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Abstract. We present a lower bound on the round complexity of a nat-
ural class of black-box constructions of statistically hiding commitments
from one-way permutations. This implies a Ω( n

log n
) lower bound on the

round complexity of a computational form of interactive hashing, which
has been used to construct statistically hiding commitments (and related
primitives) from various classes of one-way functions, starting with the
work of Naor, Ostrovsky, Venkatesan and Yung (J. Cryptology, 1998).
Our lower bound matches the round complexity of the protocol studied
by Naor et al.
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1 Introduction

A zero-knowledge proof is a protocol wherein one party, the prover, convinces
another party, the verifier, of the validity of an assertion while revealing
no additional knowledge. Introduced by Goldwasser, Micali and Rackoff in
the 1980s [gmr89], zero-knowledge proofs have played a central role in the
design and study of cryptographic protocols. In these applications, it is
important to construct constant-round zero-knowledge protocols for NP under
minimal assumptions. In many cases, a computational zero-knowledge argument
system suffices, and we know how to construct such protocols for NP under
the (essentially) minimal assumption of one-way functions [bjy97, ow93].
On the other hand, there are cases wherein we need stronger guarantees,
namely a computational zero-knowledge proof system, or a statistical zero-
knowledge argument system.1 Surprisingly, the main bottleneck to reducing
the assumptions for known constructions of both constant-round computational
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1 It is unlikely that every language in NP has a statistical zero-knowledge proof system
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zero-knowledge proof systems and statistical zero-knowledge argument systems
[bcy91, gk96a] is statistically hiding commitments.2

We know how to construct constant-round statistically-hiding commitments
from collision-resistant hash functions [dpp98, ny89] and from claw-free per-
mutations [gk96a]. In 1992, Naor, Ostrovsky, Venkatesan and Yung [novy98]
showed that one-way permutations are sufficient for statistically hiding commit-
ments wherein the round complexity is linear in the security parameter. This was
very recently extended to one-way functions by Haitner and Reingold [hr06b].
Both works use the powerful tool of interactive hashing [ovy93], a 2-party
protocol for choosing a small set of strings, with binding and hiding requirements
similar to those in commitment schemes. An intriguing open problem (posed in
[novy98] and reiterated in [dhrs04, ks06, hr06a]) is whether some variant of
interactive hashing could yield a constant-round statistically hiding commitment
from one-way permutations. In fact, even a no(1)-round commitment would
be interesting. The restriction to interactive hashing may seem limiting, but
it is the only technique that we presently know of. Moreover, Ding, et al.
[dhrs04] exhibited a constant-round interactive hashing protocol satisfying a
weaker binding guarantee, which indicates that interactive hashing may not be
the bottleneck.

1.1 Our Contributions and Techniques

We study a natural class of black-box constructions of statistically hiding
commitments from one-way permutations that include several generalizations
of the novy construction, and show that any such construction yields a
commitment scheme with at least Ω(n/ log n) rounds. This matches the round
complexity of a variant of the main novy construction ([ks06, hr06a]).
Specifically, our lower bound holds for constructions wherein the sender (in the
commitment scheme) evaluates the one-way permutation only at the start of the
commit phase, and does so on independent random inputs. The sender then uses
the output values, her private input to the commitment scheme, and possibly
additional randomness in the rest of the commit phase and does not use the
inputs to the one-way permutation until the reveal phase.

We derive as a corollary, a Ω(n/ log n) lower bound on a computational form of
interactive hashing presented in [nov06, hr06a], based on an abstraction of the
way interactive hashing is used in the novy construction and the subsequent
works of Haitner et al. [hhk

+
05, nov06, hr06b]. The same abstraction also

applies to the use of interactive hashing in the transformation of honest-verifier
zero-knowledge arguments into cheating-verifier zero-knowledge arguments [d93,
ovy93]. The lower bound tells us that we need to avoid the standard notion of
interactive hashing if we want round-efficient versions of these applications.
2 It is not surprising that we need statistically hiding commitments for statistical

zero-knowledge arguments; what is surprising is that the only known approach
for constructing constant-round zero-knowledge proof systems [gk96a] requires
statistically hiding commitments to guarantee soundness, because the verifier begins
by committing to her challenges.
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Our lower bound for statistically hiding commitments only holds for fully
black-box reductions [rtv04], namely, we require not only that the construction
treats the one-way permutation as a black-box, but also that the reduction in
the proof of security uses black-box access to a cheating sender that breaks
the binding property to invert the permutation with noticeable probability. At
a high level, our lower bound follows the paradigm of Gennaro and Trevisan
[gt00] for proving lower bounds on efficiency of black-box cryptographic
constructions, which is in turn based on the Impagliazzo-Rudich framework
[ir89] for separating cryptographic primitives. The proof techniques and ideas
are otherwise largely inspired by lower bounds for black-box zero-knowledge from
the work of Goldreich and Krawczyk [gk96b].

Roughly speaking, a fully black-box reduction guarantees an efficient proce-
dure that by interacting and rewinding the cheating sender, produces transcripts
of the commitment scheme with a certain outcome. Using the repeated sampling
technique from [ir89], we can ensure that the probability that a partial transcript
has the outcome is exponentially small in the length of the sender’s last message.
This means that the sender sends O(log n) bits in each round of protocol. On
the other hand, the sender must send a total of Ω(n) bits in the protocol (so
that there is a different transcript for every possible challenge for the one-way
permutation), which means the protocol must have Ω(n/ log n) rounds. This
simplified and slightly inaccurate sketch overlooks several technical difficulties.

1.2 Perspective

Notions and limitations of interactive hashing. The last few years has witnessed
a lot of work on the use of interactive hashing protocols in cryptography with two
main notions of security: computationally binding, and binding for static sets
[nov06]. The latter is used in building and studying oblivious transfer protocols
in the bounded storage model and over noisy channels [ccm98, dhrs04, cs06],
in constructing variants of statistically binding commitments [nv06], and in
transforming honest-verifier zero-knowledge proofs into cheating-verifier zero-
knowledge proofs [d93, dgow95, gsv98]. It was noted in [nov06, ccm98]
that the computational binding implies binding for static sets; our lower bound
implies that the converse is not true. Specifically, the constant-round protocol
of [dhrs04] does not satisfy the computational formulation (which answers an
open problem in [dhrs04] in the negative).

Efficiency of cryptographic reductions. Previous work establishing lower bounds
for efficiency of black-box cryptographic reductions has focused on the query
complexity and randomness complexity of these reductions
[kst99, ggkt05, ltw05, hk05] whereas our work focuses on round com-
plexity. Upon closer inspection, our work is also qualitatively very different
(apart from studying a different computational resource) as the works of
[ggkt05, ltw05, hk05] rule out weakly black-box reductions (unless P = NP),
wherein the proof of security may exploit the code of the adversary (in a non-
black-box manner). As mentioned earlier, our main result only rules out fully
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black-box reductions and uses fairly different techniques. We stress that all
known reductions between cryptographic primitives - with the exception of the
non-black-box techniques used in zero-knowledge and multi-party protocols, e.g.
[b01], but including the non-black-box constructions in [aik04] - do not exploit
the code of the adversary in the proof of security. As such, ruling out fully black-
box reductions is almost as meaningful as ruling weakly black-box reductions.

Information-theoretic analogues. Many black-box cryptographic constructions
apart from interactive hashing-based commitments have an
information-theoretic analogue which is easier to achieve, in that it does not
have some kind of “simulateable” requirement, namely, an efficient procedure
for simulating random transcripts with a certain outcome. This was articulated
in [dgw95], using random selection as a case study. Such connections been
exploited in both directions, the most remarkable being the construction of
extractors from Nisan-Wigderson pseudo-random generators [t01]. In [ltw05],
the connection between hardness amplification and combinatorial hitters was
used to derive lower bounds on query and randomness complexity of the
former. While the resulting lower bounds on query complexity are tight, those
for randomness complexity are far from the best-known constructions. The
information-theoretic analogue for computational interactive hashing would be
interactive hashing with binding for static sets, for which we cannot expect to
prove a super-constant lower bound (again, due to the constant-round protocol
in [dhrs04]). Indeed, we exploit the “simulateable” requirement for our main
result.

Trade-offs between interaction and assumptions. The novy construction demon-
strated the feasibility of trading off higher interaction costs in order to build a
cryptographic primitive under weaker cryptographic assumptions (specifically,
perfectly hiding commitments with a linear number of rounds assuming one-
way permutations, versus a constant number of rounds assuming claw-free
permutations). Rudich’s work [r91] shows that this trade-off is necessary in
relation to secret key agreement and trapdoor functions. Our main result shows
that the trade-off is also necessary for the novy construction. While the trade-off
is an additive constant in Rudich’s work, our lower bound yields a gap between
constant and almost-linear number of rounds.

Implications for protocol design. One could view this work quite broadly as
providing a simple informal criterion for reasoning about the round complexity
of classes of fully-black-box constructions (of protocols with a “simulatable”
requirement) and formal techniques towards establishing a lower bound. The
former is especially useful for protocol design in identifying and ruling out
inefficient constructions. We stress here that our lower bounds do not apply
to the black-box constructions of commitments from various classes of one-way
functions in the works of Haitner et al. [hhk

+
05, nov06, hr06b], in two different

ways. One is the use of one-way functions in [hhk
+
05] to implement coin-tossing

and zero-knowledge proofs to transform commitments that are hiding against
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honest receivers into commitments that are hiding against arbitrary receivers.
We note that our lower bound holds assuming merely hiding against honest
receivers. The second is that the inputs to the one-way functions are used again in
the commit phase. This is only needed to handle the lack of structure in general
one-way functions. In particular, all the constructions are much simpler and
requires fewer rounds when optimized for one-way permutations - they “collapse”
to the novy construction. In short, the ways in which these constructions bypass
our lower bounds do not provide much insight into how we may bypass the lower
bounds for one-way permutations.

1.3 Additional Related Work

Fischlin [f02] showed that there is no black-box construction of 2-message
statistically hiding from one-way permutations (or even trapdoor permutations).
The result follows quite readily from Simon’s oracle separating collision-resistant
hash functions and one-way permutations [s98]. On the other hand, Harnik
and Naor [hn06] gave a non-black-box construction of a 2-message statistically
hiding commitment from one-way functions under a non-standard assumption
on compressibility of NP instances. From what we understand, there is no strong
evidence either supporting or refuting the assumption.

2 Definitions and Preliminaries

We use PPT to denote both probabilistic polynomial-time Turing machines and
probabilistic polynomial-time interactive Turing machines. The round complexity
of a 2-party protocol is number of pairs of messages exchanged by both parties (in
both directions). Unless otherwise stated, we use 1n as the security parameter.

2.1 One-Way Permutations

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is a s(n)-secure one-way
function if f is computable in polynomial time and for every nonuniform PPT A,

Pr
x∈{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] < 1/s(n)

A function f is a one-way permutation if for every n, f restricted to {0, 1}n

is a permutation, and for all polynomials s(n) and all sufficiently large n, f is
s(n)-secure.

A random permutation π is exponentially one-way even if the adversary is given
access to a π−1 oracle, as long as it cannot query π−1 on the challenge. Here,
π−1
�=y is an oracle that on input y′, returns π−1(y′) if y′ �= y, and ⊥ otherwise.

Lemma 1 (implicit in [gt00]). Fix s(n) = 2n/5. For all sufficiently large n,
there exists a permutation π on {0, 1}n such that for all circuits A of size s(n),

Pr
y∈{0,1}n

[Aπ,π−1
�=y (y) = π−1(y)] <

1
s(n)

Moreover, the statement relativizes.
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2.2 Statistically Hiding Commitments

We present the definition for bit commitment. To commit to multiple bits, we
may simply run a bit commitment scheme in parallel.

Definition 2. A (bit) commitment scheme (S, R) is an efficient two-party
protocol consisting of two stages. Throughout, both parties receive the security
parameter 1n as input.

Commit. The sender S has a private input b ∈ {0, 1}, which she wishes
to commit to the receiver R, and a sequence of coin tosses σ. At the end
of this stage, both parties receive as common output a commitment z.

Reveal. Both parties receive as input a commitment z. S also receives
the private input b and coin tosses σ for z. This stage is non-interactive:
S sends a single message to R, and R either outputs a bit and accepts
or rejects.

Definition 3. A commitment scheme (S, R) is perfectly hiding if

Completeness. If both parties are honest, then for any input bit b ∈
{0, 1} that S gets, R outputs b and accepts at the end of the decommit
stage.
Statistically Hiding. For every unbounded deterministic strategy
R∗, the distributions of the view of R∗ in the commit stage while
interacting with an honest S are identical for b = 0 and b = 1. If the
distributions are statistically indistinguishable, we obtain a statistically
hiding commitment.

Computationally Binding. For every nonuniform PPT S∗, S∗

succeeds in the following game (breaks the commitment) with negligible
probability:
– S∗ interacts with an honest R and outputs a commitment z.
– S∗ outputs two messages τ0, τ1 such that for both b = 0 and b = 1,

R on input (z, τb) accepts and outputs b.

3 Constructing Commitments from One-Way
Permutations

In this section, we provide formal definitions of the various classes of construc-
tions of commitments from one-way permutations we consider in this paper.

3.1 Fully Black-Box Constructions

Definition 4. A fully black-box construction of a statistically hiding com-
mitment scheme from one-way permutations is a triplet of polynomial time
computable oracle procedures (S, R, M) for which there exists a polynomial T
and a constant c satisfying the following properties:



One-Way Permutations, Interactive Hashing 425

Efficiency. The running times of S, R, M are bounded by T .

Functionality. For every family of permutations π, (Sπ , Rπ) is a
statistically hiding commitment scheme.

Security. For every ε = 1/ poly(n), for all sufficiently large n, every
permutation π : {0, 1}n → {0, 1}n and every adversary S∗, if S∗ breaks
(Sπ , Rπ) with probability ε, then

Pr
y∈{0,1}n

[MS∗,π(y) = π−1(y)] ≥
( ε

T

)c

3.2 Interactive Hashing

Interactive hashing is a 2-party protocol between a sender and a receiver, similar
to a commitment scheme. The sender begins with a private input y ∈ {0, 1}q

and goal is for both parties to select a set of 2k strings in {0, 1}q (specified by a
circuit C : {0, 1}k → {0, 1}q) containing y. The hiding property stipulates that
the receiver does not learn which of the 2k strings equals y, and the binding
property stipulates that the sender can “control” at most one of the 2k strings.
The computational formulation (introduced explicitly in [nov06] along with
selecting many instead of merely 2 outputs) guarantees an efficient reduction
from breaking the binding property to solving some computational problem on
random instances.

Definition 5 ([nov06]). A computational interactive hashing scheme (with
multiple outputs) is an efficient protocol (SIH, RIH) where both parties receive
common inputs (1q, 1k), SIH receives a private input y ∈ {0, 1}q, with the common
output being a circuit C : {0, 1}k → {0, 1}q and the private output of SIH being
a string z ∈ {0, 1}k. The protocol satisfies the following properties:

Correctness. For all R∗ and all y ∈ {0, 1}q, let C, z be the
common and private output of SIH in the protocol (SIH, R∗)(1q, 1k). Then,
C(z) = y.

Perfectly Hiding. For all R∗, (V, Z) is distributed identically to
(V, Uk), where V = viewR∗(SIH(Uq, ), R∗).

Computationally Binding. There exists an oracle PPT A such that
for every S∗ and any relation W , letting C, ((x0, z0), (x1, z1) be the
common and private output of SIH in the protocol (SIH, R∗)(1q, 1k), if
it holds that

Pr[(x0, C(z0)) ∈ W ∧ (x1, C(z1)) ∈ W ∧ z0 �= z1] > ε,

where the above probability is over the coin tosses of RIH and S∗, then
we have that

Pr
y∈{0,1}q

[(AS∗
(y, 1q, 1k, ε), y) ∈ W ] > 2−k · (ε/q)O(1).
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Nguyen et al. [nov06] presented a protocol satisfying the above definition with
q − k rounds, obtained by ending the novy protocol k − 1 rounds earlier. The
protocol is very simple: the receiver chooses q − k linearly independent vectors
v1, . . . , vk over {0, 1}q. In round i, the receiver sends vi and the sender responds
with bit-wise dot product vi ·y. We may reduce the round complexity by a factor
of O(log q) by having the receiver send a pairwise independent hash function hi :
{0, 1}q → {0, 1}O(log q) in round i and the sender responding with hi(y) [hr06a].
Note that the sender is deterministic, and the protocol is public-coin. Our lower
bound shows that using a randomized sender or a private-coin protocol or q-
wise independent hash functions will not further improve the round complexity
(beyond constant factors).

Returning to the above definition, note that it refers to general relations W
that may not be polynomial-time computable, and it does not give A oracle
access to the relation W , which strengthens the security guarantee of the [nov06]
protocol. Our lower bound holds even if A has oracle access to the relation W ,
which is a weaker guarantee and thus a stronger lower bound. We also note that
we may use the techniques in [ltw05] to show that this weaker guarantee also
implies binding for static sets, thereby strengthening an observation made in
[nov06].

Naor et al. [novy98] showed that any computational interactive hashing
scheme (SIH, RIH) yields a fully black-box construction of a perfectly hiding
commitment scheme (S, R) from any one-way permutation π with essentially
the same round complexity.3 The construction is as follows:

Commit. To commit to a bit b, S chooses a random σ ∈ {0, 1}n,
where n is the security parameter. Then, S and R run as a sub-protocol
(SIH(π(σ), RIH)(1n, 11), playing the roles SIH, RIH respectively. Let C, z
be the common and private outputs of S in the sub-protocol. S then
sends b′ = b ⊕ z.

Decommit. S sends (b, σ). R accepts and outputs b if C(b⊕b′) = π(σ),
and rejects otherwise.

We stress that in the construction, S queries π exactly once, to compute π(σ),
and does not need σ again except for decommitment.

As noted in the introduction, Damg̊ard [d93] showed how any computational
interactive hashing scheme can be used to transform constant-round honest-
verifier public-coin zero-knowledge arguments into cheating-verifier public-coin
zero-knowledge arguments unconditionally. The transformation may also be
made more efficient by exploiting interactive hashing with multiple outputs so
that a single application of interactive hashing yields a cheating-verifier zero-
knowledge argument with soundness to 1/ poly(n) (instead of 1/2).

3 More precisely, Naor et al. showed how to construct a perfectly hiding commitment
scheme from any one-way permutation using the interactive hashing protocol in
[ovy93]. Implicit in the proof of correctness and security is a proof that the [ovy93]
protocol satisfies Definition 5 for k = 1.
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3.3 π-Oblivious Constructions

We describe the syntactic constraints on the class of fully black-box constructions
for which we prove a lower bound. We consider constructions wherein the sender
evaluates the one-way permutation only at the start of the commit phase, and
does so on independent random inputs. The sender then uses the values (and not
the inputs to the permutation), its input bit and possibly additional randomness
in the rest of the commit phase. To decommit, the sender sends its input bit and
its random tape, including the inputs to the permutation. We allow the receiver
to query the permutation at any point in the protocol.

More formally,

Definition 6. A fully black-box construction (S, R, M) of a statistically hiding
commitments from one-way permutations is π-oblivious if there exists some
interactive PPT Sob such that for any permutation π on {0, 1}n, to commit to a
bit b with coin tosses σ, S parses σ = (z, σ̃), where z = (z1, . . . , zt) ∈ ({0, 1}n)t,
and proceeds according to Sob(b, σ′), where σ′ = (z′, σ̃) and z′ = π(z) =
(π(z1), . . . , π(zt)). In particular, Sob never queries π. To decommit, S sends a
single message (b, σ).

Clearly, the novy construction is a π-oblivious; there, t = 1 and Sob = SIH gets
input π(z1), and σ̃ is the empty string since SIH is deterministic. Other candidates
of π-oblivious constructions include variants of the novy construction wherein
we run n2 copies of some variant of interactive hashing in parallel either on the
same t = 1 input π(z1) or on t = n2 independent inputs π(z1), . . . , π(zt), or a
single copy of interactive hashing on the tn-bit string π(z1), . . . , π(zt).

On the other hand, the construction of statistically hiding commitments from
one-way functions in [hr06b] is not π-oblivious. This is because the sender will
query π at some point z1 and send both h1(π(z1)) and h2(z1) during the commit
phase, for some hash functions h1, h2.

4 Main Result: Lower Bound for Commitments

Now, we state and prove our main result:

Theorem 1. Any π-oblivious fully black-box construction of a statistically
hiding commitment scheme from one-way permutations yields a commitment
scheme with Ω( n

log n ) rounds. This holds even if the hiding property for commit-
ment scheme only holds for the honest receiver. More generally, if we assume
that permutation is s-secure one-way, then we have an Ω( n

log s) lower bound.

Our lower bound is tight:

Theorem 2 ([novy98, ks06, hr06a]). There is a π-oblivious fully black-box
construction of a perfectly hiding commitment scheme from s-secure one-way
permutations with O( n

log s) rounds.
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4.1 Proof Intuition

First, we point out at a high level how we exploit the fact that the construction
is fully black-box. We use as the one-way permutation the one guaranteed by
Lemma 1, which remains one-way even under a “chosen challenge” attack. This
means that in order for the reduction M to successfully invert a challenge y,
it must get a cheating sender S∗ to invert π on y itself. However, M is only
given black-box access to S∗, so it is limited to sending S∗ different inputs and
possibly rewinding S∗.

For concreteness, consider the novy construction of commitment schemes
from one-way permutation using computational interactive hashing as a sub-
protocol. When trying to invert a challenge y, the reduction M tries to get the
sender to generate a commitment that is consistent with her input to interactive
hashing protocol being y (otherwise, the decommitments will not help to invert
y). At each round of commit phase, the honest SIH reveals some information
about her input π(σ). At the end of the commit phase, she should have revealed
n − 1 bits of information about her input (since we’re using interactive hashing
to choose 2 strings). We claim, at each round, she can only reveal O(log n) bits
of information about her input, which yields a Ω(n/ log n) lower bound on the
number of rounds. Suppose there is some round where SIH reveals ω(log n) bits
of information. This means that there are nω(1) inputs to the interactive hashing
protocol that are consistent with the partial transcript. Consider a cheating
sender that at each round samples a random input y′ that is consistent with the
partial transcript and responds as though her input to the interactive hashing
protocol is y′, then the probability that the reduction observes a transcript that
is consistent with y is negligible. It is important that SIH does not query π,
so that we may sample consistent partial transcripts using a PSPACE oracle. If
SIH is deterministic, it is straight-forward to quantify “information” about the
sender’s input and turn this outline into a proof.

For general π-oblivious constructions, we construct the cheating sender in
essentially the same way: at each round (for both the commit and reveal phases),
the sender samples a random (b, σ′) that is consistent with the partial transcript
and responds as though her input to Sob is (b, σ′) (where σ′ = (z′, σ̃)). The
main technical difficulty in the analysis is in quantifying “information” about the
sender’s input. Indeed, how much information a message reveals about z depends
on both b and σ̃. Also, for a fixed partial transcript, the set (and number) of z′’s
that are consistent with the given transcript may vary with different choices of
b, σ̃.

4.2 Proof of Theorem 1

We may assume that the commitment scheme (S, R) runs in r rounds, with R
going first. Let T, c be the polynomial and constant guaranteed by the fully
black-box reduction. We will show that r � n−log t

8c log T = Ω( n
log n ). Suppose

otherwise, and take π to be the permutation guaranteed by Lemma 1.
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Conventions regarding M . Recall that the reduction M has oracle access
to a sender S∗ with which it inverts the permutation π. It can query S∗ on
sequences of messages of the form qi = (q1, . . . , qi) corresponding to the first i
messages from R in the commit phase, or a message of the form (qr , decommit),
requesting for a decommit to a previous commitment. M runs for at most T steps,
and therefore makes at most T queries to S∗. In addition, we may adopt wlog

the following simplifying assumptions on M by modifying M appropriately (as
is the case with lower bounds for black-box zero-knowledge [gk96b]):

1. It never asks the same query twice.
2. If M queries the oracle with qi, it has queried the oracle with all proper

prefixes of qi (namely all sequences of the form (q1, . . . , qj) for j ≤ i.)

Notations. We introduce some notations:

– Sob(b, σ′,qi) denotes the Sob’s response with input b, σ′ and and the first i
messages from R being qi.

– Given a partial transcript (qi, ai) = (q1, . . . , qi, a1, . . . , ai) and y ∈ {0, 1}n,
Con(qi,ai) is the set of inputs (b, σ′) to Sob that would yield the transcript
(qi,ai); formally,

Con(qi,ai) = {(b, σ′) | Sob(b, σ′, q1, . . . , qj) = aj , ∀j = 1, 2, . . . , i}

and
Cony(qi,ai) = {(b, z′, σ̃) ∈ Con(qi, ai) | ∃j : z′j = y}

In particular, |Cony(ε)|/|Con(ε)| = 1 − (1 − 2−n)t ≤ t2−n, where ε is the
empty string (transcript).

Sender strategy S∗. Consider the following sender strategy S∗:

– Upon receiving a query of the form (qi−1, qi), look up previous replies ai−1.
(For i = 1, (qi−1,ai−1) = ε.) Sample uniformly at random4 (b, σ′) from the
set Con(qi−1,ai−1), and respond with ai = Sob(b, σ′,qi).

– Upon receiving a query of the form (qr , decommit), look up previous replies
ar. Sample uniformly and independently at random (b0, z0, σ̃0), (b1, z1, σ̃1)
from the set Con(qr ,ar), and send (b0, π

−1(z0), σ̃0), (b1, π
−1(z1), σ̃1).

Note that in an interaction with an honest receiver R, S∗ breaks the commitment
with probability 1/2 − neg(n) > 1/4. This is because the hiding property of the
commitment scheme guarantees that a random decommitment is almost equally
likely to be a 0 and a 1. Hence,

Pr
y∈{0,1}n

[
MS∗,π(y) = π−1(y)

]
>

(
1

4T

)c

4 S∗ can be made stateless by using a rT -wise independent family of hash functions,
namely apply a hash function to the queries and use the output as randomness for
uniform sampling [gk96b].
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Analysis. Note that a PSPACE oracle suffices for simulating S∗ in the commit
phase, whereas a PSPACE oracle and a π−1 oracle suffice in the reveal phase. Fix
an input y to M . We want to show that with high probability, we may efficiently
simulate the the computation MS∗,π(y) given oracle access to PSPACE, π, π−1

�=y .
We say that a partial transcript (qi, ai) is heavy if

|Cony(qi,ai)|
|Con(qi,ai)|

> γr+1−i, where γ =
( t

2n

) 1
r+1

;

otherwise, we say that (qi,ai) is light. In particular, ε is light, since |Cony(ε)|
|Con(ε)| ≤

γr+1. Informally, the quantity |Cony(·)|
|Con(·)| applied to a transcript (qi, ai) is the

density of “favorable” outcomes for the reduction M , wherein an outcome is
favorable if in the decommitment, S∗ inverts π on y. We want to show that with
high probability, every transcript generated by S∗ (in its interaction with M) is
light, that is, the density of favorable outcomes is low.

Consider the queries M makes to S∗:
– A commit phase query of the form qi = (qi−1, qi). Let ai−1 be S∗’s answers

to the prefixes. Observe that

|Cony(qi−1,ai−1)|
|Con(qi−1,ai−1)|

=
∑
ai

|Con(qi, ai−1, ai)|
|Con(qi−1, ai−1)|

· |Cony(qi, ai−1, ai)|
|Con(qi, ai−1, ai)|

=
∑
ai

Pr[S∗(qi) = ai] ·
|Cony(qi, ai−1, ai|
|Con(qi, ai−1, ai)|

> Pr[S∗(qi) → ai; (qi, ai−1, ai) is heavy] · γr+1−i

This implies

Pr[S∗(qi) → ai; (qi,ai−1, ai) is heavy | (qi−1, ai−1) is light] < γ

– A reveal phase query of the form (qr, decommit). Let ar be S∗’s answers to
qr. If (qr ,ar) is light, that is, |Cony(qr,ar)|

|Con(qr,ar)| ≤ γ, then with probability 1−2γ,
we can generate two independent random decommitments without inverting
π on y.

Applying a union bound over that rT commit phase queries that M makes to
S∗, we have: with probability at least 1 − rTγ, in every reveal phase query
(qr, decommit) that M makes to S∗, the transcript (qr , ar) is light. Taking
another union bound, we deduce that with probability 1 − (r + 2)Tγ, we may
efficiently simulate MS∗,π on input y with oracle access to PSPACE, π, π−1

�=y .
Hence, there is an oracle PPT M̃ running in time poly(T, n) such that

Pr
y∈{0,1}n

[
M̃PSPACE,π,π−1

�=y(y) = π−1(y)
]

>

(
1

4T

)c

− (r + 2)Tγ >
1
2

(
1

4T

)c

a contradiction to π being one-way. �
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4.3 Lower Bounds for Interactive Hashing

Using the connection between commitment schemes and computational interac-
tive hashing described in Section 3.2, we derive a tight lower bound for the latter
[nov06, hr06a]:

Theorem 3. Any computational interactive hashing scheme on common input
(1n, 1k) has Ω( n

log n ) rounds, for k = o(1).

We believe that our techniques and analysis extend readily to yield lower bounds
on efficiency of the security reduction for computational interactive hashing (an
open problem posed in [hr06a]) and the round complexity of random selection
[dgw95, dgow95, gsv98]. We will explore these extensions in the full version
of this paper.
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