. Springer-Verlag, 1998.

[26] D. Mosberger and T. Jin. httperf – a tool for
measuring Webserver performance. In Proceedings of
the ACM SIGMETRICS Workshop on Internet Server
Performance (WISP), pages 69–67, Madison, WI,
June 1998.

[27] Eric Murray. Changes in deployment of cryptography.
Invited talk, USENIX Security Symposium 2001.
http:

//www.usenix.org/events/sec01/murray/index.htm,
July 2001.

[28] Netcraft News. Vulnerable versions of OpenSSL
apparently still widely deployed on commerce sites.
http://news.netcraft.com/archives/2003/11/03/

vulnerable_versions_of_ope%nssl_apparently_

still_widely_deployed_on_commerce_sites.html.

[29] NIST. Data encryption standard DES, December
1993.
http://www.itl.nist.gov/fipspubs/fip46-2.htm.

[30] NIST. Secure hash standard, federal information
processing standards publication 180-1, April 1995.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[31] NIST. Advanced encryption standard (AES), federal
information processing standards publication 197,
November 2001. http://www.csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

[32] NIST. Special publication 800-57: Recommendation
for key management. part 1: General guideline,
January 2003. http://csrc.nist.gov/
CryptoToolkit/kms/guideline-1-Jan03.pdf.

[33] NIST. Announcing proposed withdrawal of federal
information processing standard (FIPS) for the data
encryption standard (DES) and request for comments,
July 2004. http:
//edocket.access.gpo.gov/2004/04-16894.htm.

[34] Jitendra Padhye and Sally Floyd. On inferring TCP
behavior. In ACM SIGCOMM Symposium on
Communications Architectures and Protocols, San
Diego, CA, August 2002.

[35] Niels Provos and Peter Honeyman. ScanSSH:
Scanning the Internet for SSH servers. In USENIX
Large Installation System Administration Conference
(LISA), pages 25–30, 2001.

[36] Eric Rescorla. SSL and TLS. Addison Wesley, 2000.

[37] Eric Rescorla. Security holes... who cares? In
Proceedings of the 12th USENIX Security Symposium,
pages 75–90, August 2003.

[38] Ron Rivest. The MD5 message digest algorithm, April
1992. RFC-1321.

[39] Ronald L. Rivest, Adi Shamir, and Leonard Adleman.
A method for obtaining digital signatures and
public-key cryptosystems. Communications of the
ACM, 21(2):120–126, February 1978.

[40] RSA Laboratories. How large a key should be used in
the RSA cryptosystem? Internet draft, RSA Crypto
FAQ. http:
//www.rsasecurity.com/rsalabs/node.asp?id=2218.

[41] RSA Laboratories. RSA crypto challenge sets new
security benchmark - 512-bit public key factored by
international team of researchers, August 1999.

[42] Bruce Schneier. Applied Cryptography. John Wiley &
Sons, 1994.

[43] S. Vaudenay. Security flaws induced by CBC padding
- applications to SSL, IPSEC, WTLS, ... In Advances
in Cryptology — EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 534–545.
Springer-Verlag, 2002.

[44] David Wagner and Bruce Schneier. Analysis of the
SSL 3.0 protocol. In Proceedings of the 2nd USENIX
Workshop on Electronic Commerce, pages 29–40,
Oakland, CA, November 1996. http:
//www.cs.berkeley.edu/~daw/papers/ssl3.0.ps.

[45] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and
Hongbo Yu. Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD, 2004. Manuscript.
Available from eprint.iacr.org.

[46] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.
Finding collisions in the full SHA-1. In Advances in
Cryptology — CRYPTO 2005, Lecture Notes in
Computer Science. Springer-Verlag, 2005.

[47] Michael J. Wiener. Performance comparison of
public-key cryptosystems. CryptoBytes, 4(1), 1998.
http:

//www.rsasecurity.com/rsalabs/node.asp?id=2004.

