
A stateful implementation of a random function
supporting parity queries over hypercubes

Andrej Bogdanov and Hoeteck Wee

Computer Science Division
University of California, Berkeley
{adib,hoeteck}@cs.berkeley.edu

Abstract. Motivated by an open problem recently suggested by Gol-
dreich et al., we study truthful implementations of a random binary
function supporting compound XOR queries over sub-cubes of the hy-
percube {0, 1}n. We introduce a relaxed model of an implementation,
which we call a stateful implementation, and show how to implement
the desired specification in this model. The main technical construction
is an algorithm for detecting linear dependencies between n dimensional

hypercubes, viewed as characteristic vectors in F
{0,1}n
2 . Using coding the-

oretic techniques, we first exhibit a randomized algorithm for detecting
such dependencies. We then show how a recent approach by Raz and
Shpilka for polynomial identity testing in non-commutative models of
computation can be applied to obtain a deterministic algorithm.

1 Introduction

In a recent paper, Goldreich, Goldwasser and Nussboim [3] initiated the study of
efficient pseudorandom implementations of huge random objects—objects so big
that they cannot be represented using bounded resources, such as randomness or
time (in particular, these objects have size that is exponential in the running time
of the applications), but for which we can obtain approximations good enough
for many algorithmic and cryptographic applications. A celebrated example from
cryptography is the construction of a pseudo-random function from any one way
function [2]: Even though a truly random boolean function on n input bits cannot
be specified by fewer than 2n random bits, in many cryptographic applications
this infeasible object can be approximated by a pseudo-random function that can
be specified using only poly(n) random bits and evaluated on arbitrary inputs
in poly(n) time.

1.1 Stateful and Stateless Implementations

Since the work of Goldreich et al. is somewhat motivated by cryptography, they
consider only “stateless” implementations of huge random objects. An imple-
mentation refers to a polynomial-time (oracle) machine that computes the huge
object; in the case of a random boolean function, the machine takes as input a

string of n bits and outputs the value of the function at that point. In a stateless
implementation I, the answer to a query posed to I cannot depend on queries
previously seen by I and their answers. This property of the implementation is
often important in cryptographic settings, where multiple parties share the same
copy of the huge object in question. For example, a common technique in cryp-
tography is to design protocols in the random oracle model, where each party
has access to the same infinite sequence of random bits. To obtain an implemen-
tation of the protocol, one replaces the random oracle with a pseudo-random
function. As we want the parties in the protocol to share the same pseudo-
random function, it is important that the implementation of the random oracle
by a pseudo-random function be independent of the queries seen by a particular
party in the protocol; namely, the implementation must be stateless.

In addition to cryptography, Goldreich et al. also consider algorithmic ap-
plications of huge random objects. For example, they imagine a scenario where
one wants to run experiments on, say, random codes. They observe that global
properties of these codes, such as having large minimum distance, may not be
preserved when the randomness of the code is replaced by a pseudo-random gen-
erator. This leads to the problem of implementing huge random objects that are
guaranteed to preserve a certain property, such as codes with good minimum
distance.

Unlike in the cryptographic setting, it is not clear that a stateless imple-
mentation (the only type allowed by the model of Goldrech et al.) gives any
advantage over a “stateful” one. In other words, it may be possible to do more
by generating the desired huge random object “on the fly” rather than subscrib-
ing to an implementation predetermined by the random tape of our machine. In
particular, it would be interesting to know whether there exists a natural specifi-
cation that allows a stateful implementation but not a stateless one. We suspect
that the specification considered in this paper, suggested for study by Goldreich
et al.—a random boolean function supporting XOR queries over hypercubes—
may provide a separation between stateful and stateless perfect implementations
in the random oracle model.

1.2 Random Functions Supporting Complex Queries

Goldreich et al. observe that, assuming the existence of one-way functions, if
a specification can be close-implemented1 in the random oracle model, then it
can also be implemented by an ordinary probabilistic polynomial-time machine.
Moreover, this transformation preserves truthfulness2: Namely, to obtain a truth-
ful pseudo-implementation of a huge random object, it is sufficient to construct
1 In fact, it is sufficient that the specification be pseudo-implementable. Note that the

terms close-implementable, pseudo-implementable and truthful are technical terms
defined in [3].

2 Intuitively, truthfulness requires that an implementation of Type T objects gen-
erates only objects of Type T. In particular, a random function is not a truthful
implementation of a random permutation even though they are indistinguishable to
a computationally bounded adversary.

such an implementation in the random oracle model. This is a common technique
in cryptography, used among other things in the construction of pseudo-random
permutations [4]. Though the transformation is only shown to hold for stateless
implementations, we observe that it also works for stateful ones (this is because
the definition of pseudo-randomness in the context of pseudo-random functions
allows from stateful adversaries).

In particular, this observation implies that random functions have a trivial
truthful pseudo-implementation. However, one may ask whether it is possible
to truthfully implement random functions supporting queries beyond evalua-
tion on arbitrary inputs. One variant proposed by Goldreich et al. asks for the
implementation of a random function f : {0, 1}n → {0, 1}, augmented with
queries regarding the XOR of the values of f on arbitrary intervals of {0, 1}n
(with respect to the lexicographic ordering of n bit strings.) Note that a trivial
implementation of f in the random oracle model cannot hope to answer such
queries efficiently, as they may involve XORing exponentially many bits. How-
ever, Goldreich et al. show how, using a suitable data structure, one can obtain
a stateless perfect implementation of f that answers queries in O(n2) time. As
perfect implementations are always truthful, this construction yields a truthful
pseudo-implementation by an ordinary machine.

We observe that a simpler construction for implementing random functions
supporting interval-XOR queries with O(n) running time can be achieved as
follows: let f ′ : {0, 1}n → {0, 1} be the random oracle, and return f ′(α−1)⊕f ′(β)
as the answer to the query (α, β), corresponding to the value

⊕
α≤x≤β f(x). Here,

α−1 denotes the n-bit binary string that immediately precedes α in lexicographic
order, and we specify f ′(0n − 1) = 0. The underlying idea is a simple change of
basis: instead of specifying a random function f by its values at all x ∈ {0, 1}n, we
specify the value of f using the values

⊕
y≤x f(y). Note that this implementation

makes only 2 queries into the random oracle per interval-XOR query, which is
optimal (in an amortized sense). Unfortunately, this construction, unlike that
by Goldreich et al., does not yield a truthful close-implementation of random
functions supporting any symmetric interval query.

As a follow-up to their work on interval queries, Goldreich et al. propose the
following more general question:

Open Problem. [3] Provide a truthful close-implementation in the random
oracle model of the following specification. The specification machine defines
a random function f : {0, 1}n → {0, 1}, and answers queries that succinctly
describe a set S, taken from a specific class of sets, with the value

⊕
x∈S f(x).

A natural case is the class of sub-cubes of {0, 1}n; that is, a set S is specified by
a pattern σ in {0, 1, ∗}n such that S is the set of points in {0, 1}n that match
the pattern σ.

We suspect that the technique of Goldreich et al. for implementing a random
function supporting interval queries does not extend to the case of hypercube
queries, though we have not been able to show a negative result confirming our
intuition. Instead, we show how to obtain a stateful perfect-implementation of
this specification in the random oracle model.

1.3 Main Contributions

Our main contributions are the following:

1. We propose a notion of stateful implementations of huge random objects and
reduce the problem of constructing a stateful implementation of a random
binary function supporting compound XOR queries over sub-cubes of the
hypercube {0, 1}n to an algorithmic problem of hypercube linearity testing.

2. We then present two algorithms for hypercube linearity testing: a random-
ized algorithm using coding theoretic techniques, and a deterministic based
on non-commutative polynomial identity testing. It follows from the first al-
gorithm that there is a stateful close implementation of the afore-mentioned
specification in the random oracle model, and from the second, a stateful
perfect implementation.

In fact, the second algorithm subsumes the first, but we still include the latter
as we feel that the technique used is fairly insightful and the analysis can in fact
be used to construct quantum states of provably superpolynomial tree size.

2 Preliminaries

Let a ∈ {0, 1, ∗}n. The hypercube3 H(a) is the set of all x ∈ {0, 1}n that match
the string a, namely such that

x[i] =

0, if a[i] = 0
1, if a[i] = 1
0 or 1, if a[i] = ∗.

As in Goldreich et al., we specify the huge random object in question by a
computationally unbounded probabilistic Turing machine that halts with prob-
ability one. The huge random object is determined by the input-output relation
of this machine when the random tape is selected uniformly at random from
{0, 1}∞.

A random function supporting XOR queries on hypercubes
input A query a ∈ {0, 1, ∗}n
random tape A sequence of functions f1, f2, . . ., where fk : {0, 1}k → {0, 1}
output The value

⊕
x∈H(a) f|a|(x)

We are interested in efficient implementations of this specification, namely
ones that can be obtained by Turing machines that run in time polynomial in
the length of the input.
3 In [3] and in the introduction, we use the term sub-cubes of the hypercube {0, 1}n.

2.1 Stateful Implementations

Following Goldreich et al., we say machine I is a (stateful) implementation spec-
ification S with respect to a machine M of that makes queries to a protocol
party, if (1) On the qth query x, I runs in time polynomial in q and x, and (2)
The distribution DS of the transcript M(1n)↔ S is indistinguishable from the
distribution DI of M(1n)↔ I. Specifically:

1. If DS and DI are identical for every M , we say that I perfectly implements
S;

2. If DS and DI have negligible (nω(1)) statistical difference for all M that
make poly(n) queries, we say that I closely implements S;

3. If DS and DI are indistinguishable for all M that run in polynomial time,
we say that I pseudo-implements S.

An implementation I is truthful with respect to S if for every sequence of
queries x1, . . . , xq, the support of the distribution I(x1), . . . , I(xq) is contained
in the support of S(x1), . . . , S(xq); namely, if the implementation never provides
answers that are inconsistent with the specification. Note that perfect implemen-
tations are always truthful. An oracle Turing machine I? is an implementation
of S in the random oracle model if the distribution of M(1n) ↔ S is indistin-
guishable from the distribution of M(1n)↔ IR over a random oracle R. As for
stateless implementations (see Theorem 2.9 of [3]), we have the following:

Proposition 1. Suppose that one-way functions exist. Then any specification
that has a pseudo-implementation in the random oracle model also has a pseudo-
implementation by an ordinary machine. Moreover, if the former implementation
is truthful then so is the latter.

Since perfect implementations are always truthful, for our purposes it will be
sufficient to provide a perfect implementation of a random function supporting
queries on hypercubes in the random oracle model. The heart of this implemen-
tation consists of an algorithm for the problem of hypercube linearity testing, or
Hypercube-Lin, which we describe next.

2.2 Reduction to Hypercube Linearity Testing

We call collection of hypercubes H1, . . . ,Hm ⊆ {0, 1}n linearly dependent if there
exists a non-empty set S ⊆ {1, 2, . . . ,m} such that for all points x ∈ {0, 1}n, x
is contained in an even number of hypercubes amongst the subset of hypercubes
{Hi | i ∈ S}. For any such set S, we write

∑
i∈S Hi = 0. Equivalently, we

may view each hypercube Hi as a vector in F{0,1}
n

2 , where F2 = {0, 1} is the
two element field and Hi[x] = 1 if x ∈ Hi, and 0 otherwise. In this notation,
linear independence between hypercubes translates into linear independence of
the corresponding vectors.

Hypercube-Lin: Given q strings a1, . . . , aq ∈ {0, 1, ∗}n, accept iff the hyper-
cubes H(a1), . . . ,H(aq) are linearly dependent.

Note that standard techniques for testing linear independence, such as Gaus-
sian elimination, do not apply directly for this problem because we are dealing
with vectors whose length is exponential in the size of the input. However, we
will still be able to show the following:

Theorem 1. There is a deterministic polynomial-time algorithm for the prob-
lem Hypercube-Lin.

In fact, we will begin with a randomized algorithm for Hypercube-Lin,
which nicely illustrates the coding theoretic nature of the hypercube linearity
testing problem. We then argue that the test performed by the algorithm can
be viewed, in some sense, as an application of polynomial identity testing. Even
though we don’t know, in general, how to derandomize polynomial identity test-
ing, in our case the derandomization can be performed using a recent identity
testing algorithm for non-commutative formulas of Raz and Shpilka [5].

Theorem 2. There exists a stateful perfect implementation of a random func-
tion supporting XOR queries on hypercubes in the random oracle model.

Proof. Let A be the algorithm from Theorem 1, and R be the random oracle.
First, we consider the following (promise) search problem:

Input Strings a1, . . . , aq ∈ {0, 1, ∗}n and b ∈ {0, 1, ∗}n, such that the hypercubes
H(a1), . . . ,H(aq) are linearly independent
Problem If H(b) is linearly independent from H(a1), . . . ,H(aq), output ∅.
Otherwise, output coefficients c1, . . . , cq ∈ F2 such that H(b) =

∑q
i=1 ciH(ai).

It is not difficult to see that, by a self reduction argument, we can obtain a
polynomial time algorithm A′ for this problem using black box access to A (in
fact, 2q invocations of A suffices). With this in hand, we implement a random
function supporting XOR queries on hypercubes as follows: After seeing queries
a1, . . . , aq−1, the implementation keeps track of a subset of queries {ak : k ∈ B},
where B ⊆ [q− 1] is chosen such that the subset of hypercubes {H(ak) : k ∈ B}
form a basis for the set of vectors {H(ak) ∈ F{0,1}

n

2 : k ∈ [q − 1]}. On query aq,
we run the algorithm A′ on inputs {ak : k ∈ B} and aq. If the algorithm returns
∅, then we return R(|B| + 1), which is a fresh random bit, and add aq to the
set B. Otherwise, the algorithm A′ outputs coefficients c1, . . . , cq−1 ∈ F2, and
we return the value

∑|B|
i=1 ciR(i).

We show this is a perfect implementation, by induction on q. Let us assume
that the specification transcript and implementation transcript are statistically
indistinguishable after q − 1 queries. At query q, there are two possibilities: If
H(aq) is linearly dependent in H(a1), . . . ,H(aq−1), then both in the implemen-
tation and in the specification the answer to the qth query is determined by the
previous answers, so by the inductive hypothesis the new transcripts are indis-
tinguishable. If H(aq) is linearly independent in H(a1), . . . ,H(aq−1), then the
answer to the qth query in the specification is statistically independent from all
previous answers. By construction, this is also true in the implementation, so
again, the new transcripts are indistinguishable.

3 Algorithms for Hypercube Linearity Testing

In this section, we present two algorithms for Hypercube-Lin, thereby com-
pleting our implementation of a random function supporting XOR queries on
hypercubes.

3.1 A Randomized Algorithm for Hypercube-Lin

Let F = F2s be a field of characteristic 2 of size 2s, where s = dlog 3ne. For each
a ∈ {0, 1, ∗}n, we define a polynomial pa = z1z2 · · · zn over F[x1, y1, . . . , xn, yn],
where:

zi =

xi if ai = 0
yi if ai = 1
xi + yi if ai = ∗

Note that H(a) is a homogeneous polynomial of total degree exactly n, and
that pa =

∑
x∈H(a) px.

Lemma 1. Let F be any field of characteristic two. Then H(a1)+· · ·+H(am) =
0 if and only if pa1 + · · ·+ pam is the zero polynomial in F[x1, y1, . . . , xn, yn].

Proof. Each point x in {0, 1}n is represented by a unique monomial px from
F[x1, y1, . . . , xn, yn]. Therefore, each point x in {0, 1}n appears an even number
of times in H(a1), . . . ,H(am) iff each of the corresponding monomials px has an
even integer coefficient in pa1 + · · ·+ pam . In addition, since F has characteristic
2, the latter condition is equivalent to pa1 + · · ·+ pam being identically zero.

We may now define a binary encoding CH(a) of hypercubes H(a), which is
obtained by concatenating the Reed-Muller code associated with the polynomial
pa with the Hadamard code. More precisely, given any a ∈ {0, 1, ∗}, we define
CH(a) : {0, 1}(2n+1)s → {0, 1} as follows:

CH(a)(x1, y1, . . . , xn, yn, τ) = 〈 pa(x1, y1, . . . , xm, ym), τ 〉

using the first 2ns bits of the input to CH(a) to pick x1, y1, . . . , xn, yn ∈ F, and
the remaining s bits to pick τ ∈ {0, 1}s.

Lemma 2. {CH(a) | a ∈ {0, 1, ∗}n} is a binary encoding of hypercubes in {0, 1}n
with the following properties:

1. (large distance) It has relative distance 1/3.
2. (locally encodable) There is a O(ns log s) algorithm that computes CH(a)(r)

on input a and r ∈ {0, 1}(2n+1)s.
3. (linearity) For all a, a′ ∈ {0, 1, ∗}n, CH(a)+H(a′) = CH(a) + CH(a′).

Proof. By the Schwartz-Zippel Lemma [6, 7], for any a 6= a′ ∈ {0, 1, ∗}n, pa and
pa′ evaluate to different values on at least a 2/3 fraction of values in F2n. Upon
concatenating with the Hadamard code, the minimum relative distance becomes
1/3. Next, observe that we can write down pa and evaluate pa at any input in
time O(ns log s). It follows that we also compute CH(a)(r) in time O(ns log s).
Finally, linearity follows from the fact that both the encoding as polynomials
and the Hadamard code are linear.

Randomized algorithm for Hypercube-Lin

1. Fix ` = O(q). Choose r1, . . . , r` ∈ {0, 1}(2n+1)s uniformly at random.
2. Construct the q × ` matrix M over F2, where Mij = CH(ai)(rj), that is:

M =

CH(a1)(r1) CH(a1)(r2) . . . CH(a1)(r`)
CH(a2)(r1) CH(a2)(r2) . . . CH(a2)(r`)

...
...

. . .
...

CH(aq)(r1) CH(aq)(r2) . . . CH(aq)(r`)

3. Compute the rank of M over F2. Accept if the rank is less than q; reject

otherwise.

Proposition 2. There is a coRP-algorithm for Hypercube-Lin running in
time O(q3 + q2ns log s).

Proof. Fix any S ⊆ [q]. It follows from linearity and Lemma 1 that∑
i∈S

H(ai) = 0 if and only if
∑
i∈S

CH(ai)(r) = 0 ∀ r ∈ {0, 1}(2n+1)s (1)

Therefore, if H(a1), . . . ,H(aq) are linearly dependent, there is some S for which
(1) holds. Then, the rows of M identified by S add up to 0, and thus M has rank
less than q. On the other hand, if H(a1), . . . ,H(aq) are not linearly dependent,
then for all S ⊆ [q],

∑
i∈S CH(ai) is not the zero codeword4, and thus

Pr
r1,...,r`

[∑
i∈S

CH(ai)(rj) = 0 ∀ j = 1, 2 . . . , `
]
≤
(2

3

)`
Now, the probability that M has rank less than q is equal to the probability that
there is some S ⊆ [q] for which (1) holds, which by a union bound is at most
2q ·(2/3)` < 1/2. Finally, computing M takes time O(q`ns log s), and performing
Gaussian elimination on M takes time O(q2`), which yields a total running time
of O(q3 + q2ns log s).

4 In fact,
∑
i∈S CH(ai) is not necessarily a codeword in the code defined in Lemma 2,

but it is still a codeword in the code obtained by concatenating a Reed Muller code
with a Hadamard code. Hence, the analysis for the relative distance of the code also
shows that

∑
i∈S CH(ai) has relative distance at least 1/3 from the zero codeword.

3.2 A Deterministic Algorithm for Hypercube-Lin

The randomized algorithm for hypercube linearity testing is based on Lemma 1,
which allows us to reduce testing a particular dependency between hypercubes
to a polynomial identity test. In the actual algorithm, the power of randomness
is used twice. First, randomness allows us to efficiently perform the polynomial
identity test from Lemma 1. Second, using standard amplification of success
probabilities we can take a union bound over the exponentially many possible
linear dependencies between hypercubes in the correctness proof for the random-
ized algorithm.

Even though polynomial identity testing remains notoriously hard to de-
randomize, Raz and Shpilka [5] recently found a deterministic algorithm that
works for certain alternate and restricted models of computation. In particular,
their algorithm works for formulas over arbitrary fields in non-commuting vari-
ables (i.e., formulas in the noncommutative ring F{x1, . . . , xn}), and for ΣΠΣ
circuits—depth three multilinear arithmetic circuits with a plus gate at the root.

The formal polynomial p1+. . .+pm in Lemma 1 can be trivially computed by
an ΣΠΣ circuit. This immediately gives a deterministic way of testing whether
a particular linear relation H1+. . .+Hm = 0 is satisfied over F2. However, we are
interested in testing whether any one of the exponentially many relations c1H1 +
. . .+cmHm = 0 holds, or equivalently, if there exists coefficients c1, . . . , cm ∈ F2,
not all zero, such that c1p1 +. . .+cmpm = 0 as a polynomial in F2[xi, yi]. We will
show that a construction, along the lines of Raz and Shpilka’s algorithm, works
for this problem as well. Instead of trying to come up with a general theorem for
testing linear dependencies between polynomials, we will focus on polynomials
representing hypercubes, though it may be possible to extend the analysis to a
somewhat more general scenario.

Let F now be an arbitrary finite field, and p1, . . . , pm be polynomials in F[xij],
where i ∈ [n], j ∈ [m] and each pk, k ∈ [m] has the following form:

pk(xij) =
n∏
i=1

m∑
j=1

αkijxij , (2)

where αkij ∈ F are constants. It is easy to check that the polynomials in Lemma 1
are written in this form. We are interested in determining, in time polynomial
in m and n, whether there exist coefficients c1, . . . , cm ∈ F such that c1p1 + . . .+
cmpm is the zero polynomial over F. Since this is a multilinear polynomial, this
is equivalent to asking whether p1, . . . , pm are linearly dependent as elements
of the vector space V over F generated by the monomials x1j1 . . . xnjn , where
j1, . . . , jn range over [m].

As in [5], the analysis works by induction on n. When n = 1, we have
pk(x1j) =

∑m
j=1 α

k
1jx1j , so the vectors pk ∈ V are independent if and only if

the matrix M ∈ Fm×m with M [j, k] = αk1j has full rank. Using Gaussian elimi-
nation this can be checked in, say, O(m3 log |F |) time.

We now show how to reduce a problem of degree n to one of degree n − 1.
The trick is to look at the following partial expansion of the polynomials pk:

pk(xij) =
m∑

j1,j2=1

αk1j1α
k
2j2x1j1x2j2 · qk(x(3...n)j),

where qk is given by

qk(x(3...n)j) = qk(x3j , x4j , . . . , xdj) =
n∏
i=3

m∑
j=1

αkijxij .

Now consider a linear combination P (xij) =
∑m
k=1 ckpk(xij). We can expand

this as

P (xij) =
m∑

j1,j2=1

x1j1x2j2

m∑
k=1

αk1j1α
k
2j2 · ckqk(x(3...n)j).

From this expansion, we see that P ≡ 0 in F[xij] if and only if for all j1, j2 ∈ [m]:

m∑
k=1

αk1j1α
k
2j2 · ckqk(x(3...n)j) ≡ 0 in F[x(3...n)j]. (3)

Consider the matrix M ∈ Fm2×m, whose rows are indexed by pairs (j1, j2) ∈
[m]× [m] such that M [(j1, j2), k] = αk1j1α

k
2j2

. Choose a subset S of m rows such
that the rows indexed by S span the row space of M . Then the constraints (3)
are all satisfied if and only if

For all s ∈ S,
m∑
k=1

M [s, k] · ckqk(x(3...n)j) ≡ 0 in F[x(3...n)j]. (4)

We now want to rewrite the set of constraints (4) as a single constraint. For this,
we introduce m additional formal variables ys with s ∈ S. Constraints (4) are
satisfied if and only if∑

s∈S
ys

m∑
k=1

M [s, k] · ckqk(x(3...n)j) ≡ 0 in F[ys, x(3...n)j]. (5)

Finally, let
rk(ys, x(3...n)j) =

(∑
s∈S

M [s, k]ys
)
qk(x(3...n)j),

and note that constraint (5) is satisfied if and only if
∑m
k=1 ckrk(ys, x(3...n)j) ≡ 0

in F[ys, x(3...n)j]. To summarize:

Lemma 3. The polynomials p1, . . . , pm are linearly independent in F[xij] if and
only if the polynomials r1, . . . , rm are linearly independent in F[ys, x(3...n)j].5

5 Moreover, the pi satisfy a particular dependency
∑
cipi ≡ 0 if and only if the ri

satisfy the same dependency. This can be used to find linear dependencies between
hypercubes, which makes the decision to search reduction in the proof of Proposi-
tion 1 unnecessary.

Now we can apply the induction hypothesis to the polynomials rk, which have
the prescribed form (2). The bottleneck in the running time of the algorithm is
computing the linearly independent set S, which can be done in O(m4 log |F|)
time by Gaussian elimination. This yields a total running time of O(m4n log |F|),
and concludes the proof of Theorem 1.

4 Extensions

4.1 A Connection with Quantum Computation

The following problem was brought to our attention by Aaronson in his recent
work addressing skepticism of quantum computing [1]. The construction below
implies the existence of explicit (constructible in deterministic polynomial-time)
quantum states of provably superpolynomial tree size. The argument is similar
to the proof of Proposition 2.

Proposition 3. For every δ < 1/4, there is a polynomial-time constructible
k × n binary matrix M with k = nδ, such that a random k × k submatrix of M
has rank at least k − 1 with constant probability.

Aaronson’s original argument requires M to have full rank with constant
probability, but it is not difficult to see that his argument applies even if M has
only rank k − 1 with constant probability.

Proof. Fix ε > 0 and choose k0 such that k = k0 log k2+ε
0 . Consider the concate-

nation of a Reed-Solomon code with codeword size k2+ε
0 (over smallest possible

alphabet size) with a Hadamard code. The resulting binary code C has length
at most n = k4+2ε and relative distance 1/2− η, where η = 1/k1+ε−o(1). Pick a
basis e1, . . . , ek of {0, 1}k and take M to be the k × n matrix whose ith row is
the codeword C(ei).

Now consider choosing a random k × k submatrix of M . Since k = O(n1/4),
with probability 1− o(1), this is equivalent to choosing an independent set of k
columns M1, . . . ,Mk of M with repetition. For any nonzero vector x ∈ {0, 1}k,
the probability that all dot products xTM1, . . . , x

TMk vanish is at most (1/2 +
η)k. It follows that the expected number of nonzero x for which all these dot
products vanish is at most 2k · (1/2 + η)k < exp(2k−ε) = 1 + o(1). By Markov’s
inequality, the number of such x is less than two with probability at least, say,
1/3. If this is the case, then the columns of M satisfy at most one linear relation,
so that the rank of M is at most k − 1.

4.2 Towards a Stateless Implementation?

We discuss our conjecture regarding a possible separation between stateful and
stateless perfect implementations in the random oracle model. We say that a set
S of vectors in F2n

2 admits an efficient basis B where B is a (standard) basis for
F

2n

2 if every vector v ∈ S can be written as the sum of poly(n) vectors in B and
the basis representation can be computed in poly(n) time.

Proposition 4. If S admits an efficient basis, then there is a perfect (stateless)
implementation of a random function f : {0, 1}n → {0, 1}, and answers queries
that succinctly describe a set S, taken from a specific class of sets, with the value⊕

x∈S f(x).

It is easy to see that intervals of {0, 1}n admit an efficient basis, namely the
collection of vectors {vi ∈ F2n

2 , i = 1, 2, . . . , 2n} where vi is the vector whose first
i positions are ones and whose remaining positions are zeros. This observation
underlies our construction for implementing random functions support interval-
XOR queries in Section 1.2. On the other hand, we do not know if the hypercubes
of {0, 1}n admit an efficient basis.

Acknowledgements

We thank Luca Trevisan and the anonymous referees for comments on an earlier
version of this paper.

References

[1] Scott Aaronson. Multilinear formulas and skepticism of quantum computing. In
Proceedings of the 36th ACM Symposium on Theory of Computing, 2004.

[2] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):210–217, 1986.

[3] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementa-
tion of huge random objects. In Proceedings of the 44th IEEE Symposium on
Foundations of Computer Science, pages 68–79, 2003. Preliminary full version at
http://www.wisdom.weizmann.ac.il/~oded/p_toro.html.

[4] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudoranom functions. SICOMP, 17:373–386, 1988.

[5] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non com-
mutative models. In Proceedings of the 17th Conference on Computational Com-
plexity, 2004. To appear.

[6] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM, 27(4):701–717, 1980.

[7] R. E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of
EUROSAM 79, pages 216–226, 1979.

