
Towards QoE-aware Video Streaming using SDN

Hyunwoo Nam∗, Kyung-Hwa Kim†, Jong Yul Kim† and Henning Schulzrinne†
∗Department of Electrical Engineering, Columbia University, New York, NY
†Department of Computer Science, Columbia University, New York, NY

Abstract—Today’s over the top (OTT) video service providers
take advantage of content distribution networks (CDNs) and
adaptive bitrate (ABR) streaming where a video player adjusts
resolutions based on end-to-end network conditions. Although the
mechanisms are useful to improve user-perceived video quality,
they do not resolve the root causes of congestion problems. To
pinpoint a bottleneck and improve video quality-of-experience
(QoE), we leverage a software-defined networking (SDN) platform
from OTT video service provider’s point of view. Our proposed
SDN application is designed to monitor network conditions of
streaming flow in real time and dynamically change routing paths
using multi-protocol label switching (MPLS) traffic engineering
(TE) to provide reliable video watching experience. We use an off-
the-shelf SDN platform to show the feasibility of our approaches.

Keywords—Video Streaming, Mobile Wireless, HTTP Progres-
sive Video, Software-Defined Networking, Over The Top Applica-
tions, Multi-Protocol Label Switching Traffic Engineering

I. INTRODUCTION

Video service providers use CDNs to speed up the delivery
of their contents to clients. In a CDN, a geographically close
delivery node is typically assigned to a client. However, the
network conditions can be unstable although the delivery node
is located near the client [1]. Furthermore, once a client is
connected to a CDN operated by a third party, there is no
method for service providers to track user-perceived video
quality. To improve video QoE, they rely on client-side rate
selection algorithms such as ABR streaming. Although it can
be useful to automatically adjust resolutions based on the
network condition, this client-side mechanism is not helpful
in discovering the bottleneck that causes the video quality
problem.

To mitigate these issues, we propose to implement an
SDN-based video streaming architecture. In this paper, we try
to solve the problem from the perspective of video service
providers where they have full control over their servers,
networks and video players but have limited control over
access networks of clients. In order to improve video QoE
over SDN, we propose to a) measure various video QoE
metrics at video players running on clients’ devices; b) assign
the best available delivery node based on provisioned network
conditions; and c) dynamically change routing paths between
wide area network (WAN) routers using MPLS-TE.

We implement our SDN solutions using Junos Space
SDK [2] that is designed to monitor and control networking
devices of Juniper Networks. In our testbed, we have created
a light-weight plugin in an HTML5 video player to monitor
various QoE factors (e.g., buffering status and video resolution
selected by a client) to analyze user-perceived experience when
a video is playing. When buffering events occur, our SDN

application allows service providers to send queries to the SDN
controller to analyze network conditions (e.g., TCP throughput
and packet loss rate) on the streaming flow and change the
routing path in the network. Our WAN traffic monitoring
system is designed to communicate with the SDN controller
using RESTful APIs to visualize the network information in
real time. A demo can be found on our web page1.

The remainder of the paper is organized as follows. In
the second section, we look at related work. In Section III,
we address problems on existing OTT video delivery systems.
Our proposed SDN platform is described in Section IV. We
explain our implementation in Section V and evaluate our
solution in Section VI. Finally, we summarize our conclusions
in Section VII.

II. RELATED WORK

Several researchers have investigated an application-aware
SDN platform and WAN routing control using SDN. Zafar
et al. [3] focus on a mobile application detection framework.
They use a machine learning based traffic classification tech-
nique and a crowd-sourcing approach to identify the applica-
tion types in SDN. Ali et al. [4] have introduced MPLS-TE
and MPLS VPNs with OpenFlow. They have shown a demo
where MPLS control plane features are simply implemented
on an SDN platform. Saurav et al. [5] have demonstrated
application-aware aggregation and traffic engineering in a
packet circuit network. Using a NOX SDN controller [6],
they dynamically controlled packet flows based on different
application types. Michael et al. [7] have shown SDN-based
application-aware networking for YouTube video streaming.
They have conducted a performance test of several path selec-
tion mechanisms such as round-robin, bandwidth-based, deep
packet inspection-based and application-aware in an SDN-
enabled network. Aricent group [8] has introduced application-
aware routing with SDN as a business model. They address that
SDN-based routing control allows service providers to lower
CAPEX / OPEX and improve the overall end-user experience.

Our approach differs from the prior work in two aspects:
a) Noticeably, we focus more on a video streaming application
in SDN. Unlike other approaches where general application-
aware SDN platform has been introduced, we have designed
our solution from the perspective of video service provider.
b) Instead of using emulators (e.g., Mininet [9]), we have
implemented our solutions using a commercial off-the-shelf
SDN platform such as Junos Space [2] to show the feasibility
of our approaches.

1http://dyswis.cs.columbia.edu/sdn

Video delivery node 1

Video delivery node 2 Video delivery node 3

SDN Controller

CSPF based
MPLS-TE

Network
MonitoringConfiguration

Video
Database

Video optimization server

Client

Video front-end server

Figure 1: Video QoE-aware streaming platform using SDN

III. PROBLEMS ON EXISTING OTT VIDEO DELIVERY
SYSTEM

OTT video delivery can be challenging because the clients,
the service providers and various Internet service providers
(ISPs) involved do not have a global view of the end-to-
end network condition. In this case, a video service provider
does not have access to both the transit ISPs and the last
mile network that actually reaches the client. Once a client
is connected to a delivery node in a CDN operated by a third
party, there is no method for a video service provider to track
the network condition on the video streaming flow in real
time. Also, the delivery node is rarely switched to another
node during playback. If the network condition is unstable,
the client can suffer from buffering until the end of play time.
Therefore, even if users pay for HD videos, they can end up
watching low bitrate videos due to the Internet-side and / or
the CDN-side network problems.

In order to mitigate these problems, today’s OTT video
service providers take advantage of client-side rate selection
algorithms where a video player automatically adjusts resolu-
tions depending on the network conditions. However, it does
not resolve the root cause of the congestion. For instance, the
link on the routing path from the assigned delivery node to
the client may cause the bottleneck or the delivery node may
experience malfunction, in which case changing the resolution
is not the best way to improve video QoE. When a client
requests a video, a geographically close delivery node is
assigned to the client. Although a cache server located near a
client typically provides a fast delivery, it is possible that the
network conditions can be unstable at the moment. In such
case, other delivery nodes that are located distant from the
client may provide more reliable streaming experience.

IV. QOE-AWARE VIDEO STREAMING USING SDN

We leverage SDN to assist video service providers in
selecting the best delivery nodes when clients request videos.
In addition, we propose a Constrained Shortest Path First

(CSPF) path selection algorithm over MPLS in order to find the
best routing path for each streaming flow. Figure 1 shows our
simplified SDN-based video streaming architecture that con-
sists of a video optimization server, a video front-end server,
multiple delivery nodes and a client. Taking into account
scalability and performance issues, we may deploy multiple
SDN controllers in the network. Via an SDN controller, our
video optimization server (as an SDN application) monitors
network conditions and updates routing tables of WAN routers
in the network.

As an example, the overall procedures are as follows:

1) A client sends a video request to a video front-end server.
2) The video front-end server sends our video optimization

server a list of available delivery nodes that can stream
the requested video at the moment.

3) Our SDN application takes account of the network
conditions of each connected link on the paths to the
client. The proposed measurements for video streaming
include available bandwidths, packet loss rates and jitter.
It chooses the best available delivery node and stores the
connection information such as IP addresses of the client
and the selected delivery node, an assigned MPLS label
and selected video resolution in the video database.

4) Once the connection is established, the video player
running on the client device periodically reports video
QoE metrics to the video delivery node (Section IV-A).

5) When buffering events occur, our video optimization
server pinpoints a bottleneck (Section IV-B). It is designed
to find the best available routing path based on the CSPF
algorithm over MPLS (Section IV-C).

6) We dynamically change the delivery node if all available
paths from the assigned node experience congestions. In
this case, the first assigned delivery node sends an HTTP
redirection message to the video player, and have the
client connected to another available delivery node that
can provide the content with higher networking perfor-
mance. The address of newly assigned delivery node can
be obtained directly from the video optimization server.

TABLE I: Required TCP throughput for CSPF-based path selection
algorithms

Selected resolution Required TCP throughput
1080p 5 Mb/s
720p 2.5 Mb/s
480p 1 Mb/s
360p 725 Kb/s
240p 325 Kb/s

Once the client is connected to the new delivery node,
the video player sends a new HTTP GET message that
requests next video segments to continue to watch the
video from the disconnected point.

A. Application-level Video QoE metrics

Video service providers typically do not have any access
to last mile networks (e.g., local ISPs) of clients. We propose
to measure end-to-end network conditions between a video
player and a delivery node. In our proposed architecture, the
delivery node is designed to periodically receive various QoE
measurements directly from the video player to analyze user-
perceived video quality.

Existing QoS metrics such as packet loss rate, goodput,
delay, jitter and throughput are used to indicate the impact
on the video quality from the network operator’s point of
view, but do not present the user-perceived video quality.
Moreover, it is difficult to use traditional Peak Signal to Noise
Ratio (PSNR) where received frames and referenced frames
of an original video are compared to measure video QoE.
Such frame-to-frame comparison mechanism is inaccurate for
mobile video streaming because frame loss frequently occurs
over a lossy wireless channel [10]. Due to the above reasons,
we suggest commonly-used quality metrics for Internet video
streaming [11] [12], where video start-up latency, buffering
rate and playout buffer status are mainly considered to measure
the video QoE.

B. Pinpointing a bottleneck using SDN

Our video optimization server is capable of catching buffer-
ing events based on the feedback directly from a delivery
node which obtains the QoE metrics from a video player.
It is straightforward to find the bottleneck link in an SDN-
enabled network. When the buffering events occur, the SDN
application first obtains the flow information from the video
database (Figure 1) such as source / destination IP addresses,
routing paths (selected MPLS labels) and requested video
resolution. Then, it sends queries to collect the current data rate
of the video streaming flow on each connected link on the path
(e.g., obtaining network statistics of an individual flow using
OpenFlow [13]). There is the recommended downloading
bitrate which represents the amount of bitrate required to play
the selected resolution without any viewing interference. For
example, YouTube requires 2.5 Mb/s for 720p and 725 Kb/s
for 360p. We define a link as a bottleneck if it provides lower
data rate than the required bitrate of current streaming flow,
which may cause buffering experience at client-side.

Problems
on inside?

Change a routing path

Yes

No

• QoE metric from
video player

Problems on transit ISPs /
last mile networks

Received a video request

• Based on the provisioned
network conditions using SDN

Buffering
events?

Yes
• Analysis of inside

network via SDN

Problems
on links?

Yes

No
Change a delivery node

• MPLS-TE with CSPF

Dynamic condition-aware
1) delivery node selection

&
2) routing path selection

Figure 2: A simplified flowchart of a decision tree

C. Dynamic network condition-aware path optimization with
SDN

We use MPLS-TE over SDN to control video streaming
flow [4], [5]. An MPLS enables ISPs to provide QoS in
layer 3 networks. In an MPLS network, routers conduct packet-
forwarding decisions based only on the labels assigned on data
packets instead of inspecting an IP address of each packet.
Different MPLS labels are assigned to corresponding Labeled
Switch Paths (LSPs). Typically, those labels are attached with
IP packets and removed from the packets at Label Switch
Routers (LSRs) and label swapping can be performed on
the intermediate routers. From a QoS standpoint, MPLS-TE
allows network operators to efficiently manage different kinds
of data streams based on service plans and speed up network
traffic flow. According to recent studies [4], [5], MPLS-TE
architecture can be more flexible and simple over the SDN
platform by separating the control plane from the data plane.
In this paper, we apply it for the video streaming use-case
and build the prototype to show the feasibility of developing
MPLS-TE over SDN.

We implement a CSPF algorithm over MPLS-TE in order
to select the best available routing path from a delivery node
to a client. It runs shortest path algorithm after selecting
links that meet a given set of constraints. In our case, we
take account of three constraints (TCP bandwidth, packet loss
rate and jitter) that are typically considered important for
video streaming. When a client experiences buffer freeze, for
example, our SDN application collects network conditions on
connected links and run a CSPF algorithm taking into account
the required bandwidth in Table I to find the best available
LSP. We consider packet loss rate (< 5%) for buffered video
streaming and put more weight on packet jitter (< 20 ms) for
live streaming.

Basic CSPF algorithms where a set of video streaming

LSP 1 LSP 2

LSP 3 LSP 4

SP 2
Server VM Client VM

Figure 3: Implementing a testbed using Junos Space and WAN routers of Juniper Networks

requirements are considered to select the best LSP may en-
counter load-balancing problems on WAN links. For instance,
if multiple clients request to change routing paths from the
same time and place, the current CSPF algorithms may lead
all the clients to take the same LSP. If the selected link is
running at 80% - 90% utilization and sudden spikes of network
traffic arise (e.g., during busy hours), the interface may become
overwhelmed and start to drop packets, which will eventually
degrade video QoE. Taking into account the load-balancing on
WAN links, our CSPF algorithm has the following rules:

1) Prune WAN links that do not satisfy the required band-
width, packet loss rate and jitter.

2) If multiple LSPs that meet the requirements are available,
our CSPF-based load-balancing rule selects the LSP with
the lowest link utilization.

3) If several LSPs have the same link utilization, our SDN
application selects the LSP with the smallest number of
hops.

In summary, Figure 2 shows our simplified flowchart of
a decision tree in our proposed SDN-based video streaming
architecture.

V. IMPLEMENTATION

As a proof of concept, we have implemented our SDN-
based video streaming architecture using Junos Space that is
a comprehensive network management solution developed by
Juniper Networks [2]. It provides a centralized management
plane to control switching, routing and security networking
devices. Our SDN application is designed to improve network
utilization and user-perceived video quality under dynamic net-
work conditions. In order to achieve this, we have implemented
server and client side applications over SDN.

• Server-side application: This is an application that deter-
mines the best paths and updates MPLS labels in real time
based on our CSPF-based algorithm. It communicates
with the SDN controller using RESTful APIs. It also
provides GUI in order to visualize network topology and
networking statistics.

• Client-side application: This is a light-weight plugin
embedded in an HTML5 video player. It is designed to
identify video resolution selected by a client and peri-
odically report user-perceived experience to a connected

delivery node. The QoE metrics include the player state
(e.g., playing, paused and finished) and the status of
video playout buffer while downloading a video. Those
information is periodically delivered to the connected
delivery node over HTTP POST messages.

Figure 3 shows our testbed network. The specific testbed
setups are:

• A network control machine using the Junos Space SDN
platform is connected to eight Juniper edge routers;

• The routers use an MPLS protocol to deliver video
packets. Each router references the short label attached to
decide a routing path of traffic flow, instead of performing
an IP lookup; and

• The video packets are delivered from the server located
in SF to the client located in NY via one of the four
predefined LSPs.

VI. EVALUATION

Due to the difficulties of creating real WAN traffic and
in order to test our routing algorithms extensively in various
scenarios, we have created a simulation tool that reflects
the same network topology in our testbed. In our simulated
network, video packets are delivered from virtual video servers
to virtual clients via the links that are connected among virtual
WAN routers. The video player running on the client-side has
been designed to adjust resolutions based on downloading TCP
throughput of streaming flow in the network.

We assume that links with 100 Mb/s bandwidth capacity are
running between 80% and 90% utilization during busy hours.
In order to simulate real-environmental network conditions,
we take account of recent mobile streaming statistics [14]
indicating that most clients watch low or medium resolutions,
and about 1% of total mobile subscribers watch high definition
(e.g., 720p and 1080p) videos. Based on the information,
we inject background traffic flows on each link that follows
Poisson distribution where 200 clients on average request a
video per minute from each router and 99% of total streaming
flows generate 0.5 Mb/s on average and 1% of total flows
consume 2.5 Mb/s bandwidth on average.

In order to show the feasibility of our approach, we
experimented two following scenarios:

0 20 40 60 80 100 120

2

4

6

8

10

12

M
b/

s

0

LSP1

0 20 40 60 80 100 120

2

4

6

8

10

12

M
b/

s

0

LSP2

0 20 40 60 80 100 120

2

4

6

8

10

12

M
b/

s

0

LSP3

0 20 40 60 80 100 120

2

4

6

8

10

12

M
b/

s

0

LSP4

1080p 1080p 1080p 1080p

Time (min) Time (min) Time (min) Time (min)

Figure 4: Available bandwidth capacity on LSPs in Scenario 1

Scenario 1) Non-ABR without QoE-aware vs. Non-ABR
with QoE-aware: In non-ABR scenario, a video player does
not switch resolutions during a download. Without QoE-aware,
a client continues to watch a movie with 1080p via LSP 2 that
has minimum number of hops among LSPs. With our QoE-
aware streaming, a video player downloads the same movie via
dynamically changing LSPs based on our CSPF algorithm.
Scenario 2) ABR without QoE-aware vs. ABR with QoE-
aware: In ABR scenario, a video player automatically adjusts
resolutions based on network conditions. Without QoE-aware,
a video player switches resolutions but does not change LSPs.
With our QoE-aware streaming, a video player downloads the
1080p video via dynamically changing LSPs. It only degrades
a resolution if there are no available LSPs that meet the
required TCP throughput (e.g., 5 Mb/s for 1080p).

We note that all streaming flows from the SF node to the
NY node in both scenarios first take LSP 2 with minimum
number of hops, as shown in Figure 3. Figure 4 shows the
available bandwidth on each LSP in Scenario 1. For the first 20
minutes, there are no good LSP that has available bandwidth
more than 5 Mb/s. Figure 5 shows the experimental results
of Scenario 1. X-axis represents the elapsed time and Y-axis
indicates the downloading datarate at client-side. We measured
the data until the video player completely downloaded the
video content. We counted the accumulated received bytes
every minute and compared it with the required bitrate of
the selected resolution. We put a square box if the video
player experienced bad networking conditions (downloading
data rate< required bitrate) for at least five seconds during the
sampling period. In such unstable network conditions, there
is a high possibility of experiencing buffering events at the
client-side.

In a non-ABR without QoE-aware mode, the video player
had bad viewing experience for 52 minutes (the total length of
square box) via LSP 2. The video player with our QoE-aware
mechanism over SDN experienced the unstable networking
conditions only for 21 minutes in total. At the beginning, the
SDN controller switched the path from LSP 2 to LSP 3 since it
was the best one among others, and then it changed to LSP 1
at time t=39 to provide a fast delivery.

In Scenario 2, we played a 1080p movie with 100 minutes
of length in both QoE-aware and non-QoE-aware modes. We
measured how often the video player switched resolutions
while playing the video. Figure 6 shows our experimental

0 20 40 80 100 120
0

2

4

6

8

10

12

60
Time (min)

M
b/

s

1080p

Bad viewing experience

Non−ABR without QoE−aware

(a) A non-ABR mode without QoE-aware

0 20 40 80 100 120
0

2

4

6

8

10

12

60
Time (min)

M
b/

s

1080p

Bad viewing experience

Non−ABR with QoE−aware

(b) A non-ABR mode with QoE-aware

Figure 5: Downloading TCP throughput and period of bad viewing
experience in non-ABR modes without QoE-aware and with QoE-
aware

results. Y-axis represents the video resolution selected by the
video player. As we see in Figure 6a, the video player often
changed resolutions and had more bad viewing experience,
compared to the one in Figure 6b. In this experiment, the
video player without QoE-aware played 1080p, 720p and 480p
resolution for 50 minutes, 24 minutes and 26 minutes, respec-
tively while the video player with our QoE-aware mechanism
downloaded 1080p at the most of the time. We conducted the
same experiment a hundred times and calculated the statistics.
As shown in Table II, our QoE-aware mechanism over SDN
reduces the bad viewing experience by 5.8 minutes on average,

0 20 40 60 80 100
Time (min)

Se
le

ct
ed

 r
es

ol
ut

io
n

ABR without QoE−aware

1080p

720p

480p

Bad viewing experience

(a) An ABR mode without QoE-aware

0 20 40 60 80 100
Time (min)

ABR with QoE−aware

Se
le

ct
ed

 r
es

ol
ut

io
n Bad viewing experience

1080p

720p

480p

(b) An ABR mode with QoE-aware

Figure 6: Downloading TCP throughput and period of bad viewing
experience in ABR modes without QoE-aware and with QoE-aware

TABLE II: Selected video resolution and period of bad viewing
experience while watching a video with 100 minutes of length

ABR without QoE-aware ABR with QoE-aware
Avg. bad viewing
experience period 10.36 minutes 4.56 minutes

1080p 69.08% 77.16%
720p 19.74% 16.26%
480p 11.18% 6.58%

and provides higher resolution of video streaming while the
video player downloaded the content.

VII. CONCLUSIONS

In today’s OTT video delivery architecture, it is difficult
to track user-perceived video quality once a delivery node has
been connected to a client. Without changing routing paths and
delivery nodes, only switching resolutions at client-side may
not resolve the bottleneck problems that degrade video QoE.
For instance, it is possible that the routing paths between the
assigned delivery node and the client experience congestion at
the moment.

From the video service provider’s point of view, we use
MPLS-TE over SDN. Our goal is to improve video QoE.
To monitor watching experience of a client in real time,
we propose to measure video QoE metrics (e.g., buffering
status and video player state) directly at video players during
a download. Based on the end-to-end feedback, our SDN
controller is designed to a) select the best available delivery
node that can stream the content with more reliable network
conditions than others presently; and b) dynamically change
routing paths among WAN routers using MPLS-TE.

In our simulation, our proposed QoE-aware mechanism
shows 55.9% improvement on enhancing viewing experience
especially during busy hours. It selects better routing paths to
provide higher resolution video during a download.

REFERENCES

[1] H. Nam, K. H. Kim, D. Calin, and H. Schulzrinne, “Towards Dy-
namic Network Condition-Aware Video Server Selection Algorithms
over Wireless Networks,” Department of Computer Science, Columbia
University, Tech. Rep. cucs-001-14, Jan. 2014.

[2] Junos Space. [Online]. Available: http://www.juniper.net/us/en/
products-services/network-management/

[3] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in SDN,” in Proceedings of the ACM SIG-
COMM Conference, Hong Kong, China, Aug. 2013.

[4] A. R. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-TE and
MPLS VPNS with Openflow,” in Proceedings of the ACM SIGCOMM
Conference, Toronto, Ontario, Canada, Aug. 2011.

[5] S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D. Getachew,
and P. Desai, “Application-aware Aggregation and Traffic Engineering
in a Converged Packet-Circuit Network,” in Optical Fiber Communica-
tion Conference and Exposition (OFC/NFOEC) and the National Fiber
Optic Engineers Conference, Los Angeles, USA, Mar. 2011.

[6] About NOX. [Online]. Available: http://www.noxrepo.org/

[7] M. Jarschel, F. Wamser, T. Höhn, T. Zinner, and P. Tran-Gia, “SDN-
based Application-Aware Networking on the Example of YouTube
Video Streaming,” in 2nd European Workshop on Software Defined
Networks (EWSDN), Berlin, Germany, Oct. 2013.

[8] Application-aware Routing in Software-defined Networks. [On-
line]. Available: http://www.aricent.com/pdf/Aricent Whitepaper -
Application Aware Routing in SDN.pdf

[9] Mininet: An Instant Virtual Network on your Laptop. [Online].
Available: http://mininet.org/

[10] A. Chan, K. Zeng, P. Mohapatra, S.-J. Lee, and S. Banerjee, “Metrics
for Evaluating Video Streaming Quality in Lossy IEEE 802.11 Wireless
Networks,” in Proceedings of the 29th Conference on Information
Communications, ser. INFOCOM’10, San Diego, California, USA, Mar.
2010.

[11] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and
H. Zhang, “A Quest for an Internet Video Quality-of-experience Met-
ric,” in Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XI, Redmond, Washington, Oct. 2012.

[12] R. Serral-Gracià, E. Cerqueira, M. Curado, M. Yannuzzi, E. Mon-
teiro, and X. Masip-Bruin, “An Overview of Quality of Experience
Measurement Challenges for Video Applications in IP Networks,” in
Proceedings of the 8th International Conference on Wired/Wireless
Internet Communications (WWIC), Lulea, Sweden, Jun. 2010.

[13] OpenFlow Switch Specification Version 1.4.0. [Online]. Available:
https://www.opennetworking.org/

[14] Citrix, “Bytemobile Mobile Analytics Report,” Citrix Systems, Tech.
Rep., May 2012.

