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Abstract. We study the average number of well-chosen labeled exam-
ples that are required for a helpful teacher to uniquely specify a target
function within a concept class. This “average teaching dimension” has
been studied in learning theory and combinatorics and is an attractive al-
ternative to the “worst-case” teaching dimension of Goldman and Kearns
[7] which is exponential for many interesting concept classes. Recently
Balbach [3] showed that the classes of 1-decision lists and 2-term DNF
each have linear average teaching dimension.
As our main result, we extend Balbach’s teaching result for 2-term DNF
by showing that for any 1 ≤ s ≤ 2Θ(n), the well-studied concept classes
of at-most-s-term DNF and at-most-s-term monotone DNF each have
average teaching dimension O(ns). The proofs use detailed analyses of
the combinatorial structure of “most” DNF formulas and monotone DNF
formulas. We also establish asymptotic separations between the worst-
case and average teaching dimension for various other interesting Boolean
concept classes such as juntas and sparse GF2 polynomials.

1 Introduction

Many results in computational learning theory consider learners that have some
form of access to an oracle that provides labeled examples. Viewed as teachers,
these oracles tend to be unhelpful as they typically either provide random exam-
ples selected according to some distribution, or they put the onus on the learner
to select the examples herself. In noisy learning models, oracles are even allowed
to lie from time to time.

In this paper we study a learning model in which the oracle acts as a helpful
teacher [7, 8]. Given a target concept c (this is simply a Boolean function over
some domain X) that belongs to a concept class C, the teacher provides the
learner with a carefully chosen set of examples that are labeled according to c.
This set of labeled examples is called a teaching set and must have the property
that no other concept c′ 6= c in C is consistent with the teaching set; thus every
learner that outputs a consistent hypothesis will correctly identify c as the target
concept. The minimum number of examples in any teaching set for c is called
the teaching dimension of c with respect to C, and the maximum value of the
teaching dimension over all concepts in C is the teaching dimension of C.
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Some concept classes that are easy to learn can be very difficult to teach in
the worst case in this framework. As one example, let the concept class C over
finite domain X contain |X| + 1 concepts which are the |X| singletons and the
empty set. Any teaching set for the empty set must contain every example in
X, since if x ∈ X is missing from the set then the singleton concept {x} is not
ruled out by the set. Thus the teaching dimension for this concept class is |X|.

Many interesting concept classes include the empty set and all singletons,
and thus have teaching dimension |X|. Consequently for many concept classes
the (worst-case) teaching dimension is not a very interesting measure. With this
motivation, researchers have considered the average teaching dimension, namely
the average value of the teaching dimension of c as c ranges over all of C.

Anthony et al. [2] showed that the average teaching dimension of the class of
linearly separable Boolean functions over {0, 1}n is O(n2). Kuhlmann [9] showed
that concept classes with VC dimension 1 over finite domains have constant aver-
age teaching dimension and also gave a bound on the average teaching dimension
of concept classes Bd(c) (balls of center c and size ≤ d). Kushilevitz et al. [10]
constructed a concept class C that has an average teaching dimension of Ω(

√
|C|)

(this lower bound was also proved in [6]) and also showed that every concept
class has average teaching dimension at most O(

√
|C|). More recently, Balbach

[3] showed that the classes of 2-term DNF and 1-decision lists each have average
teaching dimension linear in n.

Our Results. Our main results are the following theorems, proved in Sec-
tions 3 and 4, which show that the well-studied concept classes of monotone
DNF formulas and DNF formulas are efficiently teachable in the average case:

Theorem 1. Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean
functions over {0, 1}

n
representable as a monotone DNF with at most s terms.

Then the average teaching dimension of C is O(ns).

Theorem 2. Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean
functions over {0, 1}

n
representable as a DNF with at most s terms. Then the

average teaching dimension of C is O(ns).

Theorem 2 is a broad generalization of Balbach’s result on the average teaching
dimension of the concept class of DNF with at most two terms. It is easy to see
that even the class of at-most-2-term DNFs has exponential worst-case teaching
dimension; as we show in Section 3, the worst-case teaching dimension of at-most-
s-term monotone DNFs is exponential as well. Thus our results show that there
is a dramatic difference between the worst-case and average teaching dimensions
for these concept classes.

We also consider some other well-studied concept classes, namely juntas and
sparse GF2 polynomials. For the class of k-juntas, we show in Section 5 that
while the worst-case teaching dimension has a logarithmic dependence on n (the
number of irrelevant variables), the average teaching dimension has no depen-
dence on n. For a certain class of sparse GF2 polynomials (roughly, the class
of GF2 polynomials with fewer than log n terms; see Section 6), we show that



while the worst-case teaching dimension is nΘ(log log n), the average teaching di-
mension is O(n log n). Thus in each case we establish an asymptotic separation
between the worst-case teaching dimension and the average teaching dimension.
Our results suggest that rich and interesting concept classes that are difficult to
learn in many models may in fact be easy to teach in the average case.

2 Preliminaries

Our domain is X = {0, 1}
n
, and we refer to Boolean functions c : {0, 1}

n
→ {0, 1}

as concepts. A collection of concepts C ⊆ 2{0,1}n

is a concept class. For a given
instance x ∈ X, the value of c(x) is referred to as a label, and for y ∈ {0, 1}, the
pair (x, y), is referred to as a labeled example. If y = 0 (y = 1) then the pair is
called a negative (positive) example. A concept class C is consistent with a set
of labeled examples if c(x) = y for all the examples in the set.

A set S of labeled examples is a teaching set for c with respect to C if c is the
only concept in C that is consistent with S; thus every learner that outputs a
consistent hypothesis from C will correctly identify c as the target concept. The
minimum number of examples in any teaching set for c is called the teaching di-
mension of c with respect to C (sometimes written TD(c) when C is understood),
and the maximum value of the teaching dimension over all concepts in C is the
(worst-case) teaching dimension of C. The average teaching dimension of C is
the average value of the teaching dimension of c with respect to C for all c, i.e.,
1
|C|

∑
c∈C TD(c).

We use Boolean variables x1, . . . ,xn and write x̄i to denote the negated literal
on variable xi. We will often refer to a logical assignment of the variables as a
string and vice-versa; thus, a string y ∈ {0, 1}

n
corresponds to a truth-value

assignment to the variables x1, . . . ,xn. Given a set S of variables, we write 0|S=1

to denote the truth assignment that sets each variable in S to 1 and sets all
other variables to 0. The truth assignment 1|S=0 is defined similarly.

Two strings y, z ∈ {0, 1}
n

are neighbors if they differ in exactly one bit
position. Given x, y ∈ {0, 1}n we write x ≤ y if xi ≤ yi for all i = 1, . . . , n, and
we write x < y if we have x ≤ y and x 6= y.

DNF Formulas. A term is a conjunction of Boolean literals. A term over n
variables is represented by a string T ∈ {0, 1, ∗}n, where the k-th character of T
is denoted T [k]. The value of T [k] is 0, 1, or ∗ depending on whether xk occurs
negated, unnegated, or not at all in the term. If x ∈ {0, 1}

n
is an assignment

that satisfies T , we sometimes say that T covers x. Note that the satisfying
assignments of a term T form a subcube of dimension n − |T | within {0, 1}n,
where |T | denotes the number of non-∗ entries in T.

An s-term DNF formula φ is an OR of s terms φ = T1∨· · ·∨Ts. A satisfying
assignment to the DNF is sometimes referred to as a positive point and an
unsatisfying assignment as a negative point.

A term Ti is said to be compatible with a set of labeled examples S if Ti

does not cover any negative example in S. A term Ti is said to imply another
term Tj if every positive point of Ti is also a positive point of Tj . We similarly



say that a term T implies a DNF formula φ, or that a DNF formula φ1 implies
another DNF formula φ2. Two different DNF formulas φ1 and φ2 are said to be
logically equivalent if each implies the other, i.e., if they are different syntactic
representations of the same Boolean function. Throughout the paper we will
use Greek letters φ, ϕ, . . . to denote formulas (which are syntactic objects) and
Roman letters f, g, . . . to denote Boolean functions (which are abstract mappings
from {0, 1}

n
to {0, 1}).

We write Ds to denote the class of “exactly-s-term” DNFs; this is the class of
all Boolean functions f : {0, 1}

n
→{0, 1} that have some s-term DNF representa-

tion and have no s′-term DNF representation for any s′ < s. Similarly, we write
D≤s to denote the class of “at-most-s-term” DNFs, which is D≤s = ∪s′≤sDs′ .
Note that the elements of Ds and D≤s are “semantic” functions, not syntactic
formulas. The class D≤s corresponds to the standard notion of “s-term DNF”
which is a well studied concept class in computational learning theory.

A monotone DNF formula, or mDNF, is a DNF formula that contains no
negated literals. The concept classes of exactly-s-term mDNFs and at-most-s-
term mDNFs are denoted Ms and M≤s and are defined in analogy with Ds and
D≤s above. The following fact is well known:

Fact 1 If f ∈ Ms then there is a unique (up to ordering of the terms) s-term
mDNF representation φ = T1 ∨ · · · ∨ Ts for f.

3 Monotone DNFs

Worst-case teaching dimension of at-most-s-term mDNFs. Here we state
upper and lower bounds on the worst-case teaching dimension of M≤s.

Theorem 3. The teaching dimension of M≤s is at most ns + s.

Proof. Let f be an element of Mk for some k ≤ s. We have that f is represented
by a unique mDNF φ = T1 ∨ · · · ∨ Tk, where each Tk corresponds to a minterm
(minimal satisfying assignment) of f. For the rest of the proof we will view each
term Ti as the set of variables that it contains; note that these sets are pairwise
incomparable, i.e., no Ti is contained in any other Tj .

We will show that the following set of examples is a teaching set for f :

– For each term Ti in T1, . . . , Tk we give the positive example 0|Ti=1; this is
clearly at most s examples.

– We also give a set of negative examples which consists of precisely those
examples that have exactly one variable of each term set to zero and all
other variables set to one. In other words, for every set S ⊆ ∪k

i=1Ti that
satisfies |S ∩ Ti| = 1 for all i, we give the example 1|S=0. Since there are at
most ns ways to choose exactly one variable from each of the s terms, this
is at most ns examples.

We first note that any g ∈ M≤s (in fact any monotone function g) that
is consistent with the negative set must label negative any assignment which



does not satisfy at least one of the terms T1, . . . ,Tk. This is because for any
assignment y which satisfies none of the k terms, there is an example y′ in the
negative set such that y ≤ y′ with respect to the bitwise partial order on {0, 1}

n
.

Since g(y′) = 0 and g is monotone, this implies that g(y) = 0.
It follows that for all Ti, for all xj ∈ Ti, the example 0|(Ti\xj)=1 must be

negative under f . Thus for each term Ti, we have that 0|Ti=1 is positive while
flipping any bit in Ti makes f negative. Consequently, any g ∈ M≤s which is
consistent with both the positive and negative examples must contain each of
the terms T1, . . . ,Tk. If k = s then since g cannot contain any other terms, we
must have that g is equivalent to f. If k < s, suppose that g contains some other
non-redundant term Ts+1. Then there must be an assignment that is positive
under g but which does not satisfy any of T1, . . . ,Tk. The negative set shows that
this is not possible. ut

Theorem 4. Given s, let s′ ≤ s be any value such that (s′ − 1) divides n. Then
the teaching dimension of M≤s is at least ( n

s′−1 )s′−1.

Proof. We exhibit a concept f ∈ M≤s−1 whose teaching set must contain all
the negative examples in the teaching set for the proof of Theorem 3 in order to
disambiguate it from various concepts in Ms. Let d = n/(s′ − 1) and consider
the concept

f = (x1 · · ·xd) ∨ (xd+1 · · ·x2d) ∨ · · · (x(s′−2)d · · ·x(s′−1)d)

which is known as the tribes function. Suppose not all of the negative examples
from the proof of Theorem 3 are part of a teaching set for f , i.e., that there is

some S ⊆ ∪s′−1
i=1 Ti such that 1|S=0 /∈ TS(f). Let TS be the term exactly satisfied

by 1|S=0 so that TS includes variable xi if and only if the i’th bit of 1|S=0 is
set to 1. Then the concept f ′ = f ∨ TS will label TS(f) consistently with f .
Clearly any positive example in TS(f) will also be positive under f ′. Take any
negative example y ∈ TS(f). Unless y satisfies TS , it is negative under f ′. But
to satisfy TS , y ≤ 1|S=0. This is impossible, since if y < 1|S=0 it would be a
positive example, and y = 1|S=0 is not in the teaching set by assumption.

Thus TS(f) must contain a negative example for every S ⊆ ∪s′−1
i=1 Ti satisfying

|S ∩ Ti| = 1 for all i. For f there are ds′−1 = ( n
s′−1 )s′−1 such sets. ut

Average-case teaching dimension of at-most-s-term mDNFs. We
now prove Theorem 1. The idea is to show that almost every at-most-s-term
monotone DNF in fact has exactly s terms; as we will see, these exactly-s-term
monotone DNFs can be taught very efficiently with O(ns) examples. The remain-
ing concepts are so few that they can be handled with a brute-force approach
and the overall average teaching dimension will still be O(ns).

We start with a simple lemma from [7]:

Lemma 1 ([7]). Let c be any concept in Ms. Then the teaching dimension of
c with respect to M≤s is at most (n + 1)s.



Proof sketch: Let φ = T1∨· · ·∨Ts be the unique s-term mDNF for c. For each
i = 1, . . . , s the teaching set contains the positive example 0|Ti=1 and contains
|Ti| many negative examples which are the neighbors of 0|Ti=1 that are obtained
by setting one of the 1s to 0. Each of the s terms thus contributes at most n + 1
examples; an easy argument based on Fact 1 given in [7] shows that this is indeed
a teaching set. ut

Lemma 2. For 1 ≤ i < 1
4e

n
72 , we have 2ni−1

i! ≤ |Mi| ≤
2ni

i! .

Proof. The upper bound is easy: the number of i-term mDNFs is at most the
number of ways to choose i terms from the set of all 2n many monotone terms

over variables x1, . . . ,xn. The latter quantity is
(
2n

i

)
≤ 2ni

i! .
For the lower bound we consider all 2ni ways to select a sequence of i terms

(with replacement) from the set of all 2n possible monotone terms. We show
that at least half of these 2ni ways result in a sequence T1, . . . , Ti of terms which
are pairwise incomparable, i.e., no Ti implies any other Tj . Each such sequence
yields an i-term mDNF, and each such mDNF occurs i! times because of different
orderings of the terms in a sequence. This gives the lower bound.

Note that a collection of i monotone terms T1, . . . , Ti will be pairwise incom-
parable if the following two conditions hold: (1) Each of the i terms contains
between 5n/12 and 7n/12 many variables, and (2) Viewing each term Ti as a
set of variables, for any j 6= k the symmetric difference |Tj∆Tk| is of size at
least n/4. (This is because if |Tj |, |Tk| ∈ [5n/12, 7n/12] and Tj ⊆ Tk, then the
symmetric difference must be of size at most n/6.)

For condition (1), Hoeffding’s bound implies that a uniformly selected mono-
tone term T will contain fewer than 5n/12 or more than 7n/12 many variables
with probability at most 2e−n/72, so a union bound gives that condition (1)
fails with probability at most 2ie−n/72. For condition 2, observe that given
two uniform random terms Tj , Tk, each variable x` is independently in their
symmetric difference with probability 1/2. Thus Hoeffding’s bound implies that
|Tj∆Tk| < n/4 with probability at most e−n/8. By a union bound, the probabil-
ity that condition (2) fails is at most

(
i
2

)
e−n/8. Thus for i < 1

4e
n
72 , the probability

that conditions (1) and (2) both hold is at least 1/2. ut

Fix 1 ≤ s ≤ 1
4e

n
72 . It is easy to check that by Lemma 2, for any k < s we have

|Mk| < 1
2 |Mk+1|. Thus (again by Lemma 2) we have |M≤s−1| ≤

2ns−n+1

(s−1)! while

|Ms| ≥
2ns−1

s! . Combining these bounds gives that |Ms|
|M≤s−1|

≥ 2n

4s . By Lemma 1,

each concept c ∈ M≤s which is in Ms can be taught using n(s + 1) examples.
Each of the remaining concepts can surely be taught using at most 2n examples.
We thus have that the average teaching dimension of M≤s is at most

(n + 1)s|Ms| + 2n|M≤s−1|

|Ms| + |M≤s−1|
≤ (n + 1)s +

2n

1 + 2n/4s
≤ (n + 1)s + 4s,

giving us the following result which is a slightly sharper version of Theorem 1:

Theorem 5. Let s be any value 1 ≤ s ≤ 1
4e

n
72 . The class M≤s of at-most-s-term

monotone DNF has average teaching dimension at most s(n + 5).



Note that if s > 1
4e

n
72 , then 2n is bounded by some fixed polynomial in s, and

thus the worst-case teaching number 2n is actually poly(n, s) for such a large
s. This gives the following corollary which says that the class of at-most-s-term
monotone DNF is efficiently teachable on average for all possible values of s:

Corollary 1. Let s be any value 1 ≤ s ≤ 2n. The class M≤s of at-most-s-term
monotone DNF has average teaching dimension poly(n, s).

4 DNFs

Now we will tackle the teaching dimension of the unrestricted class of size-at-
most-s DNFs. The high-level approach is similar to the monotone case, but the
details are more complicated. The idea is to identify a subset S of D≤s and show
that (i) any function f ∈ S can be uniquely specified within all of D≤s using

only O(ns) examples; and (ii) at most a O(s)
2n fraction of all functions in D≤s

do not belong to S. Given (i) and (ii) it is easy to conclude that the average
teaching number of D≤s is O(ns).

The challenge is to devise a set S that satisfies both conditions (i) and (ii). In
the monotone case using Fact 1 it was easy to show that Ms is an easy-to-teach
subset, but non-monotone DNF are much more complicated (no analogue of
Fact 1 holds for non-monotone DNF) and it is not at all clear that all functions
in Ds are easy to teach. Thus we must use a more complicated set S of easy-
to-teach functions; we define this set and prove that it is indeed easy to teach
in Section 4.2. (This argument uses Balbach’s results for exactly-2-term DNFs.)
The argument that (ii) holds for S is correspondingly more complex than the
counting argument for mDNFs because of S’s more involved structure; we give
this in Section 4.3.

4.1 Preliminaries

We will borrow some terminology from Balbach [3]. Two terms Ti and Tj have
a strong difference at k if Ti[k], Tj [k] ∈ {0, 1} and Ti[k] 6= Tj [k] (e.g., x1x̄5x6

and x̄5x̄6x12x23 have a strong difference at position 6). Two terms have a weak
difference at k if Ti[k] ∈ {0, 1} and Tj [k] = ∗ or vice-versa. Two weak differences
at positions k and ` are of the same kind if Ti[k], Ti[`] ∈ {0, 1} and Tj [k] = Tj [`] =
∗ or vice-versa, that is both ∗’s occur in the same term (e.g., x̄5x6 and x̄5x̄6x12x23

have two weak differences of the same kind at positions 12 and 23). Two weak
differences at positions k and ` are of different kinds if Ti[k], Tj [`] ∈ {0, 1} and
Tj [k] = Ti[`] = ∗ or vice-versa (e.g., x̄5x6 and x̄5x12 have two weak differences
of different kinds at positions 6 and 12).

Now we introduce some new terminology. Given y ∈ {0, 1}n which satisfies
a term T , we denote by NT (y) the set consisting of y and all its neighbors that
do not satisfy T. A satisfying assignment y ∈ {0, 1}

n
of a term T in φ is called a

cogent corner point of T if all the neighbors of y that satisfy φ satisfy T , and all
the neighbors that do not satisfy T do not satisfy φ. Note that if y is a cogent



corner point of T , then each of the neighbors of y in NT (y) does not satisfy φ. A
pair of points y, z ∈ {0, 1}

n
that satisfy a term T are said to be antipodal around

T if yk = zk for all k such that T [k] = ∗. A pair of points are cogent antipodal
points around T if they are both cogent corner points of T and antipodal around
T . This leads us to our first preliminary lemma:

Lemma 3. Let φ = T1 ∨ · · · ∨ Ts be any DNF. Let y be a cogent corner point of
Ti. Any T̂ that covers y and is compatible with NTi

(y) must imply Ti.

Proof. Let T̂ be any term that covers y. Observe that for each literal ` in Ti,
if T̂ did not contain ` then T̂ would not be compatible with NTi

(y) since the
corresponding negative neighbor of y is contained in NTi

(y) but would be covered

by T̂ . It follows that every literal in Ti is also present in T̂ , and consequently T̂
implies Ti. ut

Two terms are said to be close if they have at most one strong difference.
Note that there is no strong difference between two terms if and only if they
have some satisfying assignment in common, and there is one strong difference
between two terms if and only if they have neighboring satisfying assignments.

Given a Boolean function f : {0, 1}
n
→{0, 1}, we let Gf denote the undirected

graph whose vertices are the satisfying assignments of f and whose edges are
pairs of neighboring satisfying assignments. A cluster C of f is a set of satisfying
assignments that form a connected component in Gf . We sometimes abuse no-
tation and write C to refer to the Boolean function whose satisfying assignments
are precisely the points in C. We say that a DNF φ computes cluster C if the set
of satisfying assignments for φ is precisely C. The DNF-size of a cluster C is the
minimum number of terms in any DNF that computes C. For intuition, we can
view a cluster as being a connected set of positive points that have a “buffer”
of negative points separating them from all other positive points. The following
lemma is immediate:

Lemma 4. Let f be an element of Ds, i.e. f is an exactly-s-term DNF. Let
C1, . . . , Cr be the clusters of f . Then DNF-size(C1) + · · · + DNF-size(Cr) = s.

4.2 Teaching S

We are now ready to define our “nice” (easy to teach) subset S ⊆ D≤s of
size-at-most-s DNFs. (We emphasize that S is a set of functions, not of DNF
expressions.) S consists of those exactly-s-term DNFs (so in fact S ⊆ Ds) all
of whose clusters either: (1) have DNF-size 1; (2) have DNF-size 2; or (3) have
DNF-size k, for some k, and are computed by a DNF φ = T1 ∨ · · · ∨ Tk in which
each Ti has a pair of cogent antipodal points around it.

Note that if a cluster has DNF-size 1, then it clearly satisfies condition (3)
above (in fact every pair of antipodal points for the term is cogent). Thus we can
simplify the description of S: it is the set of all exactly s-term DNFs all of whose
clusters either: (i) have DNF-size k and are computed by a DNF φ = T1∨· · ·∨Tk

in which each Ti has a pair of cogent antipodal points around it, or (ii) have



DNF-size exactly 2. (Note that there do in fact exist Boolean functions of DNF-
size 2 for which any two-term representation T1 ∨ T2 has some term Ti with no
pair of cogent antipodal points around it, e.g., x1x3 ∨ x2x3, and thus condition
(ii) is non-redundant.)

The teaching set for functions in S. We will use the following theorem
due to Balbach [3]:

Theorem 6. Let c be any element of D2 (i.e., an exactly-2-term DNF). The
teaching dimension of c with respect to D≤2 is at most 2n + 4.

The teaching set specified in [3] to prove Theorem 6 consists of at most 5 positive
points along with some negative points. Given f ∈ D2, we define BTS(f) to be
the union of the teaching set specified in [3] together with all negative neighbors
of the (at most five) positive points described above (the set specified in [3]
already contains some of these points). With this definition a straightforward
consequence of the analysis of [3] is the following:

Lemma 5. Let φ = T1∨· · ·∨Ts be a DNF that has a cluster C with DNF-size 2.
Let BTS(C) be as described above. Let y be a satisfying assignment for φ that is

contained in C. Then any term T̂ that covers y and is consistent with BTS(C)
must imply C.

Given any function f ∈ S, our teaching set TS(f) for f will be as follows.
For each cluster C of f , if C:

– satisfies condition (i): then for each term Ti described in condition (i),
the set TS(f) contains a pair y, z of cogent antipodal points for Ti (these are
positive examples) and contains all negative neighbors of these two positive
examples (i.e., TS(f) contains NTi

(y) and NTi
(z)). Thus TS(f) includes at

most k(2 + 2n) many points from such a cluster.
– does not satisfy condition (i) but satisfies (ii): then we will give the

set BTS(C) described above. By Theorem 6 and the definition of BTS(C),
we have that BTS(C) contains at most 7n + 4 points.

Lemma 4 now implies that TS(f) contains at most O(ns) points.

Correctness of the teaching set construction. We now prove that the
set TS(f) is indeed a teaching set that uniquely specifies f within all of D≤s.

We first observe that any term compatible with TS(f) can only cover positive
examples from one cluster of φ.

Lemma 6. Let y be any positive example in TS(f) and let T be any term that
covers y and is compatible with TS(f). Let C be the cluster of φ that covers y.
Then if z is any positive example in TS(f) that is not covered by C, T does not
cover z.

Proof. If C satisfies condition (i) then y must be a cogent corner point and
Lemma 3 gives the desired conclusion. If C does not satisfy (i) but satisfies (ii),
then the conclusion follows from Lemma 5. ut



The next two lemmas show that any set of terms that covers the positive
examples of a given cluster must precisely compute the entire cluster and only
the cluster of the original function:

Lemma 7. Let C be any case (i) cluster of DNF-size k. Let PC be the intersec-

tion of the positive examples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ k

terms such that the DNF T̂1∨· · ·∨ T̂j both: (a) is compatible with TS(f), and (b)

covers every point in PC . Then it must be the case that j = k and T̂1 ∨ · · · ∨ T̂j

exactly computes C (in fact each term T̂i is equivalent to Ti up to reordering).

Proof. By Lemma 3, a term T̂ that covers a cogent antipodal point from term Ti

cannot cover any of the other 2k − 2 cogent antipodal points from other terms,
and thus we must have j = k since fewer than k terms cannot cover all of PC .
Moreover, any term T̂i must cover a pair of antipodal points corresponding to
a single term (which wlog we call Ti). For each antipodal pair corresponding to

a term Ti, the covering term T̂i must be of size at least |Ti|, and since they are
cogent antipodal points, the covering term cannot be any longer than |Ti|, so in

fact we have that T̂i and Ti are identical. This proves the lemma. ut

Lemma 8. Let C be any case (ii) cluster. Let PC be the intersection of the

positive examples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ 2 terms such

that the DNF T̂1 ∨ · · · ∨ T̂j both: (a) is compatible with TS(f), and (b) covers

every point in PC . Then it must be the case that j = 2 and T̂1 ∨ T̂2 exactly
computes C.

Proof. The fact that BTS(C) is a teaching set (for the exactly-2-term DNF
corresponding to C, relative to D≤2) implies the desired result, since no single
term or 2-term DNF not equivalent to C can be consistent with BTS(C), and

any DNF T̂1∨· · ·∨T̂j as specified in the lemma must be consistent with BTS(C).
ut

The pieces are in place for us to prove our theorem:

Theorem 7. For any f ∈ S, the set TS(f) uniquely specifies f within D≤s.

Proof. By Lemma 6, positive points from each cluster can only be covered by
terms that do not include any positive points from other clusters. By Lemmas 7
and 8, for each cluster C, the minimum number of terms required to cover all
positive points in the cluster (and still be compatible with TS(f)) is precisely
the DNF-size of C. Since f is an exactly-s-term DNF, Lemma 4 implies that
using more than DNF-size(C) many terms to cover all the positive points in any
cluster C will “short-change” some other cluster and cause some positive point
to be uncovered. Thus any at-most-s-term DNF φ that is consistent with TS(f)
must have the property that for each cluster C, at most DNF-size(C) of its terms
cover the points in PC ; so by Lemmas 7 and 8, these terms exactly compute C,
and thus φ must exactly compute f. ut



4.3 Average-case teaching dimension of DNFs

In this section we will show that all but at most a O(s)
2n fraction of functions in

D≤s are in fact in S. We do this by showing that at least a 1 − O(s)
2n fraction

of functions in D≤s are in the easy-to-teach set S, i.e. they belong to Ds and
are such that each cluster satisfies either condition (i) or (ii) from Section 4.2.
Since we have shown that each f ∈ S can be uniquely specified within D≤s using
O(ns) examples, this will easily yield that the average teaching number over all
of D≤s is O(ns).

First we show that most functions in D≤s are in fact in Ds. We can bound
|Di| using the same approach as we did for monotone DNFs.

Lemma 9. For i < (9/7)n/3, we have 1
2 · 3ni

i! ≤ |Di| ≤
3ni

i! .

Proof. As in Lemma 2, the upper bound is easy; we may bound the number of
functions in Di by the number of ways to choose i terms from the set of all 3n

possible terms over variables x1, . . . ,xn. This is
(
3n

i

)
≤ 3ni

i! .
For the lower bound, we first note that a DNF formula consisting of i terms

that are all pairwise far from each other cannot be logically equivalent to any
other DNF over a different set of i terms. We will show that at least half of
all 3ni possible sequences of i terms have the property that all i terms in the
sequence are pairwise far from each other; this gives the lower bound (since each
such set of i terms can be ordered in i! different ways).

So consider a uniform random draw of i terms T1, . . . , Ti from the set of all
3n possible terms. The probability that T1 and T2 are close is the probability
that they have no strong differences plus the probability that they have exactly
one strong difference. This is (7/9)n + n(7/9)n−1(2/9) < (n + 1)(7/9)n. By a
union bound over all pairs of terms, the probability that any pair of terms is
close at most

(
i
2

)
(n + 1)(7/9)n which is less than 1/2 for i < (9/7)n/3. ut

As in Section 3, as a corollary we have that |Ds|
|D≤s−1|

≥ 3n

4s for s ≤ (9/7)n/3.

We now bound the number of DNFs in Ds that are not in S. To do this, we
consider choosing s terms at random with replacement from all 3n terms:

Lemma 10. Fix any s ≤ (9/8)n/25. Let f = T1, . . . , Ts be a sequence of exactly
s terms selected by independently choosing each Ti uniformly from the set of all
3n possible terms. Let A(Ti) denote the event that term Ti in f has no cogent
antipodal pairs, and B(Ti) denote the event that there is more than one other

term close to Ti in f . Then Pr[∃Ti ∈ f : A(Ti)&B(Ti)] ≤ O(s)
2n , where the

probability is taken over the choice of f .

Using Lemma 10 we can bound the number of functions f ∈ Ds that are not in
S. If f ∈ Ds\S, then f must have a DNF formula representation φ = T1∨· · ·∨Ts

in which some term Ti:

1. has no cogent antipodal pairs, and
2. has at least two other terms Tj , Tk that are close to it.



(If there were no such term, then for any representation φ = T1 ∨ · · · ∨ Ts for
the function f , every Ti is contained in either a cluster of DNF-size 1 or 2, or a
cluster of DNF-size k with a pair of good antipodal points around it. But then
φ would be in S.)

We will call such a syntactic DNF formula “bad.” Lemma 10 tells us that

the number of bad syntactic formulas is at most 3nsO(s)
2n , since there are 3ns

syntactic formulas. Notice that any bad formula φ must have s distinct terms
(since the function it computes belongs to Ds), and since these terms can be
ordered in s! different ways, there are at least s! bad formulas that compute the
same function as φ. Consequently the number of bad functions in Ds, |Ds \S|, is

at most O(s)
2n

3ns

s! . By Lemma 9, |Ds| is at at least 3ns

2s! . This gives the following:

Corollary 2. |Ds\S|
|Ds|

≤ O(s)
2n .

We now proceed to prove Lemma 10.

Proof. The bulk of the argument is in showing that Pr[A(T1) & B(T1)] is at
most O(1) · 2−n; once this is shown a union bound gives the final result.

We condition on the outcome of T1. Using the fact that each variable occurs
independently in T1 (either positive or negated) with probability 2/3, a Chernoff
bound gives that Pr[|T1| < .08n] ≤ 2−n, so we have that

Pr[A(T1) & B(T1)] ≤ 2−n+
∑

T :|T |≥.08n

Pr[A(T1) & B(T1) | (T1 = T )]·Pr[T1 = T ].

Next we show that Pr[A(T1) & B(T1) | (T1 = T )] ≤ O(1) · 2−n for every T
satisfying |T | ≥ .08n; this implies an O(1) · 2−n bound on Pr[A(T1) & B(T1)].
To do this we consider a third event which we denote by C(T1); this is the event
that T1 is close to at most 25 of the terms T2, . . . , Ts. Clearly we have that

Pr[A(T1) & B(T1) | (T1 = T )] = Pr[A(T1) & B(T1) & ¬C(T1) | (T1 = T )]

+Pr[A(T1) & B(T1) & C(T1) | (T1 = T )] (1)

and we proceed by bounding each of the terms in (1).

The first term is at most Pr[¬C(T1) | (T1 = T )]. Fix any α ∈ [.08, 1] and any
term T of length αn, and fix T1 = T . Then the probability (over a random draw
of T2 as in the statement of the lemma) that T2 is close to T1 is the probability
that T1 and T2 have one strong difference plus the probability that T1 and T2 have

no strong difference, which is exactly αn 1
3

(
2
3

)αn−1
+

(
2
3

)αn
≤ 2αn

(
2
3

)αn
. Using

the independence of the terms T2, . . . , Ts and a union bound, it follows that the
probability that there exists any set of K terms in f which are all close to T1 is at

most
(

s
K

)
(2αn)K

(
2
3

)Kαn
. It is not hard to verify that for any 1 ≤ s ≤ (9/8)n/25,

any K ≥ 26, and any α ∈ [.08, 1], this quantity is asymptotically less than 2−n.

It remains to bound the second term of (1) by O(1) · 2−n. We do this using
the following observation:



Proposition 1. Let f = T1, . . . , Ts be any sequence of s terms. If T1 has no
cogent antipodal pairs with respect to f and is close to at most K of the terms
T2, . . . , Ts, then there must be some term among T2, . . . , Ts that is close to T1

and contains at most k = dlog Ke + 1 variables not already in T1.

Proof. We show that if every term in f close to T1 contains more than k variables,
there must remain some cogent antipodal pair for T1. Let r be the number of
variables in T1 and let ` = n− r. For any z ∈ {0, 1}

`
let QT1

(z) denote the set of
points in {0, 1}n consisting of the antipodal pair induced by z on T1 (these two
points each satisfy T1) and the 2r neighbors of these points that do not satisfy
T1. Thus QT1

(z) = QT1
(z), and there are 2`−1 distinct QT1

(z), each representing
a possible cogent antipodal pair.

Consider a term Ti that is close to T1, and partition its satisfying assignments
according to the 2` assignments on the ` variables not contained in T1. Since Ti

will only eliminate the cogent antipodal pair represented by the neighborhood
QT1

(z) if it covers some point in QT1
(z), Ti can only eliminate as many cogent

antipodal pairs as it has partitions. But if Ti contains more than k of the `
variables not already in T1, then there are fewer than 2`−k different ways to
set the ` bits outside of T1 to construct a satisfying assignment for Ti, and Ti

has fewer than 2`−k different partitions. Since by assumption there are at most
K ≤ 2k−1 terms close to T1, there are fewer than 2k−1 · 2`−k = 2`−1 different
QT (z) eliminated, and T must have a cogent antipodal pair left. ut

By Proposition 1, we know that if A(T1) occurs (T1 has no cogent antipodal
pairs) and C(T1) occurs (T1 is close to no more than K = 25 other terms),
then there must be some term close to T1 that has at most k = 6 variables
not in T1. Thus we have that Pr[A(T1) & B(T1) & C(T1) | (T1 = T )] is at
most the probability there exist two terms close to T1, one of which contains
at most k = 6 variables not in T1. We saw earlier that the probability that
a randomly chosen term is close to T1 is at most 2αn(2/3)αn. However, the
probability that a randomly chosen term is close to T1 and contains at most
6 variables not in T1 is much lower (because almost all of the (1 − α)n vari-
ables not in T1 are constrained to be absent from the term); more precisely

this probability is at most 2αn
(
(1−α)n

6

) (
2
3

)αn (
1
3

)(1−α)n−6
. A union bound over

all possible pairs of terms gives us that the second term of (1) is at most

2αn
(

s
2

)(
(1−α)n

6

)
36

(
2
3

)2αn (
1
3

)(1−α)n
. It is straightforward to check that this is

at most O(1) · 2−n for all 1 ≤ s ≤ (9/8)n/25 and all α ∈ [0, 1].
Thus, we have bounded Pr[A(T1) & B(T1)] by O(1) · 2−n. A union bound

over the s terms gives that Pr[∃Ti ∈ f : A(Ti) & B(Ti)] is at most O(s)2−n, and
the lemma is proved. ut

Theorem 8. Let s ≤ (9/8)n/25. The average teaching dimension of D≤s, the
class of DNFs over n variables with at most s terms, is O(ns).

Proof. Theorem 7 gives us that the teaching number of any concept in S ⊂ Ds is
O(ns). By Lemma 9, we have that |D≤s−1| ≤

4s
3n |Ds|. This leaves us with Ds \S,



whose size we bounded by O(s)
2n |Ds| in Corollary 2. Combining these bounds, we

are ready to bound the average teaching number of |D≤s|. Since we can teach
any bad concept with at most 2n examples, the average teaching number is at
most

O(ns)|S| + 2n(|D≤s−1| + |Ds \ S|)

|Ds| + |D≤s−1|
≤

O(ns)|Ds| + 2n( 4s
3n |Ds| +

O(s)
2n |Ds|)+

|Ds| + |D≤s−1|

≤ O(ns) + (2/3)n · 4s + O(s) = O(ns)

and the theorem is proved. ut

As in Corollary 1, we have 2n ≤ poly(s) if s > (9/8)n/25, and thus the worst-
case teaching number 2n is actually poly(n, s) for such large s. This gives the
following corollary:

Corollary 3. Let s be any value 1 ≤ s ≤ 2n. The class D≤s of at-most-s-term
DNF has average teaching number poly(n, s).

5 Teaching Dimension of k-juntas

A Boolean function f over n variables depends on its i-th variable if there are
two inputs x, x′ ∈ {0, 1}

n
that differ only in the i-th coordinate and that have

f(x) 6= f(x′). A k-junta is a Boolean function which depends on at most k of its
n input variables. The class of k-juntas (or equivalently NC0

k functions) is well
studied in computational learning theory, see e.g., [4, 11, 1]. We write Jk to
denote the class of Boolean functions f : {0, 1}

n
→{0, 1} that depend on exactly

k variables, and we write J≤k to denote the class J≤k = ∪k′≤kJk′ of Boolean
functions over {0, 1}n that depend on at most k variables, i.e., J≤k is the class
of all k-juntas.

We analyze the worst-case and average-case teaching dimensions of the class
of k-juntas, and show that while the worst-case teaching dimension has a log-
arithmic dependence on n, the average-case dimension has no dependence on
n. Thus k-juntas are another natural concept class where there is a substantial
asymptotic difference between the worst-case and average teaching dimensions.

Worst-Case teaching dimension of k-juntas. We recall the following:

Definition 1. Let k ≤ n. A set S ⊆ {0, 1}
n

is said to be an (n, k)-universal set

if for any 1 ≤ i1 < i2 . . . < ik ≤ n, it holds that ∀y ∈ {0, 1}
k
,∃x ∈ S satisfying

(xi1 , . . . , xik
) = (y1, . . . , yk)

Nearly matching upper and lower bounds are known for the size of (n, k)-
universal sets:

Theorem 9 ([14]). Let k ≤ n. Any (n, k)-universal set has size Ω(2k log n),
and there exists an (n, k)-universal set of size O(k2k log n).

This straightforwardly yields:



Theorem 10. The teaching dimension of J≤k is at least Ω(2k log n) and at
most O(k2k log n).

Proof. For the lower bound, we show that any teaching set for the identically-0
concept c ≡ 0 (which is a k-junta for any k ≥ 0) must be an (n, k)-universal
set. Suppose S ⊆ {0, 1}n is not an (n, k)-universal set, i.e., there is some i1 <

· · · < ik and some y ∈ {0, 1}
k

such that for every x ∈ S we have (xi1 , . . . , xik
) 6=

(y1 . . . yk). Then the k-junta defined as

c′(x) =

{
1 if (xi1 . . . xik

) = (y1 . . . yk)

0 otherwise

labels S the same way as c.
Now we prove the upper bound. Let c be any k-junta that has R = {i1, . . . , ir}

as its set of relevant variables (so r ≤ k). We describe a teaching set for c. For
each relevant variable ij ∈ R, there is a pair of examples x, x′ ∈ {0, 1}n that
disagree only in their ij-th bit and have c(x) 6= c(x′). Let the set S consists of
these 2r examples together with an (n, k)-universal set; we will argue that S is
a teaching set for c and thus prove the theorem.

Suppose that c′ is some k-junta that is consistent with S. Clearly c′ must de-
pend on every variable in R or else it would label one of the first 2r examples dif-
ferently from c. We claim that c′ cannot depend on any additional variables. Sup-
pose to the contrary that c′ depends on exactly q additional variables j1, . . . , jq.
Given a ∈ {0, 1}

r
and b ∈ {0, 1}

q
, let V (a, b) = {x ∈ {0, 1}

n
: (xi1 . . . xir

) = a
and (xj1 . . . xjq

) = b}. Since c′ depends on j1, . . . , jq , there must be some
a ∈ {0, 1}

r
and b 6= b′ ∈ {0, 1}

q
such that all the examples in V (a, b) take

one value under c′ while all the examples in V (a, b′) take the other value under
c′. Furthermore, since S is an (n, k)-universal set and |a|+|b| ≤ k, S must contain
some example x1 from V (a, b) and some example x2 from V (a, b′). But c only
depends on variables i1, . . . , ir, so c assigns x1 and x2 the same label while c′

does not. Thus c and c′ must have the exact same set of r ≤ k relevant variables.
Since they agree on an (n, k)-universal set, they agree for every setting of those
r variables, and thus they agree on all of {0, 1}n. ut

Average-case teaching dimension of k-juntas. The idea is similar to the
case of monotone DNF: we show that k-juntas with exactly k relevant variables
can be taught with 2k examples (independent of n), and then use the fact that
the overwhelming majority of k-juntas have exactly k relevant variables.

Lemma 11. Let c be any concept in Jk. Then the teaching dimension of c with
respect to J≤k is at most 2k.

Proof. Given any k-junta c with exactly k relevant variables, let S be the set of
2k examples in which all irrelevant variables are always set to 0 and the relevant
variables range over all 2k possible settings. It is straightforward to see that S
is a teaching set for c. ut



We now claim that 1
2

(
n
k

)
22k

≤ |J≤k| ≤
(
n
k

)
22k

. The upper bound is clear since

any k-junta can be specified by presenting k variables (
(
n
k

)
possibilities) and a

Boolean function on those k variables (22k

possibilities). The lower bound (which
is very crude but sufficient for our purposes) follows from the easily verified fact

that at least half of all 22k

functions on {0, 1}k in fact depend on all k variables.
It is easy to see from these bounds that |Jk| strictly increases with k for all k,

and thus we have |J≤k−1| ≤ (k − 1)|Jk−1| ≤ (k − 1)
(

n
k−1

)
22k−1

.

By Lemma 11 we can specify any function in Jk with at most 2k examples,
and by Theorem 9 we can specify any of the other functions in J≤k (i.e., any
function in J≤k−1) with at most O(k2k log n) many examples. It follows that
the average teaching dimension of J≤k is at most

2k|Jk| + O(k2k log n) · |J≤k−1|

|Jk| + |J≤k−1|
≤ 2k +

O(k2k log n) · (k − 1)
(

n
k−1

)
22k−1

1
2

(
n
k

)
22k

.

The second term on the right simplifies to

O(k2k log n) · k(k − 1)

22k−1(n − k + 1)

which is easily seen to be o(1) for any k. We have thus proved:

Theorem 11. The average teaching dimension of the class J≤k of k-juntas is
at most 2k + o(1).

6 Sparse GF2 Polynomials

A GF2 polynomial is a multilinear polynomial with 0/1 coefficients that maps
{0, 1}

n
to {0, 1} where all arithmetic is done modulo 2. Since addition mod 2

corresponds to parity and multiplication corresponds to AND, a GF2 polynomial
can be viewed as a parity of monotone conjunctions. It is well known, and not
hard to show, that every Boolean function f : {0, 1}

n
→{0, 1} has a unique GF2

polynomial representation. (For example, the parity function has x1 ⊕ · · · ⊕ xn

as its GF2 polynomial, and x1 ∨ x2 has x1 ⊕ x2 ⊕ x1x2.)
A natural measure of the size of a GF2 polynomial is the number of monomi-

als that it contains. In keeping with our usual notation, let Gs denote the class
of all Boolean functions f : {0, 1}

n
→{0, 1} that have GF2 polynomial represen-

tations with exactly s monomials and let G≤s denote ∪s′≤sGs′ . We sometimes
refer to functions in G≤s as being s-sparse GF2 polynomials. The class of s-sparse
GF2 polynomials has been studied by several researchers in learning theory and
complexity theory, see e.g., [12, 5, 13].

Roth and Benedek [12] showed that any f ∈ G≤s is uniquely determined by
the values it assumes on those x ∈ {0, 1}

n
that contain at least n− (1+ blog2 sc)

many 1s. They also showed that it is in fact necessary to specify the value of
f on every such point even in order to uniquely determine the parity (even or
odd) of |f−1(1)| where f ranges over all of G≤s. We thus have:



Theorem 12 ([12]). Fix any 1 ≤ s ≤ 2n. The (worst-case) teaching dimension

of G≤s is
∑1+blog2 sc

i=0

(
n
i

)
(which is nΘ(log s) for s subexponential in n).

In contrast, we show in the next subsection that if s is sufficiently small, the
average-case teaching dimension of G≤s is O(ns):

Theorem 13. Fix 1 ≤ s ≤ (1− ε) log2 n, where ε > 0 is any constant. Then the
average-case teaching dimension of G≤s is at most ns + 2s.

For s = ω(1), s < (1 − ε) log2 n, this gives a superpolynomial separation
between worst-case and average-case teaching dimension of s-sparse GF2 poly-
nomials.

Proof of Theorem 13. We now define the “nice” (easy-to-teach) subset of
G≤s, in analogy with S in Section 4. We say that a function f = M1⊕· · ·⊕Ms ∈
Gs is individuated if for each i = 1, . . . , s there is some j ∈ {1, . . . , n} such that
the variable xj occurs in monomial Mi and does not occur in any of the other
s − 1 monomials. Let I ⊆ Gs denote the set of all functions in Gs that are
individuated.

We first show that any function in I can be specified using few examples:

Lemma 12. For any f ∈ I, the teaching dimension of f with respect to G≤s is
at most ns + 2s − 1.

Proof. We introduce some useful terminology. Given x1, . . . , xr ∈ {0, 1}n, we
write join(x1, . . . , xr) to denote the string z ∈ {0, 1}n that has for all i = 1, . . . , n,
zi = max{x1

i , . . . , x
r
i }.

Let f = M1 ⊕ · · · ⊕ Ms ∈ I be any individuated GF2 polynomial. For i =
1, . . . , s let yi denote the minimal (with respect to bitwise ≤ ordering described
above) assignment that satisfies Mi, i.e., yi has 1s in precisely the variables
contained in Mi. Note that since f is individuated the points y1, . . . , ys are all
pairwise incomparable w.r.t. the bitwise partial ordering. Thus we have f(yi) = 1
but f(x) = 0 for any x such that x < yi for some i. We sometimes say that y is
above x if x ≤ y.

Let S ⊂ {0, 1}n be the set which contains: (a) each yi (which is a positive
example) and all of its neighbors that can be obtained by flipping a single 1
to 0 (all of these are negative examples); and (b) the (s − 1) additional points
z2 = join(y1, y2), z3 = join(y1, y2, y3), . . . , zs = join(y1, y2, . . . , ys) (it is not
hard to see that zi is a positive example for i odd and a negative example for i
even, since zi satisfies precisely the monomials M1, . . . ,Mi and M1 ⊕· · ·⊕Ms is
individuated). There are at most (n + 1)s points from (a) and s− 1 points from
(b) so we have |S| ≤ ns + 2s − 1.

We will show that S is a teaching set for f and thus prove the lemma. So
suppose that f̂ = M̂1 ⊕· · ·⊕ M̂r is some GF2 polynomial that is consistent with
S where r ≤ s. Let us write ŷj for the minimal assignment that satisfies M̂j .

We first observe that since y1 is a positive example, there must be at least
one ŷj such that ŷj ≤ y1. Since y1 < z2 and z2 is a negative example, there
must be at least two ŷj such that ŷj ≤ z2. Since the labels of z2, z3, . . . always



alternate, proceeding in this fashion there must be at least s many ŷj such that
ŷj ≤ zs. It follows that r = s, that y1 is above precisely one ŷ1, and that in fact
each zi is above precisely i of the ŷj ’s (call them ŷ1, . . . , ŷi).

Now the negative examples below y1 show that in fact we must have ŷ1 = y1.
Since z2 is above exactly one other ŷj besides ŷ1 (namely ŷ2), and it is above y2

which is labeled positive, we must have ŷ2 ≤ y2; but since all of y2’s downward
neighbors are labeled negative, it must be the case that ŷ2 = y2. Similar logic
applied successively to z3, . . . , zs shows that each of ŷ3, . . . , ŷs must equal the
corresponding y3, . . . , ys. Thus we have M̂i = Mi for i = 1, . . . , s, so f̂ = f and
the lemma is proved. ut

Now observe that |Gs| =
(
2n

s

)
< 2ns

s! , and thus ( 2n

s )s ≤ |G≤s| = |Gs| +

|G≤s−1| < 2ns

s! + (s − 1) 2ns−n

(s−1)! = 2ns

s! + 2ns−n

(s−2)! . Our next lemma shows that al-

most every function in Gs (and thus almost every function in G≤s) is in fact
individuated:

Lemma 13. We have |I| ≥ 2ns

s! (1 − s · e−nε

), and thus there are at most s ·

e−nε

· 2ns

s! + 2ns−n

(s−2)! many functions in G≤s \ I.

Proof. Let (M1, . . . ,Ms) be a sequence of s monomials obtained by drawing
each one uniformly from all 2n possible monomials. We will show that of the 2ns

possible outcomes for (M1, . . . ,Ms), at most an s·e−nε

fraction have the property
that the corresponding GF2 polynomial M1 ⊕ · · · ⊕ Ms is not individuated,
and consequently the number of sequences for which the corresponding GF2

polynomial is individuated is at least 2ns(1−s·e−nε

). Each such sequence clearly
consists of s distinct monomials (since no sequence in which some monomial
occurs more than once can be individuated), so accounting for the s! different
orderings of s distinct elements, we have that there are at least 2ns(1−s·e−nε

)/s!
many individuated GF2 polynomials.

We say that a variable individuates a monomial Mi if it occurs in Mi but in
no other Mj . For any fixed variable xj , and fixed index 1 ≤ i ≤ s, the probability
(over the random choice of (M1, . . . ,Ms)) that xj individuates Mi is precisely
1/2s, since xj must occur in Mi (probability 1/2) and must be absent from each
of the other s − 1 terms (probability 1/2s−1). By independence, the probability
that none of the n variables individuates Mi is

(
1 − 1

2s

)n
≤ e−n/2s

≤ e−nε

,
where we have used the fact that s ≤ (1 − ε) log2 n. A union bound now gives
that the probability that any of the s monomials M1, . . . ,Ms is not individuated
by any variable is at most s · e−nε

. ut

By Lemma 12 we can specify any function in I with at most N examples,
and by Theorem 12 we can specify any of the other functions in G≤s with at most
nO(log s) many examples. It follows from Lemma 13 that the average teaching
dimension of G≤s is at most

N |I| + nO(log s) · |G≤s \ I|

|G≤s|
≤ N +

nO(log s) · (s · e−nε

· 2ns

s! + 2ns−n

(s−2)! )

( 2n

s )s
.



The second term on the right simplifies to ss ·nO(log s) ·(s·e−nε

/s!+2−n/(s−2)!),
which is easily seen to be o(1) since ε is a constant greater than 0 and s ≤
(1 − ε) log n. This proves Theorem 13. ut

While our proof technique does not extend to s that are larger than log n, it
is possible that different methods could establish a poly(n, s) upper bound on
average teaching dimension for the class G≤s of s-sparse GF2 polynomials for a
much larger range of values of s. This is an interesting goal for future work.
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