
On Obfuscating Point Functions

Hoeteck Wee∗

Computer Science Division
University of California, Berkeley

ABSTRACT
We investigate the possibility of obfuscating point functions
in the framework of Barak et al. from Crypto ’01. A point
function is a Boolean function that assumes the value 1 at
exactly one point. Our main results are as follows:

1. We provide a simple construction of efficient obfusca-
tors for point functions for a slightly relaxed notion
of obfuscation, for which obfuscating general circuits
is nonetheless impossible. Our construction relies on
the existence of a very strong one-way permutation,
and yields the first non-trivial obfuscator under general
assumptions in the standard model. We also obtain
obfuscators for point functions with multi-bit output
and for prefix matching.

2. Our assumption is that there is a one-way permutation
wherein any polynomial-sized circuit inverts the per-
mutation on at most a polynomial number of inputs.
We show that a similar assumption is in fact necessary,
and that our assumption holds relative to a random
permutation oracle.

3. Finally, we establish two impossibility results which
indicate that the limitations on our construction,
namely simulating only adversaries with single-bit
output and using nonuniform advice in our simulator,
are in some sense inherent.

Previous work gave negative results for the general class of
circuits (Barak et al., Crypto ’01) and positive results in the
random oracle model (Lynn et al., Eurocrypt ’04) or un-
der non-standard number-theoretic assumptions (Canetti,
Crypto ’97). This work represents the first effort to bridge
the gap between the two for a natural class of functionalities.

∗hoeteck@cs.berkeley.edu. Work supported by US-Israel
BSF Grant 2002246.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05,May 22-24, 2005, Hunt Valley, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

Categories and Subject Descriptors:
E.0 [Data]: General.

General Terms: Theory, Security.

Keywords: Obfuscation

1. INTRODUCTION

1.1 Background
A fundamental problem in computer science is under-

standing the extent to which we can exploit access to
the source code of a computer program, beyond simply
executing the program (described by the code) on different
inputs and observing its input/output behavior. As noted
in [1], the hardness of the Halting Problem and Satisfi-
ability seems to indicate that source code access yields few
significant capabilities, if any at all, apart from black-box
access, that is, the ability to run the program or circuit on
inputs of one’s choice.

A related problem is whether we can always (efficiently)
rewrite programs in such a way as to eliminate any ad-
vantage to seeing the source code beyond gaining black-
box access to the program. For this notion to be mean-
ingful, we require that the rewritten program has the
same functionality as the original one. We refer to such
an algorithm for rewriting programs as an obfuscator,
and the rewritten code as the obfuscated program. A
program obfuscator, if one exists, has numerous potential
applications in cryptography, such as software protection
and digital water-marking, construction of homomorphic
encryption schemes and realizing cryptographic protocols
proven secure in the random oracle model [1].

A theoretical study of obfuscation was initiated in the
seminal work of Barak et al. in [1]. The security requirement
of an obfuscated program therein is that it behaves like a
“virtual black box”, namely anything one could efficiently
compute from the obfuscated program, one should be
able to efficiently compute given just oracle access to the
program; this is formalized using the simulation paradigm.
The main result of [1] is that it is impossible to achieve
this notion of obfuscation. In particular, there exists an
unobfuscatable family of functions – each function in the
family has an associated attribute such that having source
code access to programs computing these functions yields
a significant advantage in computing this attribute over
just oracle access to the programs. This leaves two main
directions to pursue on the subject of obfuscation: exploring
weaker but nonetheless meaningful notions of obfuscation,
and constructing obfuscators for restricted, yet still non-

trivial and interesting, class of programs. We focus on the
latter in this paper.

The class of programs we consider is that which computes
equality. Such a program may be specified using a circuit
Ix, containing a string x, which outputs 1 if its input
matches x exactly, and 0 otherwise. This program computes
a point function, namely a Boolean function that assumes
the value 1 at exactly one point. We choose to focus on
the class of point functions due to its simplicity, its relation
to password-hiding algorithms commonly used in practice1,
and the abundance of related work [3, 5, 15] that we are able
to build on. The simplest construction in previous work
is that of Lynn et al. [15] for obfuscating point functions
with a random oracle R: the obfuscated program stores
ρ = R(x) and on input y, outputs 1 iff R(y) = ρ. Their
analysis exploits the property that the evaluation of R at x
is random and independent of its value at any other point.

1.2 Contributions and perspective
We initiate a systematic study of obfuscating point func-

tions in the framework of [1].

1.2.1 Positive results for obfuscation
We show that a sufficient condition for obfuscating point

functions is the existence of permutations such that for the
specific task of inverting the permutation on a random input,
one cannot do much better than treating the permutation
as a black-box. The property we need of these permutations
may be formalized as follows:

Assumption 1.1. There exists a polynomial-time com-
putable permutation π : {0, 1}n → {0, 1}n and a constant
c such that for every polynomial s = s(n) and every
nonuniform PPT A of size s, for all sufficiently large n,

Pr
x∈Un

[A(π(x)) = x] ≤ sc/2n

Starting from such a permutation π, we construct obfus-
cators for point functions by instantiating the random oracle
in the construction of [15] with the following hash function:

h(x; τ1, . . . , τ3n)

= (τ1, . . . , τ3n, 〈x, τ1〉, 〈π(x), τ2〉, . . . , 〈π3n−1(x), τ3n〉)

The simulator for our obfuscator works like the one in
[3]: it has as nonuniform advice a set L which specifies the
point functions for which the hash value reveals “too much”
information to the adversary. On oracle access to a point
function, the simulator checks if it corresponds to a function
in L, and if so, it can simulate the adversary on the hash
value obtained by a random obfuscation of that function.
Otherwise, it simulates the adversary on a random string
(which may not even correspond to a valid hash). In our
final construction, we derandomize the above hash function
using random walk on expanders.

1.2.2 The one-way permutation assumption
We show that there is an oracle relative to which As-

sumption 1.1 holds; in fact, with overwhelming probability
over a random permutation π, the assumption holds relative

1The virtual black-box property guarantees that an
adversary upon seeing the obfuscated password cannot do
much better than running a dictionary attack [17].

to π. This is a stronger statement than the assertion
that Assumption 1.1 holds in the random oracle model.
While the hardness of inverting a random permutation is
hardly surprising, the proof requires a careful analysis that
improves on previous results on the hardness of inverting a
random permutation [8]. Combined with our construction,
this means that we can obfuscate point functions in the
non-programmable random permutation oracle model [16],
wherein virtual black-box property stipulates that the ad-
versary’s view be simulated with respect to the same oracle.
On the other hand, the obfuscator in [15] (along with other
positive results therein) only achieves the virtual black-box
property in the programmable random oracle model. Our
assumption is also qualitatively different from assuming a
random oracle in that we specify a task with respect to
which the permutation π “behaves” like a random oracle.
This is an important distinction as there are schemes and
tasks which can be securely realized in the random oracle
model but are provably impossible if the random oracle
is instantiated with any efficiently computable function
ensemble [4, 16].

That said, we stress that we are not trying to argue that
the assumption is “reasonable”. After all, in the framework
of “work”, that is, running time of the adversary divided by
its success probability, standard cryptographic assumptions
assert hardness nω(1) for work, whereas we require a lower
bound of 2n−O(log n). This bound is fairly close to the trivial
upper bound: every efficiently computable function can be
inverted with work 2n+O(log n). However, we are able to
show that a qualitatively similar assumption is necessary
for obfuscating point functions. We show that if there is
an algorithm for solving Circuit-Sat (circuit satisfiability,
namely to determine if a given circuit has a satisfying
assignment) that does noticeably better than exhaustive
search2, then an obfuscator for point functions does not
exist. This narrows the gap between the computational
assumptions that are necessary and those that are sufficient
for non-trivial obfuscation to be possible.

1.2.3 Limitations of our simulator construction

Dependency onε. We achieve a notion of virtual black-
box which is somewhat weaker than the one in [1], and is
equivalent to the one in [3]:

(weak virtual black-box property) For any nonuni-

form PPT A and any function ε(n) = 1/nO(1),
there exists a nonuniform PPT SA such that for
all sufficiently large n and for all x ∈ {0, 1}n:˛̨̨

Pr
ˆ
A(O(Ix)) = 1

˜
− Pr

ˆ
SIx

A (1n) = 1
˜ ˛̨̨
≤ ε(n)

The difference from [1] is that we allow the size of the
simulator to have an inverse polynomial dependency on
the distinguishing probability. A similar relaxation has
been used in the definition of zero-knowledge (e.g. [7]).
We argue that this is sufficient to capture an intuitive
and appealing notion of obfuscation: an adversary can

2That we do not know any such algorithm indicates that for
the purpose of finding a satisfying circuit for a given circuit
(which can be solved in linear time given an oracle to the
decision problem), one may not be able to do much better
than treating the circuit as a black-box.

approximate whatever he learns from seeing an obfuscated
circuit within any inverse polynomial accuracy at a price
of a polynomial blow-up in its running time and advice.
We stress that the impossibility result of [1] for obfuscating
general circuits extends to this weaker definition.

Using nonuniform advice.Our simulator is inherently
nonuniform, even for a uniform adversary. We hard-wire
into the simulator nonuniform advice about the adversary
and we do not know how to efficiently compute this advice
given the description of the circuit A. We are able to
show, however, that such advice exists and has a succinct
description if Assumption 1.1 holds. More generally, we
do not know an efficient transformation from adversaries
to simulators, although we are able to bound the size of
the simulator by a fixed polynomial in the size of the
adversary (and the distinguishing probability). We feel
that the use of nonuniformity is not a major short-coming
in our simulator, since we can interpret our obfuscator as
providing the guarantee that “anything an adversary can
efficiently compute given the obfuscated circuit, he could
also efficiently compute from observing the input/output
behavior of the circuit, when given a small amount of help”.
(Refer to [9, Sec 4.3.3] for a discussion on how this notion
is problematic in the context of zero-knowledge protocols.)
We also prove that we cannot obfuscate point functions with
simulators using black-box access to the adversary and a
limited number of queries to the point function oracle which
is independent of the size of the adversary.

Predicate adversaries.Our simulator only applies to a
predicate adversary that computes a {0, 1}-valued function
of its input; that is, an adversary that is trying to decide
some property of the original circuit. Note that simulating
such an adversary already captures semantic security. As
pointed out in [1], we would like (for positive results) for
the simulator to satisfy a stronger requirement, namely
to simulate the view of the adversary. We show that
this is impossible for point functions. In fact, we show
a stronger negative result: every family of circuits that
can be obfuscated against general adversaries is efficiently
and exactly learnable using membership queries. Point
functions, in particular, are not learnable. Moreover,
our argument relativizes, thereby ruling out obfuscating
point functions against general adversaries even in the non-
programmable random oracle model.

1.3 Additional related work

Obfuscation with number-theoretic assumptions.The
problem of obfuscating point functions was first studied by
Canetti [3], who presented several equivalent definitions,
one of which is the same as the one used in this paper.
In addition, he showed that the definition can be realized
based on a strong variant of the Decisional Diffie-Hellman
problem, namely that the problem remains hard if one of
the inputs comes from any distribution of super-logarithmic
min-entropy (instead of the uniform distribution). We note
that this assumption has a flavor of pseudorandomness,
whereas we start with a hardness assumption from which
we derive pseudorandomness. The paper also introduced
the hashing paradigm for obfuscating point functions used
here and in [15].

Obfuscation with high min-entropy.Canetti et al. [5]
and Dodis et al. [6] show how to achieve a weaker notion
of virtual black-box (based on a definition in [3]) assuming
just standard collision-resistant hash functions. Instead of
requiring that the distinguishing probability be small for
every x ∈ {0, 1}n, they require that the distinguishing
probability be small averaging over x sampled from a
distribution of sufficiently high min-entropy. One way of
formalizing this is as follows, where δ ∈ (0, 1) is a parameter:

for any nonuniform PPT A, there exists a nonuni-
form oracle PPT SA and a negligible function
ε(n) such that for all sufficiently large n and for
all distributions X over {0, 1}n with min-entropy
at least nδ:

Ex∈X

˛̨̨
Pr
ˆ
A(O(Ix)) = 1

˜
−Pr

ˆ
SIx

A (1n) = 1
˜ ˛̨̨
≤ ε(n)

The idea in [5, 6] is to hash x down to a string of
length roughly nδ using a strong extractor with a collision-
resistant property. Such an extractor can be constructed
by composing pair-wise independent hash functions with
collision-resistant hash functions. The adversary’s view of
the hash value, for a random x chosen from a distribution
of high min-entropy, can then be simulated using a random
string. In particular, the simulator achieves security in an
information-theoretic sense without making any query to
the point function oracle and simulates general adversaries
using just black-box access (to the adversary) and no
additional nonuniformity. However, the construction only
achieves computational functionality, that is, given a circuit
produced by their construction, no efficient algorithm can
find an input on which this circuit differs from the desired
functionality. The work of Dodis et al. [6] also constructs
obfuscators for proximity queries in this framework.

There is qualitative difference between the setting with
high min-entropy considered in [5, 6] and that considered in
this paper. Consider a predicate adversary A that checks
whether the point function corresponds to an x whose first
n − 3 log n bits are 0, by checking whether the obfuscated
circuit evaluates to 1 on n3 inputs. To achieve virtual black-
box in our setting, it is essential that the simulator queries
the point function oracle on Ω(n3) inputs, whereas in the
relaxed setting with high min-entropy, the output of A can
be trivially simulated because it is 0 except with negligible
probability.

Obfuscation with random oracles.The obfuscator for
point functions in [15] achieves the virtual black-box prop-
erty in the programmable random oracle model, which is
formalized as follows:

for any nonuniform PPT A, there exists a nonuni-
form oracle PPT SA and a negligible function
ε(n) such that for all sufficiently large n and for
all x ∈ {0, 1}n:˛̨̨
Pr
R

ˆ
AR(OR(Ix)) = 1

˜
−Pr

ˆ
SIx

A (1n) = 1
˜ ˛̨̨
≤ ε(n)

In fact, their simulators produce views that are identically
distributed to the views for general adversaries (over random
oracles R), bypassing all of the limitations described in
Sec 1.2.3. Starting with their obfuscator for point functions,
Lynn et al. [15] derived obfuscators for fairly complex access

control functionalities via composition. Unfortunately, the
composition techniques presented therein do not apply to
our construction.

2. PRELIMINARIES

2.1 Notation and definitions
We model efficient adversary strategies using nonuniform

probabilistic polynomial-time machines (PPT), which are
essentially the same as families of probabilistic polynomial-
sized circuits. We say that a nonuniform PPT A has size s
if the running time and the length of the nonuniform advice
for A is bounded by s.

We write Un to denote the uniform distribution over
{0, 1}n, and neg(n) to denote a function of the form n−ω(1).
In the context of describing probability distributions, we
write x ∈ Un to denote choosing x at random from Un; we
also use x ∈ L to denote choosing an element x from the
set L uniformly at random. For a probabilistic function f ,
we use f(x; R) to denote the output of f on input x and
internal coin tosses R, and we say that f is public-coin [14]
if it publishes its internal coin tosses as part of its output.

Definition 1. A point function Ix : {0, 1}n → {0, 1}, is
specified by a string x ∈ {0, 1}n and on input y ∈ {0, 1}n,
outputs 1 if y = x, and 0 otherwise. We would also use Ix

to denote a circuit that hardwires the value x and computes
Ix. The family of point functions is given by the collection
{Ix}x∈{0,1}n,n∈N.

2.2 Obfuscation

Definition 2. [1, 3] A probabilistic polynomial-time algo-
rithm O is an obfuscator for the family of circuits C = ∪n Cn

(where Cn is the subset of circuits in C that take inputs of
length n) if the following three conditions hold:

• (approximate functionality) There exists a negligible
function α such that for all n, for all C ∈ Cn, with
probability 1−α(n) over the internal coin tosses of the
obfuscator, O(C) describes a circuit that computes the
same function as C.

• (polynomial slowdown) There is a polynomial p such
that for every circuit C ∈ C, |O(C)| ≤ p(|C|).

• (weak virtual black-box property) There is a polyno-
mial q such that for any nonuniform PPT A of size
s and any function ε(n) = 1/nO(1), there exists a
nonuniform PPT SA of size q(s, 1/ε) such that for all
sufficiently large n and for all circuits C ∈ Cn:˛̨̨

Pr
ˆ
A(O(C)) = 1

˜
− Pr

ˆ
SC

A (1|C|) = 1
˜ ˛̨̨
≤ ε(n)

The weak virtual black-box property is a relaxation of
the virtual black-box property in [1] (in allowing the size
of SA to depend in ε), and in the case of point functions
coincides with the definition of oracle simulatability in [3].
Obfuscation for general circuits is impossible even under
this definition [1]. In addition, as pointed out in [1],
this definition is equivalent to the one that requires, for
every predicate P (not necessarily efficiently computable),
the probability that An(O(C)) = P (C) be at most the

probability that SC
n (1|C|) = P (C) plus ε.

3. CONSTRUCTING OBFUSCATORS

3.1 The basic construction
We begin by describing the hash function with which we

will instantiate the random oracle in the construction of [15].

Construction 3.1. Let π : {0, 1}n → {0, 1}n be a per-
mutation. We define a (public-coin) probabilistic function

h : {0, 1}n × {0, 1}3n2
→ {0, 1}3n2+3n as follows:

h(x; τ1, . . . , τ3n)

= (τ1, . . . , τ3n, 〈x, τ1〉, 〈π(x), τ2〉, . . . , 〈π3n−1(x), τ3n〉)

Remark 1. This construction (and the analysis that is
to follow) closely resembles the pseudorandom generator
of [2, 18, 11]. We emphasize that we do not append
π3n(x) to the output of our hash function and that we use
independent random strings for computing the dot product.
The same construction was used in [5] as a building block for
constructing pseudorandom function ensembles with certain
collision-free properties.

To motivate the above construction and the analysis, we
briefly review why instantiating the random oracle with
several standard cryptographic primitives fails to yield an
obfuscator. A one-way permutation would not work as
it may reveal the first bit of x. Neither would using a
pseudorandom generator with seed x as the output is only
indistinguishable from uniform for a random x. Committing
to the string x also fails for our purpose, as a commitment
scheme guarantees that commitments to the strings 0n

and 1n be indistinguishable, whereas functionality for an
obfuscator requires that one be able to distinguish between
the two.

Theorem 3.2. Under Assumption 1.1, there exists a
(public-coin) obfuscator for the family of point functions.

Proof. We instantiate the random oracle in the con-
struction of [15] with the hash function h from Construction
3.1 applied to the permutation π given by Assumption 1.1.
That is, on input Ix and randomness R, the obfuscator O
computes (R, ρ) = h(x; R) and hard-wires (R, ρ) into the
obfuscated circuit. On input y, the obfuscated circuit out-
puts 1 iff h(y; R) = (R, ρ). Clearly, O satisfies polynomial
slow-down and public-coin.

Approximate functionality: Fix x 6= y ∈ {0, 1}n.
Then,

Pr
τ1,...,τ3n

[h(x; τ1, . . . , τ3n) = h(y; τ1, . . . , τ3n)]

= Pr
τ1,...,τ3n

[∀ j = 1, . . . , 3n : 〈πj−1(x), τj〉 = 〈πj−1(y), τj〉]

=
1

23n

because π is a permutation, so πj−1(x) 6= πj−1(y) for all
j = 1, 2, . . . , 3n. Taking a union bound over all x, y ∈ {0, 1}n

shows that h is collision-free, from which approximate
functionality follows3.

3In fact, we achieve a stronger notion of approximate
functionality, namely that there exists a negligible function
α such that for all n, with probability 1 − α(n) over the
internal coin tosses of the obfuscator, for all C ∈ Cn and for
all x ∈ {0, 1}n, (O(C))(x) = C(x).

Virtual black-box: Let A be a predicate nonuniform
PPT of size s. The only auxiliary information stored in
the obfuscated circuit is the string h(x; R), so it suffices
to simulate the output of A on input h(x; R) instead of
O(Ix; R). We define

Ln = {x ∈ {0, 1}n :˛̨
Pr[A(h(x; U3n2)) = 1]− Pr[A(U3n2+3n) = 1]

˛̨
≥ ε}

The set Ln specifies the inputs for which the hash value
reveals “too much” information to the adversary, in that the
adversary’s output cannot be approximated by A(U3n2+3n).

Claim 3.3. For all sufficiently large n,

|Ln| ≤ poly(n, s, 1/ε)

Note that the virtual black-box property follows readily
from Claim 3.3 as follows: consider the nonuniform oracle
PPT SA that has Ln hardwired into it. On input 1n and
oracle access to Ix, SA queries Ix on each element of Ln. If
x ∈ Ln, SA outputs a random sample from the distribution
A(h(x; U3n2)). Otherwise (that is, x /∈ Ln), SA outputs a
random sample from the distribution A(U3n2+3n).

To prove Claim 3.3, we show how to construct using A
a circuit of size poly(n, 1/ε)s that inverts π on ε|Ln|/16n
inputs. We may assume (by replacing A with its negation
if necessary) that there exists a subset L′n of Ln of size at
least |Ln|/2 such that for all x ∈ L′n:

Pr[A(h(x; U3n2)) = 1]− Pr[A(U3n2+3n) = 1] ≥ ε

Averaging over x ∈ L′n, we have

Pr
x∈L′

n

[A(h(x; U3n2)) = 1]− Pr[A(U3n2+3n) = 1] ≥ ε

Consider the following 3n +1 hybrid distributions: where
x ∈ L′n, τ1, . . . , τ3n ∈ Un and b1, . . . , b3n ∈ {0, 1}:

D0 = {τ1, . . . , τ3n, 〈π3n−1(x), τ3n〉, . . . , 〈x, τ1〉}
D1 = {τ1, . . . , τ3n, 〈π3n−1(x), τ3n〉, . . . , b1}

...
... · · · · · ·

...

D3n = {τ1, . . . , τ3n, b3n, . . . , b1}

A standard hybrid argument yields a distinguisher for the
distributions Dj−1 and Dj for some j ∈ {1, 2, . . . , 3n − 1}
and a next-bit predictor P computing 〈πj−1(x), τj〉 with
advantage ε/3n. Upon hard-wiring the internal coin tosses
of P and the choices of b1, . . . , bj−1 and τj′ for all j′ 6= j, we
obtain a deterministic PPT P ′ of size O(s) satisfying:

Pr
x∈L′

n,τj

[P ′(πj(x), τj) = 〈πj−1(x), τj〉] ≥ 1/2 + ε/3n

By an averaging argument, it follows that for a ε/6n fraction
of x in L′n (and call such an x “good”):

Pr
τj

[P ′(πj(x), τj) = 〈πj−1(x), τj〉] ≥ 1/2 + ε/6n

We can then apply Goldreich-Levin [11] to recover “good”
x’s. Now, we have a probabilistic circuit of size poly(n, 1/ε)s
that recovers each “good” x with probability 3/4. We can
then hardwire the randomness into the circuit to obtain one
of size poly(n, 1/ε)s that inverts π on a ε/8n fraction of
the values in πj(L′n), that is, on at least ε|Ln|/16n different
values. Assumption 1.1 yields ε|Ln|/16n ≤ (poly(n, 1/ε)s)c,
from which the upper bound on |Ln| follows.

3.2 An improved construction
The amount of randomness used by the obfuscator may

be reduced from 3n2 to O(n) via random walk on expanders.
Let {Gn} be a family of explicit d-regular expanders for some
constant d with vertex set {0, 1}n and normalized second
largest eigenvalue bounded by 1/2 [13]. A standard spectral
argument (see for instance [9, Sec 2.6.2]) shows that these
expanders satisfy a mixing property:

Lemma 3.4. Let M denote the normalized adjacency ma-
trix of the expander Gn described above. Let P denote a
projection onto any subset of {0, 1}n of density 1/2. Then,

for any vector ~z ∈ R2n

, ‖PM~z‖ ≤
√

3
2
‖~z‖.

We may then derandomize Construction 3.1 by sampling
the strings τ1, . . . , τ3n for computing dot products using a
random walk on Gn.

Construction 3.5. Let π : {0, 1}n → {0, 1}n be a
permutation and Gn be a d-regular graph. We define a
probabilistic function h : {0, 1}n × {0, 1}O(n) → {0, 1}O(n)

as follows:

h(x; τ, σ1, . . . , σ10n) = (τ, σ1, . . . , σ10n, 〈x, τ〉,
〈π(x), Gn(τ ; σ1)〉, . . . , 〈π10n(x), Gn(τ ; σ1, . . . , σ10n)〉)

where σ1, . . . , σ10n ∈ [d], and Gn(τ ; σ1, . . . , σi) is the label
on the vertex reached by a walk on Gn that starts at the
vertex labelled τ and then following the sequences of i edges
labelled σ1, . . . , σi.

Now, we describe how to modify the proof of Theorem 3.2
to obtain an obfuscator for point functions using this
construction.

Approximate functionality: This basically follows
from the fact that random walks on expanders are rapidly
mixing. To formalize this, fix x 6= y ∈ {0, 1}n. For
i = 1, 2, . . . , 10n + 1, let Pi denote projection onto {r ∈
{0, 1}n | 〈πi−1(x), r〉 = 〈πi−1(y), r〉}. Then,

Prτ,σ1,...,σ10n [h(x; τ, σ1, . . . , σ10n) = h(y; τ, σ1, . . . , σ10n)]

= |P10n+1MP10nM · · ·P2MP1~u|

≤ 2n/2‖P10n+1MP10nM · · ·P2MP1~u‖

≤ (
√

3
2

)10n

where ~u is the vector corresponding to the uniform distribu-
tion over {0, 1}n. We can then take a union bound over all
x, y ∈ {0, 1}n as before.

Virtual black-box: Let A be a PPT of size s and we
define a set Ln as before. In addition, we may consider
an analogous collection of 10n + 2 hybrid distributions and
derive a distinguisher for the distributions Dj−1 and Dj , for
some j ∈ {1, 2, . . . , 10n + 2}. Since Gn(Un; σ1, . . . , σj−1) =
Un for any fixed σ1, . . . , σj−1, we may write Dj−1 and Dj

as:

Dj−1 = {τj , σ1, . . . , 〈πj(x), Gn(τj ; σj)〉, 〈πj−1(x), τj〉 . . . , b1}

Dj = {τj , σ1, . . . , 〈πj(x), Gn(τj ; σj)〉, bj , . . . , b1}

As in the previous analysis, the distinguisher yields a next-
bit predictor, and upon hard-wiring its internal coin tosses

and the choices of σ1, . . . , σ10n, b1, . . . , bj−1, we obtain a
deterministic PPT predictor P ′ of size O(s) satisfying:

Pr
x∈L′

n,τj

[P ′(πj(x), τj) = 〈πj−1(x), τj〉] ≥ 1/2 + ε/(10n + 1)

The rest of the proof is as before.

Remark 2. In our framework for obfuscation, we may
describe both the inputs and outputs of our obfuscation
algorithm using programs with auxiliary information instead
of circuits. In this case, our obfuscator for point functions
based on Construction 3.5 produces programs whose de-
scription is linear in that of the input, which is optimal up
to constant factors.

Next, we note that we may relax the assumption in
Theorem 3.2 to requiring a strongly one-way permutation
ensemble, instead of a specific permutation. Unlike the
setting of standard one-way permutations, this does not
immediately imply Assumption 1.1:

Assumption 3.6. There exists a collection of polynomial-
time computable permutation ensemble F = {Fn}n∈N where
each f ∈ Fn is a permutation on {0, 1}n and a constant
c such that for every polynomial s = s(n) and every
nonuniform PPT A of size s, there exists a negligible
function α, such that for all sufficiently large n, with
probability 1− α(n) over f ∈ Fn,

Pr
x∈Un

[A(f, f(x)) = x] ≤ sc/2n

3.3 Extension to multi-bit and prefix matching

Definition 3. A point function with m(n)-bit output Ix,β :

{0, 1}n → {0, 1}m(n), is specified by a string x ∈ {0, 1}n

and another string β ∈ {0, 1}m(n) and on input y ∈
{0, 1}n, outputs β if y = x, and 0m(n) otherwise. We
would also use Ix,β to denote a circuit that hardwires the
values x and β and computes Ix,β . The family of point
functions with m(n)-bit output is given by the collection
{Ix,β}x∈{0,1}n,β∈{0,1}m(n),n∈N.

Theorem 3.7. Under Assumption 1.1, for any m(n) =
O(log n), there exists a (public-coin) obfuscator for the
family of point functions with m(n)-bit output.

Proof (sketch). Again, we use the obfuscator for point
functions with multi-bit output in [15], except we replace the
random oracle with a generalization of the hash function
from Construction 3.1, hn,m : {0, 1}n × {0, 1}(m+3n)n →
{0, 1}(m+3n)(n+1) defined as follows:

h(x; τ1, . . . , τ3n+m)

= (τ1, . . . , τ3n+m, 〈x, τ1〉, . . . , 〈π3n+m−1, τ3n+m〉)

Specifically, on input Ix and randomness R, the obfuscator
O computes (R, ρx, ρ′x) = h(x; R) where |ρx| = 3n and
|ρ′x| = m, and hard-wires (R, ρx, z) into the obfuscated
circuit, where z = ρ′x⊕β. On input y, the obfuscated circuit
computes (R, ρy, ρ′y) = h(y; R) outputs z⊕ρ′y if ρx = ρy and
0m otherwise. We may also derandomize hn,m using random
walk on expanders to obtain a construction that uses only
O(m + n) random bits.

Definition 4. A t(n)-bit prefix function prex : {0, 1}n →
{0, 1}, is specified by a string x ∈ {0, 1}t(n) and on input
y ∈ {0, 1}n, outputs 1 if the first t(n) bits of y matches x,
and 0 otherwise. We would also use prex to denote a circuit
(padded with 1n) that hardwires the values x and computes
prex. The family of t(n)-bit prefix functions is given by the
collection {prex}x∈{0,1}t(n),n∈N.

In order to obfuscate prefix functions, we require a
stronger variant of Assumption 1.1:

Assumption 3.8. There exists a polynomial-time com-
putable permutation π : {0, 1}n → {0, 1}n and a constant

c such that for every s(n) = 2o(n) and every nonuniform
PPT A of size s(n): for all sufficiently large n,

Pr
x∈Un

[A(π(x)) = x] ≤ sc/2n

Theorem 3.9. Under Assumption 3.8, for any “nice”
function t(n), there exists a (public-coin) obfuscator for the
family of t(n)-bit prefix functions.

Proof (sketch). If t(n) = O(log n), then the family of
t(n)-bit prefix functions is efficiently and exactly learnable
using membership queries and can therefore be trivially
obfuscated as pointed out in [15] (see Prop 5.2). If
t(n) = ω(log n), the construction is the same as that
for point functions, except we use Construction 3.5 (or
Construction 3.1) with input length t(n). Specifically, on

input prex (with x ∈ {0, 1}t(n)) and randomness R, the
obfuscator O computes (R, ρ) = h(x; R) and hard-wires
(R, ρ) into the obfuscated circuit. On input y ∈ {0, 1}n,
the obfuscated circuit outputs 1 iff h(y0; R) = (R, ρ), where
y0 is the t(n)-bit prefix of y. Note that we require a stronger
assumption because a nonuniform PPT adversary here runs
in time super-polynomial in m(n), which is the input length
of the permutation π we use in this construction. If we
introduce a security parameter into the definition of virtual
black-box, then we could derive the analysis directly from
Theorem 3.2.

4. COMPUTATIONAL ASSUMPTIONS

4.1 On inverting a random permutation
We extend the argument of [8] to show that a random

permutation is strongly one-way in the sense of Assumption
1.1. Clearly, our analysis is tight up to polynomial factors.
To simplify the exposition, we include the input gates in
determining the size of a circuit, so that any circuit has size
at least that of its input. We use Πn to denote the set of all
permutations over {0, 1}n.

Theorem 4.1. For all sufficiently large n, with probabil-

ity at least 1 − 2−n3
over a random π ∈ Πn: for all s with

n ≤ s ≤ 2n/5 and for all oracle circuits A of size s,

Pr
x∈Un

[Aπ(π(x)) = x] ≤ s4/2n

The key insight is the same as that in [8]: any permutation
π for which there is an oracle circuit A such that A inverts
π on “many” inputs has a “short” description (given A).
Hence there cannot be too many such permutations.

Claim 4.2. Let A be an oracle circuit that makes (at
most) s− 1 queries to a permutation π : {0, 1}n → {0, 1}n,
and for which Pry[Aπ(y) = π−1(y)] ≥ s4/2n. Then, π can
be described using at most

log

2n

s3

!
+ s3 log s + log[2n]s4−s3 + log(2n − s4)!

bits given A (where [n]k denotes the quantity n(n−1) · · · (n−
k + 1)).

Proof. Let N = 2n. WLOG, assume that A makes
distinct queries to π, and always queries π on the value it is
going to output. Consider the set I of s4 points on which
A inverts π, after making s queries to π. We define a set
Y and another set W via the following process: initially W
is {0, 1}n whereas Y is empty, and all the elements of I are
candidates for inclusion in Y . Take the lexicographically
first element y from I, and place it in Y . Next, simulate the
computation of Aπ(y) and let x1, . . . , xq(y) be the distinct
queries made by A to π, with q(y) ≤ s and π(xq(y)) =
y. Let y1, . . . , yq(y) be the corresponding answers (that
is, yi = π(xi)). We add the answers y1, . . . , yq(y)−1 (in
order) and the number q(y) to our description of π, and
remove the strings x1, . . . , xq(y) from I. In addition, we
remove the strings x1, . . . , xq(y) from W . At any step of
the construction, one element is added to Y and at most
s− 1 elements is removed from I. Since I initially contains
s4 elements, in the end, we have |Y | ≥ s3. In fact, we will
stop the process when Y reaches exactly s3 elements.

We claim that given the set Y , the values y1, . . . , yq(y)−1

and the number q(y) for each y ∈ Y , the values of π on W
and the circuit A, it is possible to compute π everywhere.
The values of π−1 on Y can be reconstructed sequentially for
all y ∈ Y , taken in lexicographic order, as follows: Simulate
the computation of Aπ(y). Our description allows us to
answer the first q(y) − 1 queries, and the q(y)th query is
exactly π−1(y). Note that while reconstructing π−1 on
Y , we have also reconstructed the set W and π on all of
{0, 1}n −W .

Let Q =
P

y∈Y q(y), so Q ≤ s3(s − 1) and |W | ≤ 2n −
Q−s3. Describing Y requires log

`
N
s3

´
bits. The descriptions

y1, . . . , yq(y)−1 and the number q(y) for all y ∈ Y require at

most s3 log s +
PQ

i=1 log(N − i + 1) = s3 log s + log[N]Q.
Once we have constructed the set W , π on {0, 1}n −W can
be described using log(N −|W |)! bits. The total description
requires at most log

`
N
s3

´
+s3 log s+log[N]Q+log(N−|W |)! ≤

log
`

N
s3

´
+ s3 log s + log[2n]s4−s3 + log(N − s4)! bits.

Now that we have established Claim 4.2, we may complete
the proof of Theorem 4.1 as follows.

Proof (of Theorem 4.1). Fix an oracle circuit A of

size s, where s ≤ 2n/5. It follows from the above claim
that the fraction of permutations π ∈ Πn such that
Prx[Aπ(π(x)) = x] ≥ s4/2n is at most

N

s3

!
· ss3

· [N]s4−s3 · (N − s4)! · 1

N !
=

ss3

s3!
·

[N]s4−s3

[N − s3]s4−s3

which is upper bounded by“es

s3

”s3

· exp

„
s3

N − s3
+ . . . +

s3

N − s4

«
<

„
e2

s2

«s3

Since there are at most 2sn log s oracle circuits of size s,
a union bound shows that the probability over a random
choice of π ∈ Πn that there exists an oracle circuit A of size
s, such that n ≤ s ≤ 2n/5 and Prx[Aπ(π(x)) = x] ≥ s4/2n,
is at most

2n/5X
s=n

sns

„
e2

s2

«s3

< 2n/5

„
e2

n

«n3

< 2−n3

Remark 3. The improvement over [8] is in the length
of the description in Claim 4.2: the analysis in [8] yields

2 log
`
2n

s3

´
+ log(2n − s3)! ≈ 2nn + s3n − Θ(s3 log n) bits

whereas our analysis yields approximately 2nn−Ω(s3 log s)
bits. More generally, the analysis in [8] cannot provide

a lower bound better than 2n/2 for “work” whereas our
analysis yields a lower bound of 2n−Θ(log n).

Consider a relativization of Definition 2 wherein all
parties (the obfuscation algorithm, the adversary and the
simulator) have access to a random permutation oracle,
and the simulator must simulate the adversary’s (single-bit)
output with respect to the same oracle. This is a stronger
requirement than that for the random oracle model, since
the adversary and the simulator are chosen after the oracle
is fixed. We refer to this as the non-programmable random
permutation oracle model [16]:

(virtual black-box property with a non-programmable
random permutation oracle) With probability
1 − neg(n) over π ∈ Πn, for every nonuniform

PPT A and every function ε(n) = 1/nO(1),
there exists a nonuniform oracle PPT SA of size
poly(n, 1/ε) such that for all sufficiently large n,
for all circuits C ∈ Cn:˛̨̨
Pr
ˆ
Aπ(Oπ(C)) = 1

˜
−Pr

ˆ
SC,π

A (1|C|) = 1
˜ ˛̨̨
≤ ε(n)

Corollary 4.3. There exists a (public-coin) obfuscator
for point functions in the non-programmable random permu-
tation oracle model.

4.2 Necessity of strong assumptions
In this section, we explore the necessity of Assumptions

1.1 and 3.6.

Proposition 4.4. Suppose that public-coin obfuscators
exist. Then, there exists an efficiently computable function
ensemble F = {Fn} satisfying the following properties:

• (weakly collision-free) For all x 6= y, Prf∈Fn [f(x) 6=
f(y)] ≥ 1− neg(n).

• (somewhat strongly one-way) For all polynomials p(n),
for all PPT A of size p(n), there exists a constant c > 0
such that for all sufficiently large n, |Qn| < nc, where
Qn is the set:

{x ∈ {0, 1}n | Pr
f∈Fn

[An(f, f(x)) ∈ f−1(f(x))] ≥ 1/p(n)}

Note that the main qualitative differences between the
function ensemble herein and that stipulated in Assumption
3.6 are weakly collision-free functions vs permutations and
a reversal of quantifiers between x and f in the specification
of the one-wayness property.

Proof. Let O be a public-coin obfuscator for point
functions using r(·) random bits. We define4

Fn = {f | (f(x); f) = O(Ix; R), R ∈ {0, 1}r(n)}

that is, every R ∈ {0, 1}r(n) is the index5 of a function
f ∈ Fn, and f(x) is the string O(Ix; R), excluding R (which
is part of O(Ix; R) since O is public-coin). It is clear that
functionality for O implies F is weakly collision-free.

Next, for each n, let xn denote the lexicographic mid-point
of Qn, and let Pn denote the predicate “� xn”. Consider
the predicate PPT B, which on input (f, y)

i. Compute x′ = A(f, y).

ii. Feed x′ as input to the obfuscated circuit O(Ix) =
(f(x); f). If the output is 1, output Pn(x′); otherwise,
output a random bit.

It is easy to see that for all x ∈ Qn:

Pr
f∈Fn

[B(f, f(x)) = Pn(x)] ≥ 1
2

+ 1
2p(n)

− neg(n)

where the neg(n) term captures the probability that O(Ix)
fails to compute Ix. Let S be the simulator for B with
distinguishing probability 1/4p(n) given by the virtual
black-box property of O. Therefore, for all sufficiently large
n, for all x ∈ Qn, we have:˛̨̨

Pr
f∈Fn

ˆ
B(f, f(x)) = Pn(x)

˜
−Pr

ˆ
SIx(1n) = Pn(x)

˜˛̨̨
≤ 1

4p(n)

On the other hand, since S makes at most poly(n) queries
into Ix, we have:

Pr
x∈Qn

[SIx(1n) = Pn(x)] ≤ 1
2

+ poly(n)
|Qn|

By combining the 3 inequalities, we obtain the polynomial
bound on |Qn|.

Next, we consider a hardness result for Circuit-Sat
that is implied by the existence of obfuscators for point
functions, not necessarily public-coin ones; it shows that
some sort of exponential lower bound is indeed necessary
to obtain any kind of positive results for obfuscating point
functions. This was pointed out to us by Luca Trevisan
(private communication, 2004):

Proposition 4.5. If there exists a nontrivial (i.e., a

probabilistic 2o(#variables) ·poly(circuitsize)-time) algorithm for
the Circuit-Sat problem, then obfuscating point functions
is impossible.

Proof. Let t(#variables, circuitsize) denote the running
time of the Circuit-Sat algorithm, and suppose on the con-
trary that there exists an obfuscator O for point functions.
Let `(n) = ω(log n) such that t(`(n), poly(n)) = poly(n),
and let L denote the set of strings {0, 1}n whose last n−`(n)

bits are 0’s (so that |L| = nω(1)). Let A denote a PPT
that uses the Circuit-Sat algorithm to decide on input a
circuit C of size poly(n) on `(n) variables, whether there is
a satisfying assignment for C whose first bit is 1. Then,

Pr
x∈L

[A(O(Ix)) = x1] ≥ 1− neg(n)

4Note that we require that O be public-coin in order that in
the definition of “somewhat strongly one-way”, we can give
An the ability to compute f .
5To avoid introducing additional notation, we use f to
denote both the function and its index.

(where x1 denotes the first bit of x) whereas for any
nonuniform oracle PPT SA,

Pr
x∈L

[SIx
A (1n) = x1] ≤ 1/2 + neg(n)

This yields the required contradiction to the virtual black-
box property.

It is easy to show that if there is a nontrivial algorithm
for Circuit-Sat, then Assumptions 1.1 and 3.6 do not hold.
Together with Theorem 3.2 and Prop 4.4, this yields a fairly
good picture of the computational complexity of obfuscating
point functions.

5. IMPOSSIBILITY RESULTS

5.1 Strongly black-box simulators
We present a formalization of black-box simulation for

virtual black-box similar to that for zero-knowledge [10],
wherein there is a universal oracle simulator that accesses
the adversary as a black-box. Unlike the setting for zero-
knowledge wherein the black-box simulator only accesses the
adversary as an oracle, the black-box simulator in our setting
accesses two different oracles: the circuit and the adversary.

(virtual black-box property with a strongly black-

box simulator) For every function ε(n) = 1/nO(1),
there exists an oracle PPT S such that for
nonuniform PPT A, we have: for all sufficiently
large n, for all circuits C ∈ Cn˛̨̨
Pr
ˆ
A(O(C)) = 1

˜
− Pr

ˆ
SA,C(1|C|) = 1

˜˛̨̨
≤ ε(n)

As in the case for zero-knowledge, we do not allow the
size of the black-box simulator S to depend on that for
A; this means that the number of oracle queries made
by the simulator to both the circuit and the adversary is
independent of the size of the adversary. This property is
satisfied by the simulator of [5, 6]. In our proof, we only
require that the number of queries made to the circuit be
independent of the size of the adversary. Ideally, we would
like to rule out black-box simulators wherein the number of
queries to the circuit is allowed to depend on the size of the
adversary.

Proposition 5.1. Obfuscators for point functions with
strongly black-box simulators do not exist.

Proof. Let t = t(n) denote an upper bound on the size of
the black-box simulator S (for ε = 1/8 say), that is, S makes
at most t queries to the oracle for the point function. Let
L, L′n be 2 disjoint subsets of {0, 1}n with |L| = |L′n| = 2t.
Let χL : {0, 1}n → {0, 1} be the indicator function for L,
that is, χL(x) = 1 iff x ∈ L, and let A be nonuniform
PPT that on input O(Ix) computes χL(x) by evaluating
the obfuscated circuit on every point in L. By approximate
functionality, we have

Pr
x∈L∪L′

n

[A(O(Ix)) = χL(x)] ≥ 1− neg(n)

On the other hand, for any S which makes at most t queries
to Ix (even if S “knows” A, L and L′n), we have

Pr
x∈L∪L′

n

[SA,Ix(1n) = χL(x)] ≤ 3/4

This contradicts the virtual black-box property.

5.2 Obfuscation against general adversaries
As pointed out in [1], we may want to consider a

stronger notion of virtual black-box, where we do not restrict
the nature of what the adversary is trying to compute
given the obfuscated circuit. Informally, we require that
the simulator, given just oracle access to a circuit C,
produce an output distribution that is computationally
indistinguishable from what the adversary computes when
given O(C). In this setting, it suffices to consider adversary
that computes the identity function, that is, output O(C).

(virtual black-box property against a general
adversary) For every polynomial s(n) and every

function ε(n) = 1/nO(1), there exists a nonuni-
form oracle PPT S of size poly(s, n, 1/ε) such
that for all nonuniform PPT A of size s, for all
sufficiently large n and for all circuits C ∈ Cn:

Pr[A(O(C)) = 1]− Pr[A(SC(1|C|)) = 1] | ≤ ε

Note that in this definition, we allow the size of the
simulator S to depend on the size of the distinguisher.
The difference between this definition and that with a weak
simulator presented in Section 2.2 is the order of quantifiers
(so that the simulator Sn may or may not depend on the
distinguisher An): informally, upon fixing n, s, ε,

• (weak simulator) for all nonuniform PPT A of size
s, there exists a nonuniform oracle PPT S of size
poly(s, n, 1/ε) such that for all C ∈ Cn: |Pr[A(O(C)) =

1]− Pr[SC(1|C|) = 1] | ≤ ε.

• (general adversary) there exists a nonuniform oracle
PPT S of size poly(s, n, 1/ε) such that for all nonuni-
form PPT A of size s, for all C ∈ Cn: |Pr[A(O(C)) =

1]− Pr[A(SC(1|C|)) = 1] | ≤ ε.

Proposition 5.2. A family of circuits C = ∪n Cn is ob-
fuscatable against general adversaries iff C is (nonuniformly)
efficiently and exactly learnable using membership queries.

Proof. Obfuscating exactly learnable functions against
general adversaries is straight-forward and was observed in
[15]: the obfuscator simply takes the input circuit C and
outputs the circuit produced by the learning algorithm given
oracle access to C; the simulator does essentially the same
thing and thus its size will not in fact depend on the size
of the distinguisher, even though we allow for that in the
definition.

The learning algorithm for an efficiently obfuscatable
against general adversaries merely outputs a circuit comput-
ing the majority of n2 independent copies of the simulator.
To see why this works, let s(n) denote an upper bound of the
size of the circuits produced by the obfuscator, and S the
simulator for distinguishers of size s and ε = 1/4. For each
y ∈ {0, 1}n, consider the nonuniform distinguisher evaly of
size s that evaluates its input (which is a circuit) on y. Then,
we have: for all C ∈ Cn and for all y ∈ {0, 1}n:

Pr[evaly(SC(1n)) = (O(C))(y) and (O(C))(y) = C(y)]

≥ 3/4− neg(n)

Taking the majority of n2 independent evaluations of S
allows us to take union over all y ∈ {0, 1}n so that for
all C ∈ Cn, with overwhelming probability, the learning

algorithm given oracle access to C, produces a circuit that
agrees with C everywhere on {0, 1}n.

Note that the learning algorithm will be nonuniform if
the simulator is nonuniform; however, the nonuniformity
only depends on the input length n. Most lower bounds for
learnability are based on lower bounds on query complexity
or on cryptographic assumptions and may therefore be
used to rule out nonuniform learning algorithms and thus
obfuscation against general adversaries. In fact, the result
relativizes in the sense that if we allow the obfuscation
algorithm, the obfuscated circuit, the simulator and the
distinguisher access to some oracle, we obtain an efficient
and exact learning algorithm with respect to the same
oracle.

The next result follows from the fact that point functions
are not exactly learnable (since a uniformly chosen point
function is statistically indistinguishable from the all-zeroes
function given a polynomial number of membership queries).

Theorem 5.3. Obfuscating point functions against gen-
eral adversaries is impossible. Furthermore, the proof rela-
tivizes and hence the result extends to the non-programmable
random oracle model.

This does not contradict the obfuscator for point functions
in [15] achieving virtual black-box property with a general
adversary because their simulator is allowed to program the
random oracle.

6. CONCLUSION
We point out several interesting directions for future work:

• Is the dependency on the distinguishing probability in
the size of the simulator necessary?

• Obfuscating multi-point functions: a natural extension
of function points are multi-point functions {Ix1,...,xk :
{0, 1}n → {0, 1}}, for (x1, . . . , xk) ∈ ({0, 1}n)k where
Ix1,...,xk (y) = Ix1(y) ∨ . . . ∨ Ixk (y). Also, obfuscating
point functions with poly(n) multi-bit output.

• Obfuscating AC0: obfuscating TC0 is impossible [1],
whereas we can obfuscate NC0 against general adver-
saries (since NC0 is exactly learnable). Note that
the techniques of [1] do not extend to AC0 since
pseudorandom functions do not exist in AC0 [12]. In
addition, AC0 can implement point functions, so the
results of Section 4 do apply in this setting.

• Obfuscating point functions with a-priori information,
as discussed in [3].

• Explore the possibility of realizing other cryptographic
constructions proven secure in the random oracle
model under assumptions similar to Assumption 1.1.

7. ACKNOWLEDGEMENTS
I am especially grateful to David Molnar and David

Wagner for introducing me to the problem, and to Luca
Trevisan, Salil Vadhan, and an anonymous referee for
insightful discussions on the subject and for constructive
feedback that greatly improved the presentation and focus
of this work. I would also like to thank many friends and

colleagues, in particular Andrej Bogdanov, Ran Canetti,
Yevgeniy Dodis, Amit Sahai, Jason Waddle, Emanuele
Viola, Ke Yang and the audience at the Feb 9 MIT CIS
Seminar for encouragement, valuable feedback and helpful
discussions.

8. REFERENCES
[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,

S. Vadhan, and K. Yang. On the (im)possibility of obfuscating
programs. In Proc. Crypto ’01, 2001.

[2] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM Journal of
Computing, 13(4):850–864, 1984.

[3] R. Canetti. Towards realizing random oracles: Hash functions
that hide all partial information. In Proc. Crypto ’97, 1997.

[4] R. Canetti, O. Goldreich, and S. Halevi. The random oracle
methodology, revisited. In Proc. 30th STOC, 1998.

[5] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way
probabilistic hash functions. In Proc. 30th STOC, 1998.

[6] Y. Dodis and A. Smith. Correcting errors without leaking
partial information. In these proceedings, 2005.

[7] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge.
In Proc. 30th STOC, 1998.

[8] R. Gennaro and L. Trevisan. Lower bounds on efficiency of
generic cryptographic constructions. In Proc. 41st FOCS,
2000.

[9] O. Goldreich. Foundations of Cryptography: Basic Tools.
Cambridge University Press, 2001.

[10] O. Goldreich and H. Krawczyk. On the composition of
zero-knowledge proof systems. SIAM Journal on Computing,
25(1):169–192, 1996.

[11] O. Goldreich and L. Levin. Hard-core predicates for any
one-way function. In Proc. 21st STOC, 1989.

[12] N. Linial, Y. Mansour, and N. Nissan. Constant depth circuits,
fourier transform, and learnability. Journal of the ACM,
40(3):607–620, 1993.

[13] A. Lubotzky, R. Philips, and P. Sarnak. Ramanujan graphs.
Combinatorica, 8(3):261–277, 1988.

[14] M. Luby. Pseudorandomness and Cryptographic Applications.
Princeton University Press, 1996.

[15] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and
techniques for obfuscation. In Proc. Eurocrypt ’04, 2004.

[16] J. B. Nielsen. Separating random oracle proofs from
complexity theoretic proofs: The non-committing encryption
case. In Proc. Crypto ’02, 2002.

[17] D. Wagner and I. Goldberg. Proofs of security for the unix
password hashing algorithm. In Proc. Asiacrypt ’00, 2000.

[18] A. Yao. Theory and applications of trapdoor functions. In
Proc. 23rd FOCS, 1982.

