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ABSTRACT
We analyze replication of resources by server nodes that act self-
ishly, using a game-theoretic approach. We refer to this as the self-
ish caching problem. In our model, nodes incur either cost for repli-
cating resources or cost for access to a remote replica. We show the
existence of pure strategy Nash equilibria and investigate the price
of anarchy, which is the relative cost of the lack of coordination.
The price of anarchy can be high due to undersupply problems, but
with certain network topologies it has better bounds. With a pay-
ment scheme the game can always implement the social optimum
in the best case by giving servers incentive to replicate.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms, Economics, Theory, Performance

Keywords
Caching, Distributed Systems, Peer-to-Peer Systems, Game-theoretic
Models, Nash Equilibria, Price of Anarchy

1. INTRODUCTION
Wide-area peer-to-peer file systems [2,5,22,32,33], peer-to-peer

caches [15, 16], and web caches [6, 10] have become popular over
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the last few years. Caching1 of files in selected servers is widely
used to enhance the performance, availability, and reliability of
these systems. However, most such systems assume that servers
cooperate with one another by following protocols optimized for
overall system performance, regardless of the costs incurred by
each server.

In reality, servers may behave selfishly — seeking to maximize
their own benefit. For example, parties in different administra-
tive domains utilize their local resources (servers) to better sup-
port clients in their own domains. They have obvious incentives to
cache objects2 that maximize the benefit in their domains, possibly
at the expense of globally optimum behavior. It has been an open
question whether these caching scenarios and protocols maintain
their desirable global properties (low total social cost, for example)
in the face of selfish behavior.

In this paper, we take a game-theoretic approach to analyzing
the problem of caching in networks of selfish servers through the-
oretical analysis and simulations. We model selfish caching as a
non-cooperative game. In the basic model, the servers have two
possible actions for each object. If a replica of a requested object
is located at a nearby node, the server may be better off accessing
the remote replica. On the other hand, if all replicas are located too
far away, the server is better off caching the object itself. Decisions
about caching the replicas locally are arrived at locally, taking into
account only local costs. We also define a more elaborate payment
model, in which each server bids for having an object replicated at
another site. Each site now has the option of replicating an object
and collecting the related bids. Once all servers have chosen a strat-
egy, each game specifies a configuration, that is, the set of servers
that replicate the object, and the corresponding costs for all servers.

Game theory predicts that such a situation will end up in a Nash
equilibrium, that is, a set of (possibly randomized) strategies with
the property that no player can benefit by changing its strategy
while the other players keep their strategies unchanged [28]. Foun-
dational considerations notwithstanding, it is not easy to accept
randomized strategies as the behavior of rational agents in a dis-
tributed system (see [28] for an extensive discussion) — but this
is what classical game theory can guarantee. In certain very for-
tunate situations, however (see [9]), the existence of pure (that is,
deterministic) Nash equilibria can be predicted.

With or without randomization, however, the lack of coordina-
tion inherent in selfish decision-making may incur costs well be-
yond what would be globally optimum. This loss of efficiency is

1We will use “caching” and “replication” interchangeably.
2We use the term “object” as an abstract entity that represents files
and other data objects.



quantified by the price of anarchy [21]. The price of anarchy is
the ratio of the social (total) cost of the worst possible Nash equi-
librium to the cost of the social optimum. The price of anarchy
bounds the worst possible behavior of a selfish system, when left
completely on its own. However, in reality there are ways whereby
the system can be guided, through “seeding” or incentives, to a pre-
selected Nash equilibrium. This “optimistic” version of the price of
anarchy [3] is captured by the smallest ratio between a Nash equi-
librium and the social optimum.

In this paper we address the following questions :

• Do pure strategy Nash equilibria exist in the caching game?

• If pure strategy Nash equilibria do exist, how efficient are
they (in terms of the price of anarchy, or its optimistic coun-
terpart) under different placement costs, network topologies,
and demand distributions?

• What is the effect of adopting payments? Will the Nash equi-
libria be improved?

We show that pure strategy Nash equilibria always exist in the
caching game. The price of anarchy of the basic game model can
be O(n), where n is the number of servers; the intuitive reason is
undersupply. Under certain topologies, the price of anarchy does
have tighter bounds. For complete graphs and stars, it is O(1). For

D-dimensional grids, it is O(n
D

D+1 ). Even the optimistic price of
anarchy can be O(n). In the payment model, however, the game
can always implement a Nash equilibrium that is same as the social
optimum, so the optimistic price of anarchy is one.

Our simulation results show several interesting phases. As the
placement cost increases from zero, the price of anarchy increases.
When the placement cost first exceeds the maximum distance be-
tween servers, the price of anarchy is at its highest due to under-
supply problems. As the placement cost further increases, the price
of anarchy decreases, and the effect of replica misplacement domi-
nates the price of anarchy.

The rest of the paper is organized as follows. In Section 2 we dis-
cuss related work. Section 3 discusses details of the basic game and
analyzes the bounds of the price of anarchy. In Section 4 we discuss
the payment game and analyze its price of anarchy. In Section 5 we
describe our simulation methodology and study the properties of
Nash equilibria observed. We discuss extensions of the game and
directions for future work in Section 6.

2. RELATED WORK
There has been considerable research on wide-area peer-to-peer

file systems such as OceanStore [22], CFS [5], PAST [32], FAR-
SITE [2], and Pangaea [33], web caches such as NetCache [6] and
SummaryCache [10], and peer-to-peer caches such as Squirrel [16].
Most of these systems use caching for performance, availability,
and reliability. The caching protocols assume obedience to the pro-
tocol and ignore participants’ incentives. Our work starts from the
assumption that servers are selfish and quantifies the cost of the
lack of coordination when servers behave selfishly.

The placement of replicas in the caching problem is the most im-
portant issue. There is much work on the placement of web repli-
cas, instrumentation servers, and replicated resources. All proto-
cols assume obedience and ignore participants’ incentives. In [14],
Gribble et al. discuss the data placement problem in peer-to-peer
systems. Ko and Rubenstein propose a self-stabilizing, distributed
graph coloring algorithm for the replicated resource placement [20].
Chen, Katz, and Kubiatowicz propose a dynamic replica place-
ment algorithm exploiting underlying distributed hash tables [4].

Douceur and Wattenhofer describe a hill-climbing algorithm to ex-
change replicas for reliability in FARSITE [8]. RaDar is a sys-
tem that replicates and migrates objects for an Internet hosting ser-
vice [31]. Tang and Chanson propose a coordinated en-route web
caching that caches objects along the routing path [34]. Central-
ized algorithms for the placement of objects, web proxies, mirrors,
and instrumentation servers in the Internet have been studied exten-
sively [18, 19, 23, 30].

The facility location problem has been widely studied as a cen-
tralized optimization problem in theoretical computer science and
operations research [27]. Since the problem is NP-hard, approx-
imation algorithms based on primal-dual techniques, greedy al-
gorithms, and local search have been explored [17, 24, 26]. Our
caching game is different from all of these in that the optimization
process is performed among distributed selfish servers.

There is little research in non-cooperative facility location games,
as far as we know. Vetta [35] considers a class of problems where
the social utility is submodular (submodularity means decreasing
marginal utility). In the case of competitive facility location among
corporations he proves that any Nash equilibrium gives an expected
social utility within a factor of 2 of optimal plus an additive term
that depends on the facility opening cost. Their results are not di-
rectly applicable to our problem, however, because we consider
each server to be tied to a particular location, while in their model
an agent is able to open facilities in multiple locations. Note that in
that paper the increase of the price of anarchy comes from oversup-
ply problems due to the fact that competing corporations can open
facilities at the same location. On the other hand, the significant
problems in our game are undersupply and misplacement.

In a recent paper, Goemans et al. analyze content distribution on
ad-hoc wireless networks using a game-theoretic approach [12]. As
in our work, they provide monetary incentives to mobile users for
caching data items, and provide tight bounds on the price of an-
archy and speed of convergence to (approximate) Nash equilibria.
However, their results are incomparable to ours because their pay-
off functions neglect network latencies between users, they con-
sider multiple data items (markets), and each node has a limited
budget to cache items.

Cost sharing in the facility location problem has been studied
using cooperative game theory [7, 13, 29]. Goemans and Skutella
show strong connections between fair cost allocations and linear
programming relaxations for facility location problems [13]. Pál
and Tardos develop a method for cost-sharing that is approximately
budget-balanced and group strategyproof and show that the method
recovers 1/3 of the total cost for the facility location game [29].
Devanur, Mihail, and Vazirani give a strategyproof cost allocation
for the facility location problem, but cannot achieve group strate-
gyproofness [7].

3. BASIC GAME
The caching problem we study is to find a configuration that

meets certain objectives (e.g., minimum total cost). Figure 1 shows
examples of caching among four servers. In network (a), A stores
an object. Suppose B wants to access the object. If it is cheaper
to access the remote replica than to cache it, B accesses the remote
replica as shown in network (b). In network (c), C wants to access
the object. If C is far from A, C caches the object instead of access-
ing the object from A. It is possible that in an optimal configuration
it would be better to place replicas in A and B. Understanding the
placement of replicas by selfish servers is the focus of our study.

The caching problem is abstracted as follows. There is a set N of
n servers and a set M of m objects. The distance between servers
can be represented as a distance matrix D (i.e., dij is the distance
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Figure 1: Caching. There are four servers labeled A, B, C, and D. The rectangles are object replicas. In (a), A stores an object. If B incurs less cost
accessing A’s replica than it would caching the object itself, it accesses the object from A as in (b). If the distance cost is too high, the server caches
the object itself, as C does in (c). This figure is an example of our caching game model.

from server i to server j). D models an underlying network topol-
ogy. For our analysis we assume that the distances are symmetric
and the triangle inequality holds on the distances (for all servers
i, j, k: dij + djk ≥ dik). Each server has demand from clients
that is represented by a demand matrix W (i.e., wij is the demand
of server i for object j). When a server caches objects, the server
incurs some placement cost that is represented by a matrix α (i.e.,
αij is a placement cost of server i for object j).

In this study, we assume that servers have no capacity limit. As
we discuss in the next section, this fact means that the caching
behavior with respect to each object can be examined separately.
Consequently, we can talk about configurations of the system with
respect to a given object:

DEFINITION 1. A configuration X for some object O is the set
of servers replicating this object.

The goal of the basic game is to find configurations that are achieved
when servers optimize their cost functions locally.

3.1 Game Model
We take a game-theoretic approach to analyzing the uncapaci-

tated caching problem among networked selfish servers. We model
the selfish caching problem as a non-cooperative game with n play-
ers (servers/nodes) whose strategies are sets of objects to cache. In
the game, each server chooses a pure strategy that minimizes its
cost. Our focus is to investigate the resulting configuration, which
is the Nash equilibrium of the game. It should be emphasized that
we consider only pure strategy Nash equilibria in this paper.

The cost model is an important part of the game. Let Ai be the
set of feasible strategies for server i, and let Si ∈ Ai be the strategy
chosen by server i. Given a strategy profile S = (S1, S2, ..., Sn),
the cost incurred by server i is defined as:

Ci(S) =
�

j∈Si

αij +
�

j /∈Si

wijdi`(i,j). (1)

where αij is the placement cost of object j, wij is the demand that
server i has for object j, `(i, j) is the closest server to i that caches
object j, and dik is the distance between i and k. When no server
caches the object, we define distance cost di`(i,j) to be dM —large
enough that at least one server will choose to cache the object.

The placement cost can be further divided into first-time instal-
lation cost and maintenance cost:

αij = k1i + k2i
UpdateSizej

ObjectSizej

1

T
Pj

�

k

wkj , (2)

where k1i is the installation cost, k2i is the relative weight be-
tween the maintenance cost and the installation cost, Pj is the ra-
tio of the number of writes over the number of reads and writes,
UpdateSizej is the size of an update, ObjectSizej is the size of
the object, and T is the update period. We see tradeoffs between

different parameters in this equation. For example, placing replicas
becomes more expensive as UpdateSizej increases, Pj increases,
or T decreases. However, note that by varying αij itself we can
capture the full range of behaviors in the game. For our analysis,
we use only αij .

Since there is no capacity limit on servers, we can look at each
single object as a separate game and combine the pure strategy
equilibria of these games to obtain a pure strategy equilibrium of
the multi-object game. Fabrikant, Papadimitriou, and Talwar dis-
cuss this existence argument: if two games are known to have pure
equilibria, and their cost functions are cross-monotonic, then their
union is also guaranteed to have pure Nash equilibria, by a continu-
ity argument [9]. A Nash equilibrium for the multi-object game is
the cross product of Nash equilibria for single-object games. There-
fore, we can focus on the single object game in the rest of this paper.

For single object selfish caching, each server i has two strategies
— to cache or not to cache. The object under consideration is j.
We define Si to be 1 when server i caches j and 0 otherwise. The
cost incurred by server i is

Ci(S) = αijSi + wijdi`(i,j)(1 − Si). (3)

We refer to this game as the basic game. The extent to which Ci(S)
represents actual cost incurred by server i is beyond the scope of
this paper; we will assume that an appropriate cost function of the
form of Equation 3 can be defined.

3.2 Nash Equilibrium Solutions
In principle, we can start with a random configuration and let

this configuration evolve as each server alters its strategy and at-
tempts to minimize its cost. Game theory is interested in stable
solutions called Nash equilibria. A pure strategy Nash equilibrium
is reached when no server can benefit by unilaterally changing its
strategy. A Nash equilibrium3 (S∗

i , S∗
−i) for the basic game spec-

ifies a configuration X such that ∀i ∈ N, i ∈ X ⇔ S∗
i = 1.

Thus, we can consider a set E of all pure strategy Nash equilibrium
configurations:

X ∈ E ⇔ ∀i ∈ N,
∀Si ∈ Ai, Ci(S

∗
i , S∗

−i) ≤ Ci(Si, S
∗
−i)

(4)

By this definition, no server has incentive to deviate in the configu-
rations since it cannot reduce its cost.

For the basic game, we can easily see that:

X ∈ E ⇔ ∀i ∈ N, ∃j ∈ X s.t. dji ≤ α
and ∀j ∈ X, ¬∃k ∈ X s.t. dkj < α

(5)

The first condition guarantees that there is a server that places the
replica within distance α of each server i. If the replica is not placed

3The notation for strategy profile (S∗
i , S∗

−i) separates node i′s
strategy (S∗

i ) from the strategies of other nodes (S∗
−i).
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Figure 2: Potential inefficiency of Nash equilibria illustrated by two clusters of n
2

servers. The intra-cluster distances are all zero and the distance
between clusters is α − 1, where α is the placement cost. The dark nodes replicate the object. Network (a) shows a Nash equilibrium in the basic
game, where one server in a cluster caches the object. Network (b) shows the social optimum where two replicas, one for each cluster, are placed. The
price of anarchy is O(n) and even the optimistic price of anarchy is O(n). This high price of anarchy comes from the undersupply of replicas due to
the selfish nature of servers. Network (c) shows a Nash equilibrium in the payment game, where two replicas, one for each cluster, are placed. Each
light node in each cluster pays 2/n to the dark node, and the dark node replicates the object. Here, the optimistic price of anarchy is one.

at i, then it is placed at another server within distance α of i, so i has
no incentive to cache. If the replica is placed at i, then the second
condition ensures there is no incentive to drop the replica because
no two servers separated by distance less than α both place replicas.

3.3 Social Optimum
The social cost of a given strategy profile is defined as the total

cost incurred by all servers, namely:

C(S) =

n−1�

i=0

Ci(S) (6)

where Ci(S) is the cost incurred by server i given by Equation 1.
The social optimum cost, referred to as C(SO) for the remainder

of the paper, is the minimum social cost. The social optimum cost
will serve as an important base case against which to measure the
cost of selfish caching. We define C(SO) as:

C(SO) = min
S

C(S) (7)

where S varies over all possible strategy profiles. Note that in the
basic game, this means varying configuration X over all possible
configurations. In some sense, C(SO) represents the best possible
caching behavior — if only nodes could be convinced to cooperate
with one another.

The social optimum configuration is a solution of a mini-sum
facility location problem, which is NP-hard [11]. To find such con-
figurations, we formulate an integer programming problem:

minimize � i � j � αijxij + � k wijdikyijk �
subject to

∀i, j � k yijk = I(wij)
∀i, j, k xij − ykji ≥ 0
∀i, j xij ∈ {0, 1}
∀i, j, k yijk ∈ {0, 1}

(8)

Here, xij is 1 if server i replicates object j and 0 otherwise; yijk

is 1 if server i accesses object j from server k and 0 otherwise;
I(w) returns 1 if w is nonzero and 0 otherwise. The first constraint
specifies that if server i has demand for object j, then it must access
j from exactly one server. The second constraint ensures that server
i replicates object j if any other server accesses j from i.

3.4 Analysis
To analyze the basic game, we first give a proof of the existence

of pure strategy Nash equilibria. We discuss the price of anarchy in
general and then on specific underlying topologies. In this analysis

we use simply α in place of αij , since we deal with a single object
and we assume placement cost is the same for all servers. In ad-
dition, when we compute the price of anarchy, we assume that all
nodes have the same demand (i.e., ∀i ∈ N wij = 1).

THEOREM 1. Pure strategy Nash equilibria exist in the basic
game.

PROOF. We show a constructive proof. First, initialize the set
V to N . Then, remove all nodes with zero demand from V . Each
node x defines βx, where βx = α

wxj
. Furthermore, let Z(y) =

{z : dzy ≤ βz, z ∈ V }; Z(y) represents all nodes z for which y
lies within βz from z.

Pick a node y ∈ V such that βy ≤ βx for all x ∈ V . Place a
replica at y and then remove y and all z ∈ Z(y) from V . No such z
can have incentive to replicate the object because it can access y’s
replica at lower (or equal) cost. Iterate this process of placing repli-
cas until V is empty. Because at each iteration y is the remaining
node with minimum β, no replica will be placed within distance
βy of any such y by this process. The resulting configuration is a
pure-strategy Nash equilibrium of the basic game.

The Price of Anarchy (POA): To quantify the cost of lack of
coordination, we use the price of anarchy [21] and the optimistic
price of anarchy [3]. The price of anarchy is the ratio of the social
costs of the worst-case Nash equilibrium and the social optimum,
and the optimistic price of anarchy is the ratio of the social costs of
the best-case Nash equilibrium and the social optimum.

We show general bounds on the price of anarchy. Throughout
our discussion, we use C(SW ) to represent the cost of worst case
Nash equilibrium, C(SO) to represent the cost of social optimum,
and PoA to represent the price of anarchy, which is C(SW )

C(SO)
.

The worst case Nash equilibrium maximizes the total cost un-
der the constraint that the configuration meets the Nash condition.
Formally, we can define C(SW ) as follows.

C(SW ) = max
X∈E

(α|X| +
�

i

min
j∈X

dij) (9)

where minj∈X dij is the distance to the closest replica (including i
itself) from node i and X varies through Nash equilibrium config-
urations.

Bounds on the Price of Anarchy: We show bounds of the price
of anarchy varying α. Let dmin = min(i,j)∈N×N,i6=j dij and
dmax = max(i,j)∈N×N dij . We see that if α ≤ dmin, PoA = 1



Topology PoA
Complete graph 1
Star ≤ 2
Line O(

√
n)

D-dimensional grid O(n
D

D+1 )

Table 1: PoA in the basic game for specific topologies

trivially, since every server caches the object for both Nash equi-
librium and social optimum. When α > dmax, there is a transition
in Nash equilibria: since the placement cost is greater than any dis-
tance cost, only one server caches the object and other servers ac-
cess it remotely. However, the social optimum may still place mul-
tiple replicas. Since α ≤ C(SO) ≤ α+minj∈N � i dij when α >

dmax, we obtain
α+maxj∈N � i dij

α+minj∈N � i dij
≤ PoA ≤ α+maxj∈N � i dij

α
.

Note that depending on the underlying topology, even the lower
bound of PoA can be O(n). Finally, there is a transition when

α > maxj∈N � i dij . In this case, PoA =
α+maxj∈N � i dij

α+minj∈N � i dij
and

it is upper bounded by 2.
Figure 2 shows an example of the inefficiency of a Nash equi-

librium. In the network there are two clusters of servers whose
size is n

2
. The distance between two clusters is α − 1 where α is

the placement cost. Figure 2(a) shows a Nash equilibrium where
one server in a cluster caches the object. In this case, C(SW ) =
α + (α− 1)n

2
, since all servers in the other cluster accesses the re-

mote replica. However, the social optimum places two replicas, one
for each cluster, as shown in Figure 2(b). Therefore, C(SO) = 2α.

PoA =
α+(α−1) n

2

2α
, which is O(n). This bad price of anarchy

comes from an undersupply of replicas due to the selfish nature of
the servers. Note that all Nash equilibria have the same cost; thus
even the optimistic price of anarchy is O(n).

In Appendix A, we analyze the price of anarchy with specific
underlying topologies and show that PoA can have tighter bounds
than O(n) for the complete graph, star, line, and D-dimensional
grid. In these topologies, we set the distance between directly con-
nected nodes to one. We describe the case where α > 1, since
PoA = 1 trivially when α ≤ 1. A summary of the results is
shown in Table 1.

4. PAYMENT GAME
In this section, we present an extension to the basic game with

payments and analyze the price of anarchy and the optimistic price
of anarchy of the game.

4.1 Game Model
The new game, which we refer to as the payment game, allows

each player to offer a payment to another player to give the latter
incentive to replicate the object. The cost of replication is shared
among the nodes paying the server that replicates the object.

The strategy for each player i is specified by a triplet (vi, bi, ti) ∈
{N, � + , � +}. vi specifies the player to whom i makes a bid,
bi ≥ 0 is the value of the bid, and ti ≥ 0 denotes a threshold
for payments beyond which i will replicate the object. In addition,
we use Ri to denote the total amount of bids received by a node i
(Ri = � j:vj=i bj).

A node i replicates the object if and only if Ri ≥ ti, that is, the
amount of bids it receives is greater than or equal to its threshold.
Let Ii denote the corresponding indicator variable, that is, Ii equals
1 if i replicates the object, and 0 otherwise. We make the rule that
if a node i makes a bid to another node j and j replicates the object,
then i must pay j the amount bi. If j does not replicate the object,
i does not pay j.

Given a strategy profile, the outcome of the game is the set of
tuples {(Ii, vi, bi, Ri)}. Ii tells us whether player i replicates the
object or not, bi is the payment player i makes to player vi, and
Ri is the total amount of bids received by player i. To compute
the payoffs given the outcome, we must now take into account the
payments a node makes, in addition to the placement costs and
access costs of the basic game.

By our rules, a server node i pays bi to node vi if vi replicates
the object, and receives a payment of Ri if it replicates the object
itself. Its net payment is biIvi

− RiIi. The total cost incurred by
each node is the sum of its placement cost, access cost, and net
payment. It is defined as

Ci(S) = αijIi + wijdi`(i,j)(1 − Ii) + biIvi
− RiIi. (10)

The cost of social optimum for the payment game is same as that
for the basic game, since the net payments made cancel out.

4.2 Analysis
In analyzing the payment model, we first show that a Nash equi-

librium in the basic game is also a Nash equilibrium in the payment
game. We then present an important positive result — in the pay-
ment game the socially optimal configuration can always be imple-
mented by a Nash equilibrium. We know from the counterexample
in Figure 2 that this is not guaranteed in the the basic game. In this
analysis we use α to represent αij .

THEOREM 2. Any configuration that is a pure strategy Nash
equilibrium in the basic game is also a pure strategy Nash equilib-
rium in the payment game. Therefore, the price of anarchy of the
payment game is at least that of the basic game.

PROOF. Consider any Nash equilibrium configuration in the ba-
sic game. For each node i replicating the object, set its threshold ti

to 0; everyone else has threshold α. Also, for all i, bi = 0.
A node that replicates the object does not have incentive to change

its strategy: changing the threshold does not decrease its cost, and
it would have to pay at least α to access a remote replica or incen-
tivize a nearby node to cache. Therefore it is better off keeping its
threshold and bid at 0 and replicating the object.

A node that is not replicating the object can access the object re-
motely at a cost less than or equal to α. Lowering its threshold does
not decrease its cost, since all bi are zero. The payment necessary
for another server to place a replica is at least α.

No player has incentive to deviate, so the current configuration
is a Nash equilibrium.

In fact, Appendix B shows that the PoA of the payment game
can be more than that of the basic game in a given topology.

Now let us look at what happens to the example shown in Fig-
ure 2 in the best case. Suppose node B’s neighbors each decide
to pay node B an amount 2/n. B does not have an incentive to
deviate, since accessing the remote replica does not decrease its
cost. The same argument holds for A because of symmetry in the
graph. Since no one has an incentive to deviate, the configuration is
a Nash equilibrium. Its total cost is 2α, the same as in the socially
optimal configuration shown in Figure 2(b). Next we prove that
indeed the payment game always has a strategy profile that imple-
ments the socially optimal configuration as a Nash equilibrium. We
first present the following observation, which is used in the proof,
about thresholds in the payment game.

OBSERVATION 1. If node i replicates the object, j is the near-
est node to i among the other nodes that replicate the object, and
dij < α in a Nash equilibrium, then i should have a threshold at



least (α − dij). Otherwise, it cannot collect enough payment to
compensate for the cost of replicating the object and is better off
accessing the replica at j.

THEOREM 3. In the payment game, there is always a pure strat-
egy Nash equilibrium that implements the social optimum config-
uration. The optimistic price of anarchy in the payment game is
therefore always one.

PROOF. Consider the socially optimal configuration φopt. Let
No be the set of nodes that replicate the object and Nc = N − No

be the rest of the nodes. Also, for each i in No, let Qi denote the
set of nodes that access the object from i, not including i itself. In
the socially optimal configuration, dij ≤ α for all j in Qi.

We want to find a set of payments and thresholds that makes this
configuration implementable. The idea is to look at each node i in
No and distribute the minimum payment needed to make i replicate
the object among the nodes that access the object from i. For each
i in No, and for each j in Qi, we define

δj = min{α, min
k∈No−{i}

djk} − dji (11)

Note that δj is the difference between j’s cost for accessing the
replica at i and j’s next best option among replicating the object
and accessing some replica other than i. It is clear that δj ≥ 0.

CLAIM 1. For each i ∈ No, let ` be the nearest node to i in
No. Then, � j∈Qi

δj ≥ α − di`.

PROOF. (of claim) Assume the contrary, that is, � j∈Qi
δj <

α − di`. Consider the new configuration φnew wherein i does not
replicate and each node in Qi chooses its next best strategy (either
replicating or accessing the replica at some node in No − {i}). In
addition, we still place replicas at each node in No −{i}. It is easy
to see that cost of φopt minus cost of φnew is at least:

(α +
�

j∈Qi

dij) − (di` +
�

j∈Qi

min{α, min
k∈No−{i}

dik})

= α − di` −
�

j∈Qi

δj > 0,

which contradicts the optimality of φopt.

We set bids as follows. For each i in No, bi = 0 and for each j
in Qi, j bids to i (i.e., vj = i) the amount:

bj = max{0, δj − εi/(|Qi| + 1)}, j ∈ Qi (12)

where εi = � j∈Qi
δj −α + di` ≥ 0 and |Qi| is the cardinality of

Qi. For the thresholds, we have:

ti =

�
α if i ∈ Nc;� j∈Qi

bj if i ∈ No.
(13)

This fully specifies the strategy profile of the nodes, and it is easy
to see that the outcome is indeed the socially optimal configuration.

Next, we verify that the strategies stipulated constitute a Nash
equilibrium. Having set ti to α for i in Nc means that any node
in N is at least as well off lowering its threshold and replicating
as bidding α to some node in Nc to make it replicate, so we may
disregard the latter as a profitable strategy. By observation 1, to
ensure that each i in No does not deviate, we require that if ` is the
nearest node to i in No, then � j∈Qi

bj is at least (α − di`). Oth-
erwise, i will raise ti above � j∈Qi

bj so that it does not replicate
and instead accesses the replica at `. We can easily check that

�

j∈Qi

bj ≥
�

j∈Qi

δj − |Qi|εi

|Qi| + 1
= α − di` +

εi

|Qi| + 1
≥ α − di`.
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Figure 3: We present PoA, Ratio, and OPoA results for the basic
game, varying α on a 100-node line topology, and we show number
of replicas placed by the Nash equilibria and by the optimal solution.
We see large peaks in PoA and OPoA at α = 100, where a phase
transition causes an abrupt transition in the lines.

Therefore, each node i ∈ No does not have incentive to change
ti since i loses its payments received or there is no change, and i
does not have incentive to bi since it replicates the object. Each
node j in Nc has no incentive to change tj since changing tj does
not reduce its cost. It also does not have incentive to reduce bj

since the node where j accesses does not replicate and j has to
replicate the object or to access the next closest replica, which costs
at least the same from the definition of bj . No player has incentive
to deviate, so this strategy profile is a Nash equilibrium.

5. SIMULATION
We run simulations to compare Nash equilibria for the single-

object caching game with the social optimum computed by solving
the integer linear program described in Equation 8 using Mosek [1].
We examine price of anarchy (PoA), optimistic price of anarchy
(OPoA), and the average ratio of the costs of Nash equilibria and
social optima (Ratio), and when relevant we also show the average
numbers of replicas placed by the Nash equilibrium (Replica(NE))
and the social optimum (Replica(SO)). The PoA and OPoA are
taken from the worst and best Nash equilibria, respectively, that we
observe over the runs. Each data point in our figures is based on
1000 runs, randomly varying the initial strategy profile and player
order. The details of the simulations including protocols and a dis-
cussion of convergence are presented in Appendix C.

In our evaluation, we study the effects of variation in four cate-
gories: placement cost, underlying topology, demand distribution,
and payments. As we vary the placement cost α, we directly influ-
ence the tradeoff between caching and not caching. In order to get
a clear picture of the dependency of PoA on α in a simple case, we
first analyze the basic game with a 100-node line topology whose
edge distance is one.

We also explore transit-stub topologies generated using the GT-
ITM library [36] and power-law topologies (Router-level Barabasi-
Albert model) generated using the BRITE topology generator [25].
For these topologies, we generate an underlying physical graph of
3050 physical nodes. Both topologies have similar minimum, aver-
age, and maximum physical node distances. The average distance
is 0.42. We create an overlay of 100 server nodes and use the same
overlay for all experiments with the given topology.

In the game, each server has a demand whose distribution is
Bernoulli(p), where p is the probability of having demand for the
object; the default unless otherwise specified is p = 1.0.
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Figure 4: Transit-stub topology: (a) basic game, (b) payment game. We show the PoA, Ratio, OPoA, and the number of replicas placed while
varying α between 0 and 2 with 100 servers on a 3050-physical-node transit-stub topology.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

 1

 10

 100

C
(N

E
)/

C
(S

O
)

A
ve

ra
ge

 N
um

be
r 

of
 R

ep
lic

as

alpha

PoA
Ratio

OPoA
Replica (SO)
Replica (NE)

(a)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

 1

 10

 100

C
(N

E
)/

C
(S

O
)

A
ve

ra
ge

 N
um

be
r 

of
 R

ep
lic

as

alpha

PoA
Ratio

OPoA
Replica (SO)
Replica (NE)

(b)

Figure 5: Power-law topology: (a) basic game, (b) payment game. We show the PoA, Ratio, OPoA, and the number of replicas placed while
varying α between 0 and 2 with 100 servers on a 3050-physical-node power-law topology.

5.1 Varying Placement Cost
Figure 3 shows PoA, OPoA, and Ratio, as well as number

of replicas placed, for the line topology as α varies. We observe
two phases. As α increases the PoA rises quickly to a peak at
100. After 100, there is a gradual decline. OPoA and Ratio show
behavior similar to PoA.

These behaviors can be explained by examining the number of
replicas placed by Nash equilibria and by optimal solutions. We see
that when α is above one, Nash equilibrium solutions place fewer
replicas than optimal on average. For example, when α is 100,
the social optimum places four replicas, but the Nash equilibrium
places only one. The peak in PoA at α = 100 occurs at the point
for a 100-node line where the worst-case cost of accessing a remote
replica is slightly less than the cost of placing a new replica, so self-
ish servers will never place a second replica. The optimal solution,
however, places multiple replicas to decrease the high global cost
of access. As α continues to increase, the undersupply problem
lessens as the optimal solution places fewer replicas.

5.2 Different Underlying Topologies
In Figure 4(a) we examine an overlay graph on the more realistic

transit-stub topology. The trends for the PoA, OPoA, and Ratio
are similar to the results for the line topology, with a peak in PoA
at α = 0.8 due to maximal undersupply.

In Figure 5(a) we examine an overlay graph on the power-law
topology. We observe several interesting differences between the
power-law and transit-stub results. First, the PoA peaks at a lower

level in the power-law graph, around 2.3 (at α = 0.9) while the
peak PoA in the transit-stub topology is almost 3.0 (at α = 0.8).
After the peak, PoA and Ratio decrease more slowly as α in-
creases. OPoA is close to one for the whole range of α values.
This can be explained by the observation in Figure 5(a) that there
is no significant undersupply problem here like there was in the
transit-stub graph. Indeed the high PoA is due mostly to mis-
placement problems when α is from 0.7 to 2.0, since there is little
decrease in PoA when the number of replicas in social optimum
changes from two to one. The OPoA is equal to one in the figure
when the same number of replicas are placed.

5.3 Varying Demand Distribution
Now we examine the effects of varying the demand distribution.

The set of servers with demand is random for p < 1, so we calcu-
late the expected PoA by averaging over 5 trials (each data point
is based on 5000 runs). We run simulations for demand levels of
p ∈ {0.2, 0.6, 1.0} as α is varied on the 100 servers on top of
the transit-stub graph. We observe that as demand falls, so does
expected PoA. As p decreases, the number of replicas placed in
the social optimum decreases, but the number in Nash equilibria
changes little. Furthermore, when α exceeds the overlay diameter,
the number in Nash equilibria stays constant when p varies. There-
fore, lower p leads to a lesser undersupply problem, agreeing with
intuition. We do not present the graph due to space limitations and
redundancy; the PoA for p = 1.0 is identical to PoA in Figure 4(a),
and the lines for p = 0.6 and p = 0.2 are similar but lower and flatter.



5.4 Effects of Payment
Finally, we discuss the effects of payments on the efficiency of

Nash equilibria. The results are presented in Figure 4(b) and Fig-
ure 5(b). As shown in the analysis, the simulations achieve OPoA
close to one (it is not exactly one because of randomness in the
simulations). The Ratio for the payment game is much lower than
the Ratio for the basic game, since the protocol for the payment
game tends to explore good regions in the space of Nash equilib-
ria. We observe in Figure 4 that for α ≥ 0.4, the average number
of replicas of Nash equilibria gets closer with payments to that of
the social optimum than it does without. We observe in Figure 5
that more replicas are placed with payments than without when α
is between 0.7 and 1.3, the only range of significant undersupply in
the power-law case. The results confirm that payments give servers
incentive to replicate the object and this leads to better equilibria.

6. DISCUSSION AND FUTURE WORK
We suggest several interesting extensions and directions. One

extension is to consider multiple objects in the capacitated caching
game, in which servers have capacity limits when placing objects.
Since caching one object affects the ability to cache another, there
is no separability of a multi-object game into multiple single object
games. As studied in [12], one way to formulate this problem is to
find the best response of a server by solving a knapsack problem
and to compute Nash equilibria.

In our analyses, we assume that all nodes have the same demand.
However, nodes could have different demand depending on objects.
We intend to examine the effects of heterogeneous demands (or
heterogeneous placement costs) analytically. We also want to look
at the following “aggregation effect”. Suppose there are n − 1
clustered nodes with distance of α−1 from a node hosting a replica.
All nodes have demands of one. In that case, the price of anarchy
is O(n). However, if we aggregate n− 1 nodes into one node with
demand n − 1, the price of anarchy becomes O(1), since α should
be greater than (n − 1)(α − 1) to replicate only one object. Such
aggregation can reduce the inefficiency of Nash equilibria.

We intend to compute the bounds of the price of anarchy under
different underlying topologies such as random graphs or growth-
restricted metrics. We want to investigate whether there are certain
distance constraints that guarantee O(1) price of anarchy. In addi-
tion, we want to run large-scale simulations to observe the change
in the price of anarchy as the network size increases.

Another extension is to consider server congestion. Suppose the
distance is the network distance plus γ × (number of accesses)
where γ is an extra delay when an additional server accesses the
replica. Then, when α > γ, it can be shown that PoA is bounded
by α

γ
. As γ increases, the price of anarchy bound decreases, since

the load of accesses is balanced across servers.
While exploring the caching problem, we made several obser-

vations that seem counterintuitive. First, the PoA in the payment
game can be worse than the PoA in the basic game. Another ob-
servation we made was that the number of replicas in a Nash equi-
librium can be more than the number of replicas in the social opti-
mum even without payments. For example, a graph with diameter
slightly more than α may have a Nash equilibrium configuration
with two replicas at the two ends. However, the social optimum
may place one replica at the center. We leave the investigation of
more examples as an open issue.

7. CONCLUSIONS
In this work we introduce a novel non-cooperative game model

to characterize the caching problem among selfish servers without

any central coordination. We show that pure strategy Nash equilib-
ria exist in the game and that the price of anarchy can be O(n) in
general, where n is the number of servers, due to undersupply prob-
lems. With specific topologies, we show that the price of anarchy
can have tighter bounds. More importantly, with payments, servers
are incentivized to replicate and the optimistic price of anarchy is
always one. Non-cooperative caching is a more realistic model than
cooperative caching in the competitive Internet, hence this work is
an important step toward viable federated caching systems.
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APPENDIX

A. ANALYZING SPECIFIC TOPOLOGIES
We now analyze the price of anarchy (PoA) for the basic game

with specific underlying topologies and show that PoA can have
better bounds. We look at complete graph, star, line, and D-
dimensional grid. In all these topologies, we set the distance be-
tween two directly connected nodes to one. We describe the case
where α > 1, since PoA = 1 trivially when α ≤ 1.

A BC D3

α
3

α
4

3α

4

α
4

α

Figure 6: Example where the payment game has a Nash equilibrium
which is worse than any Nash equilibrium in the basic game. The un-
labeled distances between the nodes in the cluster are all 1. The thresh-
olds of white nodes are all α and the thresholds of dark nodes are all
α/4. The two dark nodes replicate the object in this payment game
Nash equilibrium.

For a complete graph, PoA = 1, and for a star, PoA ≤ 2.
For a complete graph, when α > 1, both Nash equilibria and so-
cial optima place one replica at one server, so PoA = 1. For
star, when 1 < α < 2, the worst case Nash equilibrium places
replicas at all leaf nodes. However, the social optimum places
one replica at the center node. Therefore, PoA = (n−1)α+1

α+(n−1)
≤

2(n−1)+1
1+(n−1)

≤ 2. When α > 2, the worst case Nash equilibrium
places one replica at a leaf node and the other nodes access the
remote replica, and the social optimum places one replica at the
center. PoA = α+1+2(n−2)

α+(n−1)
= 1 + n

α+(n−1)
≤ 2.

For a line, the price of anarchy is O(
√

n). When 1 < α < n,
the worst case Nash equilibrium places replicas every 2α so that
there is no overlap between areas covered by two adjacent servers
that cache the object. The social optimum places replicas at least
every

√
2α. The placement of replicas for the social optimum is

as follows. Suppose there are two replicas separated by distance
d. By placing an additional replica in the middle, we want to have
the reduction of distance to be at least α. The distance reduction
is d/2 + 2{((d/2 − 1) − 1) + ((d/2 − 2) − 2) + ... + ((d/2 −
d/4) − d/4)} ≥ d2/8. d should be at most 2

√
2α. Therefore, the

distance between replicas in the social optimum is at most
√

2α.
C(SW ) = α (n−1)

2α
+ α(α+1)

2
(n−1)

2α
= Θ(αn). C(SO) ≥ α n−1√

2α
+

2
√

2α/2(
√

2α/2+1)
2

n−1√
2α

. C(SO) = Ω(
√

αn). Therefore, PoA =

O(
√

α). When α > n− 1, the worst case Nash equilibrium places
one replica at a leaf node and C(SW ) = α + (n−1)n

2
. However,

the social optimum still places replicas every
√

2α. If we view
PoA as a continuous function of α and compute a derivative of
PoA, the derivative becomes 0 when α is Θ(n2), which means
the function decreases as α increases from n. Therefore, PoA is
maximum when α is n, and PoA = Θ(n2)

Ω(
√

nn)
= O(

√
n). When

α > (n−1)n
2

, the social optimum also places only one replica, and
PoA is trivially bounded by 2. This result holds for the ring and
it can be generalized to the D-dimensional grid. As the dimension
in the grid increases, the distance reduction of additional replica
placement becomes Ω(dD+1) where d is the distance between two

adjacent replicas. Therefore, PoA = Θ(n2)

Ω(n
1

D+1 n)

= O(n
D

D+1 ).

B. PAYMENT CAN DO WORSE
Consider the network in Figure 6 where α > 1+α/3. Any Nash

equilibrium in the basic game model would have exactly two repli-
cas - one in the left cluster, and one in the right. It is easy to verify
that the worst placement (in terms of social cost) of two replicas
occurs when they are placed at nodes A and B. This placement can
be achieved as a Nash equilibrium in the payment game, but not in
the basic game since A and B are a distance 3α/4 apart.



Algorithm 1 Initialization for the Basic Game
L1 = a random subset of servers
for each node i in N do

if i ∈ L1 then
Si = 1 ; replicate the object

else
Si = 0

Algorithm 2 Move Selection of i for the Basic Game
Cost1 = α
Cost2 = minj∈X−{i} dij ; X is the current configuration
Costmin = min{Cost1, Cost2}
if Costnow > Costmin then

if Costmin == Cost1 then
Si = 1

else
Si = 0

C. NASH DYNAMICS PROTOCOLS
The simulator initializes the game according to the given param-

eters and a random initial strategy profile and then iterates through
rounds. Initially the order of player actions is chosen randomly. In
each round, each server performs the Nash dynamics protocol that
adjusts its strategies greedily in the chosen order. When a round
passes without any server changing its strategy, the simulation ends
and a Nash equilibrium is reached.

In the basic game, we pick a random initial subset of servers to
replicate the object as shown in Algorithm 1. After the initializa-
tion, each player runs the move selection procedure described in
Algorithm 2 (in algorithms 2 and 4, Costnow represents the cur-
rent cost for node i). This procedure chooses greedily between
replication and non-replication. It is not hard to see that this Nash
dynamics protocol converges in two rounds.

In the payment game, we pick a random initial subset of servers
to replicate the object by setting their thresholds to 0. In addition,
we initialize a second random subset of servers to replicate the ob-
ject with payments from other servers. The details are shown in Al-
gorithm 3. After the initialization, each player runs the move selec-
tion procedure described in Algorithm 4. This procedure chooses
greedily between replication and accessing a remote replica, with
the possibilities of receiving and making payments, respectively.
In the protocol, each node increases its threshold value by incr if it
does not replicate the object. By this ramp up procedure, the cost of
replicating an object is shared fairly among the nodes that access a
replica from a server that does cache. If incr is small, cost is shared
more fairly, and the game tends to reach equilibria that encourages
more servers to store replicas, though the convergence takes longer.
If incr is large, the protocol converges quickly, but it may miss ef-
ficient equilibria. In the simulations we set incr to 0.1. Most of our
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Figure 7: An example where the Nash dynamics protocol does not
converge in the payment game.

Algorithm 3 Initialization for the Payment Game
L1 = a random subset of servers
for each node i in N do

bi = 0
if i ∈ L1 then

ti = 0 ; replicate the object
else

ti = α

L2 = {}
for each node i in N do

if coin toss == head then
Mi = {j : d(j, i) < mink∈L1∪L2

d(j, k)}
if Mi != ∅ then

for each node j ∈ Mi do

bj = max{α+ � k∈Mi
d(i,k)

|Mi| − d(i, j), 0}
L2 = L2 ∪ {i}

Algorithm 4 Move Selection of i for the Payment Game
Cost1 = α − Ri

Cost2 = minj∈N−{i}{tj − Rj + dij}
Costmin = min{Cost1, Cost2}
if Costnow > Costmin then

if Costmin == Cost1 then
ti = Ri

else
ti = Ri + incr
vi = argminj{tj − Rj + dij}
bi = tvi

− Rvi

simulation runs converged, but there were a very few cases where
the simulation did not converge due to the cycles of dynamics. The
protocol does not guarantee convergence within a certain number
of rounds like the protocol for the basic game.

We provide an example graph and an initial condition such that
the Nash dynamics protocol does not converge in the payment game
if started from this initial condition. The graph is represented by
a shortest path metric on the network shown in Figure 7. In the
starting configuration, only A replicates the object, and a pays it
an amount α/3 to do so. The thresholds for A, B and C are α/3
each, and the thresholds for a, b and c are 2α/3. It is not hard to
verify that the Nash dynamics protocol will never converge if we
start with this condition.

The Nash dynamics protocol for the payment game needs fur-
ther investigation. The dynamics protocol for the payment game
should avoid cycles of actions to achieve stabilization of the proto-
col. Finding a self-stabilizing dynamics protocol is an interesting
problem. In addition, a fixed value of incr cannot adapt to changing
environments. A small value of incr can lead to efficient equilibria,
but it can take long time to converge. An important area for future
research is looking at adaptively changing incr.


