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Abstract—We present a study of traffic behavior of two pop-
ular over-the-top (OTT) video streaming services (YouTube and
Netflix). Our analysis is conducted on different mobile devices
(iOS and Android) over various wireless networks (Wi-Fi, 3G
and LTE) under dynamic network conditions. Our measurements
show that the video players frequently discard a large amount
of video content although it is successfully delivered to a client.

We first investigate the root cause of this unwanted behavior.
Then, we propose a Quality-of-Service (QoS)-aware video
streaming architecture in Long Term Evolution (LTE) networks
to reduce the waste of network resource and improve user
experience. The architecture includes a selective packet
discarding mechanism, which can be placed in packet data
network gateways (P-GW). In addition, our QoS-aware rules
assist video players in selecting an appropriate resolution under
a fluctuating channel condition. We monitor network condition
and configure QoS parameters to control availability of the
maximum bandwidth in real time. In our experimental setup,
the proposed algorithm (and platform) achieves nearly 21%
improvement in downlink bandwidth saving, creating a better
user experience under challenging radio conditions.

Index Terms—Video Streaming, Mobile Wireless, HTTP Pro-
gressive Video, HTTP Adaptive Bit-rate Streaming, Over The
Top Applications, Video QoE

I. INTRODUCTION

Today’s popular OTT video content providers such as
YouTube and Netflix stream their videos on demand (VOD)
without any technical support from network operators. The
popularity of OTT video content is growing steadily. Ac-
cording to Cisco [1], video streaming traffic accounts for
52.8% of total mobile data traffic in 2011, and it is expected
to reach 66.4% in 2015. The majority of mobile traffic on
video streaming is associated with YouTube and Netflix, which
generates 88% of total mobile video streaming traffic [2].

Most OTT video content providers use HTTP adaptive bit-
rate (ABR) streaming such as Apple HTTP Live Stream-
ing (HLS), Microsoft IIS Smooth Streaming, Adobe HTTP
Dynamic Streaming and Dynamic Adaptive Streaming over
HTTP (DASH). A video server contains several video files
encoded at multiple bit-rates. The video files are chopped into
small segments and then they are streamed over HTTP to
the client on demand. The video player adjusts the quality of
video stream based on the available bandwidth in the network
measured at the application layer and the CPU capacity of the
client’s device.

The self-adjusting mechanism implemented in a video
player is designed to provide clients with the highest Quality-
of-Experience (QoE) for given network conditions. However,
due to the lack of direct knowledge of access networks,
frequent user mobility and rapidly changing channel condi-
tions, the video player is difficult to effectively trace the
network conditions. This may cause the video player to select
an inappropriate resolution while playing a video. A video
player may periodically send feedback to a video content
server to accurately estimate network capacity, but bandwidth
constraints often limit the frequency of end-to-end feedback
[3]. Alternatively, Software-Defined Networking (SDN) may
enable OTT video content providers to partially provision
network resource in collaboration with network operators.
However, SDN infrastructure in Wide Area Network (WAN)
has not been practically standardized yet [4].

Providing a seamless video viewing experience is signifi-
cantly important for network operators to increase the number
of subscribers in their networks. The better the experience, the
longer and more subscribers will consume video contents in
their networks. To achieve this, we propose to build a dynamic
QoS-aware video streaming platform in an LTE network. As
a perspective of a network operator, our proposed platform
does not require any technical support from OTT video content
providers. In this paper, we first attempt to understand video
traffic behavior of current OTT video services, and improve
OTT video content delivery in an LTE system.
Analysis of OTT video content delivery and its impact
on mobile networks - We first examine video traffic of the
two popular OTT video services (YouTube and Netflix) while
playing videos on mobile devices (iOS and Android) over
wireless networks (Wi-Fi, 3G and LTE) under varying network
conditions. During our experiments, we observed that the
video players frequently discard a large amount of successfully
downloaded video packets. This unwanted behavior occurs
when the video player often changes resolution in unstable
network conditions and the video playout buffer is almost
full during a download. The video player also discards some
video packets when a client moves a playback slide bar before
completely downloading a requested video previously. Our
analysis shows that the average video packet loss is 10.1%,
and that the loss may exceed 35% of its complete content.
Needless to say, this behavior consumes network resources
and causes additional mobile data usage on clients.
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Figure 1: A testbed for a video traffic measurement using VSPC

Improving network efficiency and video QoE in LTE - P-
GW (also known as PDN Gateway) provides connectivity from
an LTE user to external packet data networks. It is responsible
for performing policy enforcement, user IP-address allocation,
packet filtering and charging. In the proposed platform, our
selective packet discarding mechanism implemented in P-GW
drops the potentially wasted video content in advance before
it is delivered to a client. It prevents unnecessary mobile data
usage paid by users and misuse of the limited network resource
over the air interface. In order to improve video QoE for
end-users, our proposed QoS rules in P-GW are designed
to dynamically manipulate LTE QoS parameters such as A-
AMBR and MBR that indicate the maximum possible data
rates, based on network conditions between a client and a
base station (eNodeB). By throttling TCP throughput, our QoS
rules assist a video player to choose a proper resolution under
fluctuating network conditions.

Our contributions can be summarized as follows:
1) We discover the underlying causes of the video packet

loss on HTTP-based mobile video streaming (Section II
and III); and

2) From the network operator’s point of view, we strengthen
an existing OTT video delivery system. Our evaluation
shows up to 20.58% improvement in saving the down-
link bandwidth on the air interface, and the proposed
mechanism enhances the video watching experience by
reducing buffer starvation (Section IV and V).

The remainder of the paper is organized as follows. In the
second section, we elaborate on the analysis of YouTube and
Netflix video streaming. In Section III, we focus on finding
problems that cause the waste of video content, and our
proposed solutions are described in Section IV. We evaluate
our proposal in Section V and look at the related work in
Section VI. Finally, we summarize our conclusions in Section
VII.

II. HTTP-BASED VIDEO STREAMING ANALYSIS

In this section, we present a traffic characterization study of
two popular OTT video services: YouTube and Netflix.
Testbed setups - As shown in Figure 1, we have designed
the Video Streaming Packet Collector (VSPC) on a Linux
machine to capture and analyze TCP/IP and HTTP packets on
video streaming between a client and a video server. Using our

TABLE I: iOS and Android mobile devices

Devices OS versions Screen resolutions Memory
iPad 3 iOS 6.1.2 1920x 1080 1024 MB

iPhone 4S iOS 6.1.2 640x 960 512 MB
iPhone 3G iOS 4.1.2 320x 480 128 MB
Nexus 7 Android 4.2.1 1280x 800 1024 MB

Nexus S 4G Android 4.1.1 480x 800 512 MB

testbed, we played hundreds of YouTube and Netflix videos
on different mobile devices (iOS and Android) via different
wireless networks (Wi-Fi, 3G and LTE) under varying network
conditions. Using netem, a networking emulation tool [5],
we intentionally shaped TCP throughput and added latency
between the VSPC and the clients. Table I shows the hardware
specifications of the selected iOS and Android mobile devices
used in our experiments. We played videos using standalone
video applications provided by the video content providers,
not the Web browsers installed in the mobile devices.

Based on these measurements, we point out that mobile
devices show distinct approaches of downloading videos,
depending on the operating system, the hardware specification
of the client’s device and the network condition.

A. An Analysis of YouTube Video Streaming

We analyzed how YouTube streams videos to mobile de-
vices over wireless networks. In our experiments, we played
450 videos on the mobile devices under varying network
conditions. The videos were randomly selected in terms of the
diversity in genre (animation, action movie, music video, live
concert and sports), length (from five minutes to two hours)
and video quality (high quality - HQ 360p and high definition
- HD 720p).

Our analysis on YouTube video streaming can be summa-
rized as follows:
Selecting resolution based on hardware specification -
YouTube video player selects resolution regardless of the
operating system and the radio interface, but it is affected by
hardware performance. The video players on iPad 3, Nexus 7
and iPhone 4S chose HD (720p) resolution when they re-
quested the videos. The video players on iPhone 3G and
Nexus S 4G selected HQ (360p) resolution due to the small
size of the display screen.
Sending plain HTTP GET messages to request a video -
YouTube video player for iOS uses a plain HTTP GET request
including a header field that specifies the byte range of the
video file (e.g., Range: bytes=100∼1000). The video
content server then responds with an HTTP 206 Partial
Content message (status code: 206) and sends the requested
range of the video. Unlike iOS, the video player for Android
only defines the starting point in the HTTP header (e.g.,
Range: bytes=100∼ ). Then, the video content server
pushes the video from the requested starting point to the end
of the video file.
Performing a fast start downloading - As shown in Fig-
ure 2a, a YouTube video content server sends its content with
a high speed for the first few seconds. This mechanism is also
known as Fast Start [6] that provides a way for a video player
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Figure 2: TCP throughput at iOS and Android devices while downloading a YouTube video over Wi-Fi networks

to fill the initial buffer at speeds higher than the bit-rate of the
requested video content.
Sending a sequence of HTTP GET messages while down-
loading a video - YouTube video player repeats sending an
HTTP GET message and receiving a partial video content
while playing a single video. The video player establishes
a new TCP connection every time it sends a new HTTP
GET message. The number of HTTP GET messages varies
depending on the operating system, the hardware performance
of the client’s device and the network condition.

1) Dependency of operating systems: Our experimental
results show that YouTube video player for iOS typically sends
more HTTP GET messages than the one for Android during
a download. As investigated by Yao Liu et al. [7], one of the
reasons is that YouTube video player for iOS sends additional
HTTP GET messages to request duplicate video contents after
the video is completely downloaded. The redundant video
content is stored in the buffer for possible re-play activities
by the clients. We see this additional traffic on iOS devices
(Figure 2a) but do not observe it on Android devices.

2) Dependency of the size of video playout buffer: The
number of HTTP GET messages is also related to the size
of video playout buffer, which generally varies depending on
hardware specifications. Through the experiments, we found
out that the video player often closed an active TCP connection
after a certain amount of video contents is downloaded.
This behavior occurred more frequently on iPhone 3G and
Nexus S 4G, which have a smaller memory size compared
to iPad 3, Nexus 7 and iPhone 4S. After consuming a certain
amount of video content stored in the buffer, it resumes
downloading the video by sending an additional HTTP GET
message via a new TCP connection (Figure 2b).

3) Dependency of network condition: Using netem, we
intentionally shaped the bandwidth in the network and added
latency on video streaming while playing the videos. Based
on these measurements, we found out that when the network
is congested, the video player for iOS sends a sequence of
HTTP GET messages. Each HTTP GET message requests a
small part of the video. It repeats sending the message until
the video is completely downloaded. However, under stable
network conditions it sends only one HTTP GET message

that requests the entire video file at once. We do not observe
this behavior on Android devices.
ABR streaming not available on Android - We found out
that YouTube video player for Android does not support HTTP
adaptive bit-rate streaming. According to the study of HLS by
Andrew [8], YouTube supports HLS for iOS devices. Android,
however, lacks the support of native HLS. During the experi-
ments, the video player for iPad 3 kept switching resolutions
between HQ 360p and HD 720p under fluctuating network
conditions. On the contrary, the video player on Nexus 7 kept
the high resolution (HD 720p) until the end, which caused
severe buffer underflows while playing the video.

B. An Analysis of Netflix Video Streaming

When a video player requests a Netflix video, it receives
a manifest file containing the information of video qualities
over an SSL connection. Therefore the information cannot be
retrieved via packet capturing. According to Netflix [9], iOS
and Android mobile devices basically support video streaming
in 480p, and the HD (720p and 1080p) videos can be viewed
on devices that are capable of higher performance such as
Sony PlayStation 3 and Apple TV. This indicates that the
video quality of Netflix is also selected based on the hardware
specification of the client’s device.

Our experimental results can be described as follows:
Two separate TCP connections - Unlike YouTube, Netflix
video player simultaneously establishes two TCP connections
(video and audio) with a video content server to stream a
video.
Periodic HTTP GET messages from iOS - We found out
that the Netflix video player for iOS generates periodic HTTP
GET messages to download a video. The HTTP header in
each HTTP GET message specifies the short range of the
video or audio file to be downloaded. The video and audio
files are requested at a different pace. During the experiments,
the video player requested the video file every 10.4 seconds
and the audio file every 10.1 seconds on average. Unlike iOS,
the traffic behavior on Android is quite straightforward. The
Netflix video player running on Android devices requests the
whole video and audio files at once.



TABLE II: The analysis of YouTube and Netflix video streaming

Operating
systems Fast start ABR Num. of concurrent TCP connections

while playing a video
Requested size of video
per a TCP connection

YouTube iOS 4 4 1 Varies depending on network conditions 1

Android 4 8 1 Entire video file requested at once

Netflix iOS 4 4 2 (video and audio separated) A small chunk of video requested in periodic messages
Android 4 4 2 (video and audio separated) Entire video file requested at once

1 A small chunk of a video file repeatedly requested until it downloads a whole video file under unstable network conditions while a whole video
file requested at once over a single TCP connection under stable network condition

ABR streaming available on both iOS and Android: We
found out that Netflix video player provides HTTP adaptive
bit-rate streaming for both iOS and Android. The low resolu-
tion was first played at the beginning and subsequently shifted
to higher quality depending on the network conditions.

Our analysis of YouTube and Netflix video streaming can
be briefly summarized in Table II. We conducted the same
experiments via different wireless access networks, namely
3G and LTE. For example, we played the same YouTube and
Netflix videos on the same mobile devices via 3G and LTE
networks. We compared the HTTP GET messages in both
cases and did not find any differences caused by the wireless
interfaces. The same quality of video was played on the mobile
device, and the video player downloaded the content in the
same way regardless of the wireless interfaces.

III. BADLY DESIGNED VIDEO PLAYERS WASTE
NETWORK BANDWIDTH

Our analysis on HTTP-based video streaming indicates that
a video player sends a sequence of HTTP GET messages to
download a video and a large amount of video content may get
discarded, even without being stored in a playout buffer during
a download. This unwanted behavior occurs when a video
player terminates an open TCP connection before completely
downloading the requested video content.

As an example, Figure 3 shows a simplified video traffic
flow diagram between a client and a YouTube video content
server. When a client plays a video, the video player sends
an HTTP GET message (packet 1, TCP source port 5000)
to download the video file. The video packets 3, 4 and 5 are
successfully delivered to the video player. However, before
receiving the next video packets, the video player closes the
port number 5000 (packet 6) and transmits another HTTP GET
message via a new TCP connection with the source port
number 5001 (packet 7). In the meantime, those video packets
that were sent by the video content server prior to noticing
the termination, continue to arrive at the TCP port 5000. In
addition, a TCP RST packet is sent to the video content server
each time the video player receives a video packet via the
terminated TCP port. Consequently, the TCP layer does not
deliver those packets (packets 8 to 11) to the video player.

While experimenting, we found out that there are mainly
three cases that cause this problem.

1) When a video player changes resolution, it closes an open
flow and establishes a new TCP connection. For adaptive
bit-rate streaming, a video content server contains several
video files encoded at multiple bit-rates. Each encoded

Client Video content server
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Figure 3: Video traffic flow diagram between a client and a YouTube
video content server

video file is segmented and the segment length is typi-
cally between two and ten seconds [10], [11]. When a
video player changes the quality, it terminates the open
connection and sends a new HTTP GET message. The
video player may receive the segments encoded at the
previously requested bit-rate, before the newly requested
GET message arrives at the video content server. When
such events occur, the video packets through the termi-
nated TCP port will be discarded.

2) When the video playout buffer is almost full, a video
player closes an open TCP connection. After carefully
analyzing the TCP/IP and HTTP packets, we found out
that this often occurs when the playout buffer size is too
small to download a video at a high speed (e.g., playing
videos on iPhone 3G). When a video player closes the
open TCP connection, however, the TCP layer may keep
downloading the video content as much as the remained
RWND size. Consequently, the video packets received via
the terminated TCP connection will be discarded.

3) When a client moves a playback slide bar while playing a
video, a video player establishes a new TCP connection.
Every time the slide bar is moved, a video player immedi-
ately terminates an open TCP connection and sends a new
HTTP GET message that contains a new requested range
of bytes of the video. The video packets that continue
to arrive at the closed TCP connection will no longer be
accepted by the video player.



TABLE III: Average and standard deviation of discard ratio (%)
while playing YouTube and Netflix videos on mobile devices over
Wi-Fi, 3G and LTE networks under fluctuating network conditions

Devices YouTube
Avg. (Stdev.)

Netflix
Avg. (Stdev.)

iPad 3 11.77 % (1.23) 0.13 % (0.09)
iPhone 4S 11.25 % (1.22) 0.5 % (0.48)
iPhone 3G 13.01 % (9.02) Not Avail.
Nexus 7 1.79 % (0.45) 11.11 % (9.1)

Nexus S 4G 9.23 % (1.81) 1.413 % (0.68)

A. Calculating Discard Ratio

Discard ratio = 1−
Goodput

Total throughput
(1)

Experimental setups - Using Equation 1, we calculated the
amount of discarded video traffic ratio. The specific experi-
mental setups are:

• One hundred of YouTube and Netflix videos were played
on mobile devices via Wi-Fi, 3G and LTE networks in
our testbed (Figure 1). During the experiments, the video
players selected one resolution among HQ (360p) and HD
(720p) based on their own self-adjusting mechanism;

• Using netem [5], we artificially manipulated packet
delay (avg. 50 ms± 10 ms random variation), packet loss
rate (avg. 5%), packet duplication rate (avg. 3%), packet
corruption rate (avg. 3%) and packet re-ordering rate
(avg. 5%) between mobile devices and our VSPC tool
in Figure 1.

• Using iperf [12], we also generated heavy TCP traffic
to the same network to overload the network, and man-
ually moved the slide bars on the video players while
playing the videos1.

Table III shows the experimental results. We did not exper-
iment with iPhone 3G and Netflix because the current video
application for Netflix only supports iOS 5 or later. Our
analysis is briefly summarized below.

• For YouTube, Android shows much less discard ratio
compared to iOS. That is mainly because YouTube video
player for iOS sends more HTTP GET messages with
new TCP connections than the video player for Android,
in order to download the redundant video content for
potential re-play activities. YouTube video player on
Android devices does not support ABR streaming, thus
it does not switch resolutions. This resulted in the lower
discard ratio compared to the case of iOS.

• For Netflix, iOS shows much less discard ratio com-
pared to Android. As we stated before, the video player
for iOS periodically requests a small chunk of video,
which provides a means of avoiding buffer overflow cases
while downloading a video.

• Discard ratio is affected by hardware performance
of a client’s device. For Netflix, Nexus S 4G shows less

1For each video, we moved the slide bar ten times every 30 seconds from
currently playing time to the unbuffered point.
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Figure 4: Discard ratio (%) for the YouTube and Netflix video
samples

discard ratio compared to Nexus 7. That is because only
the low video resolution is selected on the device due
to the small size of the display screen. For YouTube,
iPhone 3G and Nexus S 4G typically sent more HTTP
GET messages due to the small size of the playout buffer,
which caused higher discard ratio in comparison to other
devices with larger size of the playout buffer such as
iPad 3 and Nexus 7.

B. Key Observations

Through Section II and III, our key findings can be sum-
marized as follows:

1) The number of GET messages sent by a video player
while downloading a video is not associated to the
network interface, namely Wi-Fi, 3G and LTE;

2) HTTP-based OTT video players may discard a large
amount of video packets although they are successfully
delivered over the air interface. The discard ratio does
not proportionally increase with the number of GET
messages (Figure 4a); and

3) Instead, discard ratio is more related to other conditions
such as the performance of clients’ devices and the
network conditions while playing videos (Table III and
Figure 4b). For instance, the large amount of video
content which is sent by the video content server before
receiving a TCP RST packet will be discarded when the
round trip time (RTT) between the server and the client
is long and the receiver TCP window size is large.

As we described before, the more HTTP GET messages via
new TCP connections a video player sends, the more delivered



content is likely to be discarded. Also, if the network is con-
gested, the HTTP GET messages may get lost or retransmitted,
which will further increase the discard ratio.

Consequently, these experiments indicate that the network
traffic behaviors of YouTube and Netflix video streaming de-
pend on operating systems, hardware specifications of clients’
devices and network conditions. Hence, such device con-
siderations are directly related to wireless network resource
consumption as well as video QoE for end-users.

IV. IMPROVING OTT VIDEO CONTENT DELIVERY IN LTE

Wireless network resources such as radio spectrum and
backhaul transport between the base station and the core
network are limited and expensive. As described in Section
III, current OTT video players may waste a large amount of
network resources and cause additional mobile data usage on
clients. In order to improve OTT video content delivery, we
propose a dynamic QoS-aware video streaming algorithm in
LTE.

A. QoS in LTE

We first describe a brief background of QoS in LTE. In an
LTE system, QoS is implemented on a set of bearers between
a client and P-GW. QoS determines how an IP packet flow is
handled at eNodeB when it experiences congestion in terms of
scheduling policy, queue management and rate shaping. There
are two types of bearers: dedicated bearer and default bearer.
A default bearer is established when a client is connected to
an LTE network, and several dedicated bearers can be added
when it needs QoS-enabled services such as VoIP and video
streaming.

There exist two types of dedicated bearers: GBR type and
Non-GBR type. In a GBR mode, it provides minimum and
maximum guaranteed bit-rate per an Evolved Packet System
(EPS) bearer using GBR and MBR parameters. In a non-
GBR mode, on the other hand, it provides best-effort packet
delivery services. Although non-GBR bearers do not provide
guaranteed bit-rates, it still enables managing QoS using A-
AMBR and UE-AMBR parameters.

• A-AMBR: This indicates the maximum possible bit-rate
for all of best effort services on a specific access point
name (APN).

• UE-AMBR: This represents the maximum possible bit-
rate for all of best effort services on a particular client. It
prevents a client from taking all the available bandwidth
from the other LTE clients over the same air interface.

The 3GPP standards have defined nine QoS class of identi-
fiers (QCIs) in total which are characterized by priority, packet
delay budget and packet error loss rate. According to the
standardized QCIs in LTE [13], TCP-based progressive video
streaming is assigned to QCI 8 and 9, which indicate non-
GBR type, 300 ms packet delay tolerance and 10-6 acceptable
packet error loss rate.
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B. Dynamic QoS-aware Video Content Delivery in LTE

When network conditions are fluctuating, today’s OTT video
players may repeat switching resolution while playing a video.
This may result in frequent buffer underflows and a large
amount of packet loss, as shown in Figure 5 (Case 1). To solve
this problem, we propose differentiated QoS solutions that
dynamically change QoS parameters based on network condi-
tions between clients and eNodeBs. The proposed architecture
requires no additional implementation at server and client
sides. It is designed to conduct the following two objectives:
Swiftly downgrading QoS parameters based on network
capacity over the air interface - OTT video players such as
YouTube specify the requested video resolution in the HTTP
GET message. P-GW can inspect the URL and obtain the
requested bit-rate information selected by the video player. For
example, it typically requires at least 0.8 Mb/s for HQ (360p)
videos and 5.4Mb/s for HD (720p) videos. With our proposed
architecture, if the requested video quality is not suitable under
the network capacity (e.g., available bandwidth and buffer
status) reported by eNodeBs, our algorithm implemented in
P-GW decides to degrade QoS parameters such as A-AMBR
and MBR that indicate the maximum possible data rates, in
order to throttle TCP throughput of the video streaming flow
until the network becomes stable.

This brings the same effect of sending a notification to
the video player advising that it is better to select the low
resolution over the network. As a result, a video player
prevents the frequent changes of video resolution that may



cause byte waste under unstable network conditions, and thus
improves video QoE (Case 2 in Figure 5). We describe the
experimental results in Section V.
Discarding potential wasted video content in advance
before delivering it to a client - In the previous section,
we addressed that a video player sends a TCP RST segment
each time it receives an unexpected video packet via the
terminated TCP port. We intend to drop unnecessary video
packets in advance before delivering them to the client over
the air interface. In our proposed architecture, P-GW acts as
a firewall that performs TCP header inspection and discards
the unwanted traffic. When it captures the TCP FIN or RST
segments sent from the video player, it starts discarding
incoming video packets of which destination is the closed TCP
port (Figure 6). This has the advantage of saving downstream
bandwidth from P-GW to the client.

V. PERFORMANCE EVALUATION OF THE DYNAMIC
QOS-AWARE VIDEO STREAMING ARCHITECTURE

In this section, we perform evaluation of our dynamic
QoS-aware video streaming platform. We conduct video QoE
measurements for end-users and compare the performance in
terms of discard ratio while playing YouTube and Netflix
videos on mobile devices over Wi-Fi networks.
Building a testbed in Wi-Fi - Instead of using LTE simulators
such as MATLAB [14] and OPNET [15], we have designed
a testbed over Wi-Fi interface to take realistic OTT video
streaming traffic into account. As shown in Figure 7, in our
prototype, a Wi-Fi access point and a proxy server, respec-
tively, act as an eNodeB and P-GW. All the video packets
between a client and a video content server pass through the
proxy server.

We designed a set of QoS rules (Algorithm 1) to control the
video streaming flows. These rules are designed to implement
our proposed QoS-aware video streaming platform in LTE.
Let BRreq. be the requested bit-rate selected by the video
player. Let BWavail. and SNRavg. respectively denote the
available bandwidth to the video stream and the signal-to-noise
ratio (SNR) over the air interface. During the experiments, we
calculated the average of SNR for every five seconds, and
compared the value with the predefined SNR noise threshold
(Nthr.) to decide if the network was fluctuating or not. We
note that the proxy server acting as P-GW only throttles TCP
throughput when the video player requests the inappropriate
resolution under varying network conditions. It will decrease
the maximum allowable TCP throughput on the video stream-
ing flow, which leads the video player to switch to lower
resolutions quickly.

The specific testbed setups are:
• A hundred of YouTube and Netflix videos were randomly

selected. During the experiments, the average playing
time of each video was about 10 minutes;

• Two clients (Client A and B) on iPads simultaneously
requested the same video in the same network. We only
applied our QoS algorithm to Client B and compared
the performance against the baseline measured through

Internet
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Figure 7: Testbed setups for evaluation

Algorithm 1
1: if an HTTP GET msg received from a video player then
2: if BRreq. ≥ BWavail. or

SNRavg. ≤ Nthr. then
3: (Step 1) Throttle TCP throughput of the video

streaming flow until the network conditions become stable
4: end if
5: end if

6: if TCP RST or FIN received from a video player then
7: SETclosed ← TCPsrcport

8: end if

9: if a video pkt received from a video server then
10: if TCPdstport in SETclosed then
11: (Step 2) Discard the video packet
12: else
13: Pass the video packet to the video player
14: end if
15: end if

Client A. The video players dynamically selected one
resolution among 360p, 480p and 720p based on the
network conditions;

• We installed Linksys WRT54GL (802.11b/g - 54 Mbps)
Wi-Fi access point, and installed an open-source
firmware, DD-WRT, on it. We wrote a script on the access
point to periodically (every five seconds) report feedback
on the network conditions to the proxy server. The
feedback contains the transferred RX / TX bytes (used to
calculate the available bandwidth) and signal / noise level
(dBm) on the air interface;

• To make the network fluctuate, we turned on and off RF
devices that cause Wi-Fi interference at 2.4 GHz, such
as baby monitors and cordless telephones. To load the
network, we also intentionally added the TCP traffic using
a network testing tool, iperf;

• During the experiments, the average SNR was 47 dBm in
the clean environment, but it went down to 18 dBm with
interference. Based on the measurements, the SNR noise
threshold (Nthr.) was set to 25 dBm;

• In Step 1, using netem, we set the maximum available
TCP throughput 0.2 MB/s, 0.4 MB/s and 0.7 MB/s for
360p, 480p and 720p resolution, respectively; and

• In Step 2, using netfilter and iptables [16], we
discarded the unwanted traffic at the proxy server.
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Figure 8: TCP throughput while playing a YouTube video on iPad 3

Improving video QoE for end-users - To evaluate the video
QoE, we measured how long the client experienced buffer
underflows while watching a video. As a result, Client B
with our QoS-aware approach experienced the average of 32
seconds less buffer underflows compared to Client A.

For example, Figure 8 shows the TCP throughput while
playing the same YouTube video on iPad 3 devices in our
testbed. We measured the TCP throughput until the video
players on Client A and B fully downloaded the video files
under the fluctuating network conditions. As depicted in
Figure 8a, Client A experienced many buffer underflows while
playing the video (72 seconds out of 225 seconds). During the
experiment, it sent 100 HTTP GET messages in total and the
discard ratio was 11.6%.

On the other hand, while employing our QoS-aware algo-
rithm (Figure 8b), the TCP throughput of the video streaming
on Client B was adjusted to better cope with the measured
fluctuations in channel quality. After the TCP throughput got
strangled at time 9, it took only 10 seconds for the video player
to change the quality2. As the low resolution was selected, it
played the video with much fewer buffer underflows. As a
result, Client B experienced buffer freezing only 15 seconds
out of 132 seconds until it fully downloaded the entire video
file. Unlike Client A, it only sent 12 HTTP GET messages,
and showed a discard ratio of 0.41%.
Saving bandwidth over the air interface - We stored a TCP

2During our experiments, we found that Netflix and YouTube video players
switched to lower resolution in 11.8 seconds on average after the TCP
throughput was throttled.

TABLE IV: Discard ratio (%) on average while playing YouTube
and Netflix videos on mobile devices over Wi-Fi networks under
fluctuating network conditions

Devices YouTube Netflix
Client A Client B Client A Client B

iPad 3 13.54 % 0.87 % 0.16 % 0.01 %
iPhone 4S 12.72 % 0.03 % 0.5 % 0.38 %
iPhone 3G 20.72 % 0.14 % Not Avail. Not Avail.
Nexus 7 2.16 % 0.49 % 14.86 % 0.13 %

Nexus S 4G 8.54 % 0.01 % 11.25 % 0.15 %

dump file for each experiment, and calculated the discard ratio
to compare the performance. As shown in Table IV, employing
our dynamic QoS-aware algorithm yields lower discard ratio.
For instance, our proposed solution reduced the discard ratio
up to 20.58% (case of iPhone 3G and YouTube), compared to
the baseline.

VI. RELATED WORK

Several researchers have studied on characterizing HTTP-
based video streaming.

Zink et al. [17] analyzed YouTube traffic in a university
campus network. By analyzing TCP/IP and HTTP packets,
they characterized the duration and popularity of the YouTube
videos, and access patterns for YouTube video streaming.
Based on their measurements, they proposed proxy-caches for
video streaming to save the network traffic and enhance the
user experience.

Rao et al. [18] identified the streaming strategies used by
YouTube and Netflix via Wi-Fi interface. They showed that
the streaming strategies vary depending on the video players
and the types of container used for delivering video content
to a client.

Hoque et al. [19] conducted a measurement study of three
popular video streaming services (YouTube, Dailymotion and
Vimeo) on mobile devices over Wi-Fi and 3G networks. They
analyzed the energy efficiency of the five different video
streaming techniques used by the mobile video streaming
services.

Liu et al. [7] analyzed and compared the performance of
YouTube video streaming between Android and iOS mobile
devices. They showed that Android and iOS use different
approaches to download a video. After analyzing the traffic
patterns of YouTube and different buffer management meth-
ods, they found out that iOS devices receive more duplicate
YouTube video content than Android devices do.

Balachandran et al. [3] introduced a proxy-based architec-
ture for streaming media services over wireless networks. They
have designed a proxy server that enables to report feedback
on network conditions to a video server on behalf of a client.

Alcock et al. [20] investigated the streaming flow control
technique conducted by YouTube. They traced video pack-
ets of YouTube traffic over residential DSL and academic
networks. They found out that YouTube sends large bursts
of video contents, which may lead to frequent packet loss
and significantly reduce throughput while delivering videos to
clients.



Huang et al. [21], [22] have shown that many factors such
as the size of a video chunk, dynamic TCP congestion control
algorithm and competing flows in the same network make
it hard to pick a proper video streaming rate on clients. To
resolve the issue, they have introduced playout buffer-based
rate adaptation for HTTP-based video streaming.
Differences from the prior work: In addition to studying
the characteristics of HTTP-based video streaming, we focus
on finding the root cause of video packet loss on mobile
devices over Wi-Fi, 3G and LTE networks. Noticeably, in some
cases, a significant amount of video content may be discarded
by a video player after transferring content over the limited
air interface, resulting in undesirable waste of resources.
To improve OTT video content delivery, we strengthen the
4G architecture evolved with our selective packet discarding
mechanism to mitigate the misuse of network resources. We
also designed a dynamic QoS algorithm to improve video QoE.

VII. CONCLUSIONS

This paper explored and analyzed the two most popular
HTTP-based video streaming services (YouTube and Netflix)
on mobile devices (iOS and Android) over three wireless
networks (Wi-Fi, 3G and LTE). After performing many ex-
periments, we point out that the network traffic behavior of
playing videos on mobile devices depend on hardware per-
formance, video players running on the devices, and network
conditions. While delivering a video to a client over HTTP,
we also observed that a noticeable amount of video content
gets discarded without being stored in the video playout
buffer, after the successful delivery to the client device. The
discarded video content occurs when a TCP connection is
repeatedly terminated and established. In such cases, the video
packets that arrived at the client through the terminated TCP
connection get discarded.

To reduce the waste of network traffic and enhance video
QoE for end-users, we propose a dynamic QoS-aware video
streaming architecture in LTE. Based on feedback on network
conditions over the air interface, P-GW is designed to assist a
video player in selecting a proper resolution under fluctuating
network conditions, by dynamically throttling the maximum
allowable TCP throughput on the video streaming flow. By
monitoring TCP/IP and HTTP packets in real time, it also
enables to discard the unnecessary video packets in advance
before being delivered to the client. Our experimental results
show that the proposed solution can save significant downlink
bandwidth (up to 20.58% improvement) over the air interface,
and provide a better viewing experience on mobile devices. We
believe that our proposed platform can support network oper-
ators to resolve inefficiency of today’s OTT video streaming
with minimum investment.
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